
C:\Program Files\Adobe\FrameMaker8\UniData 7.2\7.2rebranded\UNIDATAREF\UDTRTITL.fm
March 9, 2010 3:05 pm

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Beta Beta Beta Beta
UniData
UniData Commands
Reference
UDT-720-UDTR-1

ii UniData Comman

C:\Program Files\Adobe\FrameMaker8\UniData 7.2\7.2rebranded\UNIDATAREF\UDTRTITL.fm
March 9, 2010 3:05 pm

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Notices

Edition
Publication date: July 2008
Book number: UDT-720-UDTR-1
Product version: UniData 7.2

Copyright
© Rocket Software, Inc. 1988-2008. All Rights Reserved.

Trademarks
The following trademarks appear in this publication:

Trademark Trademark Owner

Rocket Software™ Rocket Software, Inc.

Dynamic Connect® Rocket Software, Inc.

RedBack® Rocket Software, Inc.

SystemBuilder™ Rocket Software, Inc.

UniData® Rocket Software, Inc.

UniVerse™ Rocket Software, Inc.

U2™ Rocket Software, Inc.

U2.NET™ Rocket Software, Inc.

U2 Web Development Environment™ Rocket Software, Inc.

wIntegrate® Rocket Software, Inc.

Microsoft® .NET Microsoft Corporation

Microsoft® Office Excel®, Outlook®, Word Microsoft Corporation

Windows® Microsoft Corporation

Windows® 7 Microsoft Corporation

Windows Vista® Microsoft Corporation

Java™ and all Java-based trademarks and logos Sun Microsystems, Inc.

UNIX® X/Open Company Limited
ds Reference

The above trademarks are property of the specified companies in the United States,
other countries, or both. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names as designated
by the companies who own or market them.

License agreement
This software and the associated documentation are proprietary and confidential to
Rocket Software, Inc., are furnished under license, and may be used and copied only
in accordance with the terms of such license and with the inclusion of the copyright
notice. This software and any copies thereof may not be provided or otherwise made
available to any other person. No title to or ownership of the software and associated
documentation is hereby transferred. Any unauthorized use or reproduction of this
software or documentation may be subject to civil or criminal liability. The information
in the software and documentation is subject to change and should not be construed
as a commitment by Rocket Software, Inc.

Restricted rights notice for license to the U.S. Government: Use, reproduction, or
disclosure is subject to restrictions as stated in the “Rights in Technical Data-
General” clause (alternate III), in FAR section 52.222-14. All title and ownership in
this computer software remain with Rocket Software, Inc.

Note
This product may contain encryption technology. Many countries prohibit or restrict
the use, import, or export of encryption technologies, and current use, import, and
export regulations should be followed when exporting this product.

Please be aware: Any images or indications reflecting ownership or branding of the
product(s) documented herein may or may not reflect the current legal ownership of
the intellectual property rights associated with such product(s). All right and title to
the product(s) documented herein belong solely to Rocket Software, Inc. and its
subsidiaries, notwithstanding any notices (including screen captures) or any other
indications to the contrary.

Contact information
Rocket Software
275 Grove Street Suite 3-410
Newton, MA 02466-2272
USA
Tel: (617) 614-4321 Fax: (617) 630-7100
Web Site: www.rocketsoftware.com
UniData Commands Reference iii

http://www.rocketsoftware.com
http://www.rocketsoftware.com

Table of Contents

:\Prog
March

Table of
Contents

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
About This Manual 1-2
Elements of Syntax Statements 1-2

! . 1-4
ACCT_RESTORE 1-5
acctrestore . 1-13
ACCT.SAVE . 1-15
ACTIVATE.ENCRYPTION.KEY 1-17
AE . 1-18

Common AE Commands 1-19
ANALYZE.FILE 1-21
auditor . 1-24
AVAIL . 1-26
BASIC . 1-28
BASICTYPE . 1-31
BLIST . 1-33
BLOCK.PRINT 1-36
BLOCK.TERM. 1-38
BUILD.INDEX. 1-40
BYE . 1-43
CATALOG . 1-44
CENTURY.PIVOT. 1-48
CHECKOVER . 1-50
CLEAR.ACCOUNT 1-51
CLEAR.FILE . 1-52
CLEAR.LOCKS 1-55
CLEAR.ONABORT 1-56
CLEAR.ONBREAK 1-58
CLEARDATA . 1-59
CLEARPROMPTS 1-61
clearq . 1-62
CLR . 1-63
CNAME . 1-64
ram Files\Adobe\FrameMaker8\UniData 7.2\7.2rebranded\UNIDATAREF\UDTRTOC.fm (bookTOC.template)
9 2010 3:03 pm

cntl_install . 1-66
COMO . 1-68
COMPILE.DICT 1-72
CONFIGURE.FILE 1-74
confprod . 1-77
CONNECT . 1-80
CONTROLCHARS 1-87
convcode . 1-89
convdata . 1-90
convhash . 1-92
convidx . 1-95
convmark . 1-97
CONVERT.SQL 1-101
COPY . 1-105
CREATE.FILE . 1-112

Estimating the Modulo 1-115
Estimating the File Size. 1-116
Special Considerations for Dynamic Files 1-117

CREATE.INDEX 1-119
CREATE.TRIGGER 1-123
DATE . 1-126
DATE.FORMAT 1-127
DB.TOXML . 1-129
dbpause . 1-130
dbpause_status . 1-131
dbresume . 1-132
DEACTIVATE.ENCRYPTION.KEY 1-133
DEBUG.FLAG . 1-134
DEBUGLINE.ATT. 1-136
DEBUGLINE.DET 1-137
DECRYPT.FILE 1-138
DEFAULT.LOCKED.ACTION 1-140
DELETE . 1-142
DELETECOMMON 1-144
DELETE.CATALOG 1-147
DELETE.FILE . 1-150
DELETE.INDEX 1-153
DELETE.TRIGGER 1-155
deleteuser. 1-157
DISABLE.DECRYPTION 1-159
DISABLE.INDEX 1-160
DISABLE.RFS.FILE 1-162
Table of Contents v

vi UniD
DISABLE.USERSTATS 1-163
DTX . 1-164
dumpgroup . 1-165
DUP.STATUS . 1-167
ECLTYPE . 1-169
ED . 1-171
EDA.CONVERT 1-175
EDA.DISCONNECT 1-177
EDA.EXCEPTION 1-178
EDA.VERSION 1-181
ENABLE.INDEX. 1-183
ENABLE.USERSTATS 1-185
ENCRYPT.FILE 1-186

Example . 1-187
FILE.STAT . 1-188
FILELIMIT . 1-191
FILEVER . 1-192
fixfile . 1-193
fixgroup . 1-200
fixtbl . 1-202
FLOAT.PRECISION. 1-205

Rounding Before Truncating with FLOAT.PRECISION 4, round . . 1-207
forcecp . 1-212
GETUSER . 1-213
GROUP.STAT . 1-216
gstt . 1-219
guide. 1-220
guide_ndx . 1-228
HASH.TEST . 1-231
HELP . 1-233
HUSH . 1-235
HUSHBASIC . 1-237
ipcstat . 1-239
ISTAT . 1-243
kp. 1-244
LIMIT . 1-245
LINE.ATT . 1-246
LINE.DET . 1-248
LINE.STATUS 1-250
LIST.CONNECT 1-252
LIST.EDAMAP 1-254
LIST.ENCRYPTION.KEY 1-257
ata Commands Reference

LIST.INDEX . 1-259
Using Indexes Created in an Earlier Release 1-259
LIST.INDEX Display 1-261
STATISTICS Display 1-262

LIST.LANGGRP 1-265
LIST.LOCKS . 1-267
LIST.PAUSED . 1-270
LIST.QUEUE . 1-272
LIST.READU . 1-278
LIST.TRIGGER. 1-281
LIST.USERSTATS 1-283
LISTPEQS . 1-286
LISTPTR . 1-287
LISTUSER . 1-288
LO . 1-292
LOCK . 1-293
log_install . 1-295
LOGTO . 1-297
LS . 1-299
LSL . 1-300
lstt . 1-301
MAG_RESTORE 1-303

Preparing for Restoration 1-306
Files Created by MAG_RESTORE 1-308

MAKE.MAP.FILE 1-309
makeudapi . 1-310
makeudt . 1-311
MAP . 1-313
MAX.USER . 1-315
mediarec . 1-316
memresize . 1-318

Default Rules 1-321
MENUS . 1-324
MESSAGE . 1-325
MIN.MEMORY. 1-329
mvpart. 1-330
MYSELF . 1-333
newacct . 1-334
newhome . 1-336

Creating an Alternate Catalog Space on UniData for Windows Platforms 1-
337

Creating an Alternate Catalog Space on UniData for UNIX 1-341
Table of Contents vii

viii Uni
NEWPCODE . 1-343
newversion . 1-345
NODIRCONVERT 1-348
ON.ABORT . 1-349
ON.BREAK . 1-351
PAGE . 1-353
PATHSUB . 1-355
PAUSE . 1-357
PHANTOM . 1-359

PHANTOM Command Exit Codes. 1-360
PORT.STATUS 1-363
PRIMENUMBER 1-366
PRINT.ORDER 1-367
PROTOCOL . 1-369
PTERM . 1-372
PTRDISABLE. 1-374
PTRENABLE . 1-376
QUIT . 1-378
READDICT.DICT 1-379
REBUILD.FILE 1-380
RECORD . 1-383
RELEASE . 1-385
RELEASE.ITEMS 1-386
RESIZE . 1-388

Recovering from a Concurrent Resize Error 1-389
Log Files . 1-390

REUSE.ROW . 1-395
REVOKE.ENCRYPTION.KEY 1-396
RUN . 1-398
SAVE.EDAMAP 1-400
sbcsprogs . 1-402
SET.DEC . 1-403
SET.LANG. 1-405
SET.MONEY . 1-407
SET.THOUS . 1-409
SET.TIME . 1-411
SET.WIDEZERO 1-412
SETDEBUGLINE 1-413
SETFILE . 1-414
SETLINE . 1-420
SETOSPRINTER. 1-422
SETPTR . 1-424
Data Commands Reference

SETPTR (UniData for Windows Platforms) 1-431
Redefining the Default UniData Print Unit 1-439
Submitting Concurrent Print Jobs 1-440

SETTAPE . 1-441
SG.LIST . 1-444
shmconf . 1-445
showconf . 1-446
showud . 1-450
smmtest . 1-451
smmtrace . 1-453
sms. 1-455
SORT . 1-459
SORT.TYPE . 1-460
SP.ASSIGN . 1-464
SP.CLOSE . 1-467
SP.EDIT . 1-469
SP.KILL . 1-471
SP-LISTQ . 1-473
SP.STATUS . 1-474
SPOOL . 1-476
SQL . 1-478
STACKCOMMON. 1-479
STARTPTR . 1-481
startud . 1-482
STATUS . 1-484
STOPPTR . 1-486
stopud . 1-487
stopudt . 1-488
SUPERCLEAR.LOCKS 1-490
SUPERRELEASE 1-492
sysmon . 1-493
systest . 1-495
T.ATT . 1-497
T.BAK . 1-500
T.CHK . 1-502
T.DET . 1-504
T.DUMP . 1-505
T.EOD. 1-508
T.FWD . 1-509
T.LOAD . 1-510
T.RDLBL. 1-513
T.READ . 1-515
Table of Contents ix

x UniD
T.REW . 1-518
T.SPACE . 1-519
T.STATUS . 1-521
T.UNLOAD . 1-523
T.WEOF . 1-524
tandem . 1-525

tandem Modes 1-525
TANDEM . 1-527

TANDEM Modes 1-527
TERM . 1-529
TIMEOUT . 1-531
trunclog . 1-532
udcls . 1-534
udfile . 1-535
udipcrm . 1-537
udstat . 1-538
udt . 1-541
udtbreakon . 1-544
udtconf . 1-545
udtinstall . 1-549
udtlangconfig . 1-550
udtmon . 1-552
udtts . 1-553
UDT.OPTIONS 1-555
uniapi_admin . 1-557
UNIENTRY . 1-558
UNSETDEBUGLINE 1-561
UNSETLINE . 1-562
UPDATE.INDEX. 1-563
updatesys . 1-565
updatevoc . 1-566
updvoc . 1-571
usam . 1-574
USHOW . 1-575
UV_RESTORE 1-577
VCATALOG . 1-580
VERIFY.EDAMAP 1-582
VERSION . 1-584
VI. 1-585
WAKE . 1-587
WHAT . 1-589
WHERE. 1-591
ata Commands Reference

WHO . 1-592
XMLSETOPTIONS 1-593
XMLGETOPTIONS 1-595
XMLGETOPTIONVALUE 1-597
XML.TODB . 1-598
XTD . 1-600
Table of Contents xi

xii UniD
ata Commands Reference

In This Introduction
This introduction provides an overview of the information in this manual and
describes the conventions it uses.
Introduction 1-1

About This Manual
This manual contains an alphabetic listing of UniData commands and keywords and
provides related syntax, options, and examples. This manual provides both ECL
commands and system-level commands. All of the examples in this manual use the
UniData demo account and its database files.

UniData provides the Environment Control Language (ECL), a proprietary
command language to handle database management functions. ECL commands
execute from the UniData colon prompt (:).

ECL commands and keywords install when you install UniData. They are stored in
the UniData Vocabulary (VOC) file. In this manual, these commands appear in
uppercase. If you enter commands in lowercase, you invoke the UniData parser,
regardless of the ECLTYPE setting.

UniData also provides system-level commands, which you execute from the shell
prompt. System-level commands are stored in the udtbin directory. In general, these
commands must be entered in lowercase. You can execute some system-level
commands from the UniData colon prompt by entering the ! (bang) command first
(for example, :!systest).

Elements of Syntax Statements
This reference manual uses a common method for stating syntax for UniData
commands. The syntax statement includes the command name, required arguments,
and options that you can use with the command. Italics represents a variable that you
can replace with any valid option. The following figure illustrates the elements of a
syntax statement:
Introduction 1-2

COMMAND required [option] [option1 | option2]
{option1 | option2} required... "string"

command names

no brackets or braces
indicates a required

argument

square brackets indicate
an optional argument

a vertical line indicates that
you may choose between

the given arguments

braces indicate that you
must choose between
the given arguments

an ellipsis indicates that
you may enter more than

one argument

quotation marks

appear in boldface

must enclose a
literal string
Introduction 1-3

!

Syntax
! system_command

Description
The ECL ! (bang) command gives a UniData process access to the operating system.
With this access, you can execute operating system and UniData system-level
commands.

Example
In the following example, the ! command executes the “pwd” UNIX command and
the “showud” UniData system-level command:

:!pwd
/home/claireg
:!showud
UID PID TIME COMMAND
root 18126 0:00 /disk1/ud72/bin/aimglog 0 23192
root 18127 0:00 /disk1/ud72/bin/aimglog 1 23192
root 18121 0:00 /disk1/ud72/bin/bimglog 2 23192
root 18122 0:00 /disk1/ud72/bin/bimglog 3 23192
root 18114 0:04 /disk1/ud72/bin/cleanupd -m 10 -t 20
root 18123 0:53 /disk1/ud72/bin/cm 23192
root 18110 0:00 /disk1/ud72/bin/sbcs -r
root 18119 0:00 /disk1/ud72/bin/sm 60 6354
root 18103 0:02 /disk1/ud72/bin/smm -t 60
root 18145 0:00 /disk1/unishared/unirpc/unirpcd
Introduction 1-4

ACCT_RESTORE

Syntax
ACCT_RESTORE [-D] [-E]
[-F outputfile]
[-H [DYNAMIC0 | DYNAMIC1]
[-O] [-S]
[-VREAL7] [-Z] [-U [0-9]] [-M [0-3]] [-X char_list] [-B [1 | 2 | 4 | 8]][-K n] [-L]
[-A outputfile] [-C outputfile] [-I I_list]
[-[X]R {ALL | filelist}] [-[X] Y filelist] [-YX filelist]
[acct_name]

Description
The system-level ACCT_RESTORE command restores Pick® R83-compatible
accounts that were saved to tape in UniData format using the Pick® commands
ACCT-SAVE and FILE-SAVE. The account must be compatible with Pick® R83 (it
can contain no records larger than 32K and a minimum block size of 512). When you
are restoring multiple accounts, UniData prompts for owner and group for each.

Tip: Use backward compatibility options with your save from the Pick® system,
except with MCD Rev 7. When saving from Reality 7.0, use the -VREAL7 flag.

ACCT_RESTORE restores accounts, with their original names, to the current
directory. If UniData cannot read the account name from tape, it uses acct_name. If
no account of the same name exists in the current directory, UniData executes the
newacct command to create one.

UniData loads Pick® DC-type files as UniData directory files with their dictionaries
intact.

The executable for this command is located in your udtbin directory.

See “Preparing for Restoration” on page 1-9” for a recommended procedure for
restoring files efficiently.
 1-5

Parameters
You can enter ACCT_ RESTORE parameters in lowercase or uppercase. Some
Pick®systems allow a hash type in the separation field in a file pointer.

Parameter Description

-D Overwrites the data portion of files with data files from the tape, but
does not create new ones.
The account must already exist, and all dictionary files must have been
previously converted. Restores only hashed data files, not Pick® DC-
type files (DC-type corresponds to UniData DIR-type).

-E Clears each file on disk before restoring it from tape.

-F outputfile Restores dictionary files using the list of files in outputfile.
To restore data and dictionary files, use the -R option. Provide filelist,
a list of files to be restored.

-H[DYNAMIC0 |
DYNAMIC1]

Converts all restored files to dynamic with:
DYNAMIC0 – hash type 0
DYNAMIC1 – hash type 1 (default)

-O Overwrites all data in the account, including that in dictionary and
DIR-type files, from tape. The files must already exist in the current
directory.
Execute ACCT_RESTORE -C to create the files on disk before
executing ACCT_RESTORE -O to populate them.

-S Truncates file names to 12 characters in length.

-VREAL7 Enables compatibility with REALITY 7.0, which allows for regis-
tration of items larger than 32K.

ACCT_RESTORE Parameters
1-6 UniData Commands Reference

-Z Skips zero-length blocks on multireel tapes, floppy diskettes, or tape
volume.
When UniData encounters one or more zero-length blocks, it pauses at
the end-of-file mark and prompts for user response before continuing.
You must respond with one of the following:
E — Terminate.
F — Advance to EOR (end-of-reel). Use only when you are sure you
are at the end or the tape or disk image.
C — Go to the next file on the tape. Use when several files are saved
on the tape and you want to load them all.

-U [0-9] Indicates a tape unit to read from. The tape unit must be described in
the tapeinfo file in udthome/sys. Default is 0.
Use the ECL SETTAPE command first to set tape unit attributes.

-M [0-3] Converts data based on one of the following options:
0 — Default. No conversion. Data is assumed to be ASCII.
1 — EBCDIC conversion.
2 — Invert high bit.
3 — Swap bytes.

-X [char_list] char_list indicates characters to be considered invalid for
file names
account names
record IDs in DIR-type files
While restoring, UniData converts these characters to underscore (_).
If the resulting name conflicts with an existing account name, UniData
adds a character to the end of the name to make it unique. For example:
A&B becomes A_B. If A_B is used by another file, the name becomes
A_Ba.
Default invalid characters are the following: space * ? / & '.
You cannot specify nonprinting characters as invalid.
Do not separate characters in char_list with spaces or commas.

Parameter Description

ACCT_RESTORE Parameters (continued)
 1-7

-B [1 | 2 | 4 | 8] Each option corresponds to a block size (in bytes) of the data on the
tape.
0.5 — 512 (default)
1 —1024
2 — 2048
4 — 4096
8 —8192

-K n Defines the size of the internal memory buffer (in kilobytes). Default
size is 8000 kilobytes.
System restoration performs best when buffer size is large. Change the
size to match the capacity of your operating system.

-L Restores all files as type LF or LD.

-A filename Creates filename, an ASCII text file, in the current directory,
containing statistics about each file on the tape. -A does not restore
files. (See “Preparing for Restoration” on page 1-9).

-C filename Reads the file created by a previous execution of ACCT_RESTORE
with the -A filename option. Creates, in the current directory, the files
listed in filename, but does not restore data.

-I I_list Recovers the operation after an interruption. UniData prompts for
names of files already loaded. See “Resuming after an Interruption” on
page 1-10.

X Reverses the effect of -R or -Y. Syntax and effect is:
-[X]R – Files in filelist are not restored.
-[X]Y – Files in filelist remain static.

Parameter Description

ACCT_RESTORE Parameters (continued)
1-8 UniData Commands Reference

Preparing for Restoration

IBM recommends that you follow this procedure to make the restoration more
efficient. Use the -A option in conjunction with -C and -O to determine file status
before files are loaded. This decreases load time, because UniData then does not have
to resize files during restoration.

-R filelist | ALL Restores both data and dictionary portions of files listed in filelist. You
create filelist, an ASCII file containing a single-line entry for each file
to be ignored. Syntax for each entry is the following:
[filename] [,acct_name]
Include filename only to load all files from a single account.
Include acct_name only to load all files from a specific account.

-Y filelist Converts the files in filelist to dynamic. Used in conjunction with the
HDYNAMIC0 or -HDYNAMIC1 option.
You create filelist, an ASCII file containing a single-line entry for each
file to be ignored. Syntax for each entry is the following:
[filename] [,acct_name]

acct_name New name for the restored account to be used if UniData cannot obtain
a name from the account on tape.

Parameter Description

ACCT_RESTORE Parameters (continued)
 1-9

1. Execute “ACCT_RESTORE -A filename” to generate a file containing
statistics about the files on tape. Use these statistics to evaluate the
suitability of the projected modulo, file type, and file separation.
filename is stored in the current directory. For each file, UniData lists the
following on a single line separated by commas:

The position of the file on the tape.
The type of UniData file.
The name of the UniData file.
File separation.
New or recommended modulo — IBM recommends a modulo based on
the number of records and the size of the file. This recommended
modulo is never smaller than the original modulo.
The original modulo of the file on tape.
The proposed key length for the UniData file.
The total record length for the file.
The number of records in the UniData file.

2. Use an ASCII text editor to modify the file generated in Step 1 as desired.
For example, you might eliminate files from the list that you do not want
UniData to restore.

3. Execute “ACCT_RESTORE -C filename” to create new UniData files in the
destination directory. Remember, filename must be the name of the file
created in Step 1. You can add options as desired.

4. Execute “ACCT_RESTORE -O filename” to load the data and dictionary
records into the files created in Step 3. You can add options as desired.

Resuming after an Interruption

Follow this procedure if you are interrupted when restoring files with the -C, -R, or -
O options.
1-10 UniData Commands Reference

1. Check the last 10 lines of the dispmsg file in the current directory, and
record the message about the last reel. The following is an example of 10
lines from a dispmsg file:

D[2].flag=0
D[3].flag=0
D[1].count=1
D[2].count=194
D[3].count=195
D[2].rel.relname=DIFF
D[3].rel.relname=DIFF
D[2].sname=DIFF
D[3].sname=DIFF
IC3~01220~0011ABC~3

2. To ensure that no files are skipped, enter the last 10 statements into I_list
file.

3. Remount the interrupted reel.
4. Execute “ACCT_RESTORE -I”.

UniData reads I_list, displays the name of each file loaded, and prompts you
to skip or reload it (overwriting the existing copy).

ACCT_RESTORE Messages

UniData may display the following messages during the restore.

Message Description

Create file modulo
separator [---newfile]

UniData is loading the file using the modulo and separator found
in the tape. If the file name contains invalid characters or if the
file name is too long, UniData changes it to “newfile”.

DUMP_MD UniData is reading an MD file.

DICT UniData is reading a dictionary file.

DATA UniData is reading a single-level hashed data file.

DIR UniData is reading a single-level sequential file.

LF UniData is reading a multi-level hashed data file.

LD UniData is reading a multi-level sequential file.

ACCT_RESTORE Messages
 1-11

Files Created by ACCT_RESTORE

UniData creates the following files in the restored account by default.

ACCT_RESTORE-Related Files

File Description

analyze_list Lists number of records, total key length, and total record length for each
file.

DUMP_MD Hashed file. Contains the account’s original Pick® MD file.

pgm_list Text file. Record of program names altered by the load. UniData
conversion tools use this file.

dispmsg Text file. A compilation of all messages generated during the restore.

resize_list Text file. Record of file names that may be resized at a later time.

Loading (filename)... UniData is loading the data into existing files rather than
creating files. This is the default when you run
ACCT_RESTORE with the -D, -F, or -O option.

Replace to multi-level
success.

A single-level file changed to a multi-level file.

Replace to multi-level
failure.

UniData failed to change a single-level file into a multi-level
file.

Resize (filename) to new
modulo --- (modulo)

The file called filename has an inadequate modulo; UniData
resized the file to a more efficient modulo (modulo).

Create file failure. UniData failed to create the file.

Open file failure. UniData failed to open the file.

Message Description

ACCT_RESTORE Messages (continued)
1-12 UniData Commands Reference

acctrestore

Syntax
acctrestore [n]

Description
The system-level acctrestore command restores a UniData account from a tape
backup. The account must have been saved with the ACCT.SAVE command. acctre-
store operates on a single tape volume. n represents the tape unit number in the
udthome/sys/tapeinfo file. Use the SETTAPE command to define the tape unit.

Note: acctrestore is supported on UniData for UNIX only.

You must have permission to read from and write to the tape device to use this
command. For more information about managing UniData accounts, see Adminis-
tering UniData.

This command does not function if the Recoverable File System is running. If you
used the ACCT.SAVE command to save an account that contains recoverable files,
acctrestore does not restore those files as recoverable. To convert them to recov-
erable, run the udfile command against them. See Administering the Recoverable File
System for more information about udfile and recoverable files.

Warning: To avoid file corruption, do not use this command while UniData is
running.

Note: acctrestore uses the UNIX cpio utility: cpio -iBvd < %s”, raw
 1-13

Example
In the following example, UniData restores a file and its subdirectories from a backup
tape:

$UDTBIN/acctrestore
Status: Tape unit 0 blocksize = 1024.
cpio -iBvd < /users/claireg/tape
.
BP
BP_SOURCE
BP_SOURCE/GPA1
BP_SOURCE/PHONE_FMT
BP_SOURCE/PSTLCODE_FMT
BP_SOURCE/UP_NAME
BP_SOURCE/_GPA1
BP_SOURCE/_PHONE_FMT
BP_SOURCE/_PSTLCODE_FMT
BP_SOURCE/_UP_NAME
CATEGORIES
...
650 blocks
#

Related Command
ACCT.SAVE
1-14 UniData Commands Reference

ACCT.SAVE

Syntax
ACCT.SAVE

Synonym
ACCT-SAVE

Description
The ECL ACCT.SAVE command saves the current UNIX directory and all of its
subdirectories to the device defined as tape unit 0 in udthome/sys/tapeinfo.

Note the following before using ACCT.SAVE:

Before you use this command, use the SETTAPE command to define the
tape unit.
This command does not function if the Recoverable File System is running.
You must have permissions to write to the tape device to use this command.
ACCT.SAVE uses the UNIX cpio utility: find . -print | cpio -oBv > %s”,raw

Note: ACCT.SAVE is only supported on UniData for UNIX.
 1-15

Example
In the following example, UniData saves the current UNIX directory and its subdi-
rectories to tape unit 0. Notice how UniData displays a list of all subdirectories in the
account. You must already have defined a device as tape unit 0 with the SETTAPE
command.

:ACCT.SAVE
find . -print | cpio -oBv > /users/claireg/tape
.
BP
BP_SOURCE
BP_SOURCE/GPA1
BP_SOURCE/PHONE_FMT
BP_SOURCE/PSTLCODE_FMT
BP_SOURCE/UP_NAME
BP_SOURCE/_GPA1
...
650 blocks

Related Command
acctrestore
1-16 UniData Commands Reference

ACTIVATE.ENCRYPTION.KEY

Syntax
ACTIVATE.ENCRYPTION.KEY key.id password

Description
Use the ACTIVATE.ENCRYPTION.KEY command to activate a key or a wallet. It
is necessary to activate a key if it is protected by a password.

Parameters
The following table describes each parameter of the syntax.

ACTIVATE.ENCRYPTION.KEY Parameters

Parameter Description

key.id The key ID or wallet ID to activate. If you provide a Wallet ID,
UniData activates all keys in the wallet.

password The password corresponding to key.id.

Note: You can activate only keys with password protection using this command. Keys
that do not have password protection are automatically activated.

Example
The following example illustrates activating the “test” encryption key:

ACTIVATE.ENCRYPTION.KEY test myunidata
ACTIVATE.ENCRYPTION.KEY successful.
 1-17

AE

Syntax
AE [filename] [record]

Description
The ECL AE command invokes the UniData Alternate Editor. You can use this line
editor to edit UniData hashed files and UniBasic source programs. If you do not
indicate the filename or record, AE prompts for them. See Developing UniBasic
Applications for a brief introduction to the editor.

If you have an active select list, you can execute AE from the select list prompt rather
than entering record, and UniData opens each record successively: when you close
one record, the next one opens. To exit the select list without saving changes, enter
QK at the command prompt in AE. See Using UniData for instructions on creating
and using select lists.

UniData displays a warning message if a trigger prevents record update or deletion.
See Developing UniBasic Applications or CREATE.TRIGGER in this manual for
more information on UniData triggers.

Regarding other editors:

The ECL ED command invokes the standard operating system editor
supported by UniData. See ED in this manual for more information.
UniData also supplies UniEntry for modifying UniData records.
On UniData for UNIX, the ECL VI command invokes vi, the UNIX System
V visual editor, from within UniData.
You can edit UniData hashed files and DIR-type files with any ASCII text
editor. Refer to your operating system documentation for more information
on supported editors. Be aware, though, of any changes or conversions the
editor might make to files it opens.

Tip: To display the ASCII code for control characters (including UniData delimiters
and the null value) in AE, press SHIFT+6.
1-18 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

AE Parameters

Parameter Description

filename Name of the file to edit or create.

record ID of the record to edit or create.

Common AE Commands
The following table lists commonly used AE editor commands.

Command Description

C/old.string
/new.string

Changes the current character string to a new character string on the
current line.

P Displays one page of the record.

HELP Displays online help for AE. You can also enter HELP followed by a
topic or AE command.
You can also access the UniData help system using the XEQ command.
For example, “XEQ HELP SELECT”.

I Enters insert mode to enter text.

EX or Q Exits the record without saving changes made this editing session.

FI Files the UniBasic program record, saving changes.

FIB Files the UniBasic program record and compile it.

FIBR Files the UniBasic program record, compile it, and run it.
If the compile is unsuccessful, the last successfully compiled version is
executed.

FIR Files the UniBasic program record and run the compiled version.
Be aware that the compiled version may differ from the one you are
editing.

Common AE Commands
 1-19

Example
In the following example, the AE command opens record 9999 of the CLIENTS file
for editing:

:AE CLIENTS 9999
Top of "9999" in "CLIENTS", 10 lines, 95 characters.
*--:

Related Commands
ED, VI

FIBCFN The N option of the FI command equates to the ECL NEWPCODE
command. FIBCFN compiles a program and catalogs it (locally) with
NEWPCODE. You need to use F (force) in conjunction with the N
option. Refer to the online help for the AE editor for more information.

LNn Lists the number of lines indicated with no line numbers.

n Goes to line number n.

T Goes to the top of the record.

SPOOLHELP Prints brief help.

SPOOLHELP
-FULL

Prints extensive help.

<Return> Returns to command mode.

Command Description

Common AE Commands (continued)
1-20 UniData Commands Reference

ANALYZE.FILE

Syntax
ANALYZE.FILE filename

Synonym
ANALYZE-FILE

Description
The ECL ANALYZE.FILE command displays information about a dynamic file.
The output includes information about the file’s size, split/merge type, and hash type.
The output also lists all the groups in the file along with loading information for each.
The output of this command differs depending on the split/merge type of the file
being analyzed.

Examples
The following example displays file and group information about the dynamic file
INVENTORY in the demo database:
 1-21

:ANALYZE.FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 1, blocksize = 1024
Split load = 60, Merge load = 40
Split/Merge type = KEYONLY

 Group Keys Key Loads Percent
===
 0 6 84 8
 1 3 42 4
 2 5 70 6
 3 11 154 15
...
 15 8 112 10
 16 11 154 15
 17 8 112 10
 18 2 28 2
===
 Average 9 128 12
File has 175 records.
:

Notice that the INVENTORY file is a KEYONLY file. For purposes of splitting and
merging, the loading factor for each group is computed (and shown) based on keys
only.

The next example shows ANALYZE.FILE output if the split/merge type of the
INVENTORY file is changed to KEYDATA.

:ANALYZE.FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 0, blocksize = 1024
Split load = 95, Merge load = 40
Split/Merge type = KEYDATA

1 Group Keys Key Loads Percent Key+Data Percent
1 ===
1 0 9 126 12 836 81
1 1 8 112 10 692 67
1 2 9 126 12 808 78
1 3 7 98 9 598 58
1 ...
1 15 9 126 12 812 79
1 16 10 140 13 839 81
1 17 9 126 12 769 75
1 18 7 98 9 651 63
1 ===
1 Average 9 128 12 783 76
1 File has 175 records.
1 :
1-22 UniData Commands Reference

Notice that the split/merge type is now KEYDATA. For purposes of splitting and
merging, the load factor for each group is based on both keys and data. For
KEYDATA files, ANALYZE.FILE reports load based on keys as well as load based
on both keys and data.
 1-23

auditor

Syntax
auditor

Description
The system-level auditor command detects certain types of error conditions that
affect dynamic files.

When a dynamic file expands outside the file system in which it was created, the “part
files” are placed in a file system selected from a “part table” (a list of locations where
the original file can expand). The original dynamic file directory contains UNIX
symbolic links to the physical location of the data and overflow “part files.” In each
file system in which dynamic files expand, UniData maintains a UNIX hidden file
called .fil_prefix_tbl that relates part file names back to their original dynamic file
and account.

The auditor command reports inconsistencies between the symbolic links and the
hidden files that should be resolved. If inconsistencies aren’t resolved, users may
encounter unexpected results (for instance, part files from the same dynamic file may
be created in different directory structures for no apparent reason, or commands may
fail unexpectedly due to naming conflicts). This command also reports an error if a
part file is not found in the correct location. Your current working directory must be
a UniData account. The auditor command checks all the dynamic files that have
pointers in the current account directory’s VOC file.

Note: auditor is supported on UniData for UNIX only.

The auditor command does not check all possible error conditions that can affect a
dynamic file. After you resolve any conditions reported by auditor, use the guide
command to verify the integrity of your files.
1-24 UniData Commands Reference

Examples
The following example shows auditor output from a UniData account:

:!auditor
In current account, VOC entry SAMPLE_FILE3, is a pointer to
SAMPLE_FILE3.
There is a mismatch between the symbol link for 'dat001'
of SAMPLE_FILE3 and /tmp/partfiles/.fil_prefix_tbl.

In current account, VOC entry SAMPLE_FILE3, is a pointer to
SAMPLE_FILE3.
There is a mismatch between the symbol link for 'over001'
of SAMPLE_FILE3 and /tmp/partfiles/.fil_prefix_tbl.

:

The next example shows auditor output when no inconsistencies are found:

:!auditor

auditor finished, no error was detected.

:

Related Commands
fixtbl, mvpart
 1-25

AVAIL

Syntax
AVAIL

Description
The ECL AVAIL command displays the number of blocks the operating system is
using and the number of free blocks. AVAIL is a UniData implementation of the
UNIX “df” command. Results vary depending on the operating system type and
release. Refer to your host operating system documentation for a detailed explanation
of the output from the df command.

Note: AVAIL is supported on UniData for UNIX only.

You can execute df with options from the UniData colon prompt (:) by preceding the
command with the UniData (bang) command.
1-26 UniData Commands Reference

Example
In the following example, the AVAIL command is executed. It displays information
on the number of blocks used by UNIX and the number of blocks free.

:AVAIL
/usr (/dev/vg00/lvol3): 44364 blocks 33380 i-nodes
 332592 total blocks 43008 total i-
nodes
 254968 used blocks 9628 used i-
nodes
 10 percent minfree

/users (/dev/vg00/lvol4): 79134 blocks 222993 i-nodes
 1860880 total blocks 241664 total i-
nodes
 1595658 used blocks 18671 used i-
nodes
 10 percent minfree

/tmp (/dev/vg00/lvol5): 41930 blocks 5989 i-nodes
 63860 total blocks 6144 total i-
nodes
 15544 used blocks 155 used i-
nodes
 10 percent minfree

/ (/dev/vg00/lvol1): 12152 blocks 19071 i-nodes
 166000 total blocks 22528 total i-
nodes
 137248 used blocks 3457 used i-
nodes
 10 percent minfree
 :
 1-27

BASIC

Syntax
BASIC filename [TO filename] prog.name1 [progname2...] [options]

Description
The ECL BASIC command compiles UniBasic source code into interpretive code to
be used with the UniBasic interpreter. UniData names the resulting object code
record _prog.name, where prog.name is the name of the source code record.

Tip: You can create a select list, then execute BASIC to compile all programs in the
select list. For example, to select and compile all UniBasic source files in the BP
directory, enter SELECT BP WITH @ID UNLIKE “_...” Then, enter BASIC BP
from the select prompt.

Note: The UniBasic compiler returns nonfatal warning messages. If you run batch
jobs to compile groups of programs, you need to code those jobs to terminate only if
the compiler returns error messages. Messages beginning with “Warning:” should
not terminate processing.

Parameters
The following table describes each parameter of the syntax.

BASIC Parameters

Parameter Description

filename UniData DIR-type file containing the source code to be compiled.

TO filename UniData DIR-type file to receive the object code record, if different from
the location of the source code record.

program Source code to be compiled. You can compile more than one program by
separating the names with a space.

options See “BASIC Options” in this section.
1-28 UniData Commands Reference

BASIC Options
The following table lists the BASIC command options.

options Parameters

Option Description

-D Creates a cross-reference table for use with the UniBasic debugger.

-G Generates a program that you can run with profiling.

-L
-LIST

Generates a list of the program.

-X
-XREF

Generates a cross reference table of statement labels and variable
names used in the program.

-Zn Creates a symbol table for use with the UniBasic debugger. UniData
doesn’t recompile the program or expand $INCLUDE statements. Use
one of the following options:

Z1 – for programs compiled on a UniData release
earlier than release 3.1
Z2 – for programs compiled on UniData Release 3.1
or later.

-I If you compile a program with the -I option, all reserved words in
UniBasic are case insensitive.

Examples
In the following example, the BASIC command compiles the program TEST, found
in the BP file, and stores the resulting object code as _TEST.

:BASIC BP TEST -D

Compiling Unibasic: BP/TEST in mode ‘u’.
compilation finished
 1-29

In the next example, the SELECT command saves in select list 0 the names of all
programs in the BP file with names (record IDs) beginning with T. Then, the BASIC
command compiles the selected program.

:SELECT BP WITH @ID LIKE “T...”

1 record selected to list 0.

>BASIC BP

Compiling Unibasic: BP/TEST in mode ‘u’.
compilation finished.

The following example saves the executable in a DIR-type file different from the one
that contains the source code. In the first line, the program, test, which resides in BP,
is compiled, and the executable placed in PROGRAMS. Then the program is
executed from PROGRAMS. The program prints “Hello”.

:BASIC BP TO PROGRAMS test

Compiling Unibasic: BP/test in mode ‘u’.
compilation finished
:RUN PROGRAMS test
Hello
1-30 UniData Commands Reference

BASICTYPE

Syntax
BASICTYPE [“U | P | R | M”] [filename program]

Description
The ECL BASICTYPE command selects the parser that UniData uses to interpret
UniBasic commands for the duration of this session or until you execute
BASICTYPE to select a different parser. This command is useful when compiling
programs that need to be backwardly compatible.

If you do not include any parameters with this command, UniData returns the current
BASICTYPE. If you do not select a parser option, but you do indicate a filename and
program, UniData returns the BASICTYPE in which the program was compiled.

This ECL command performs the same function as the UniBasic $BASICTYPE
command. For more information on the commands affected by BASICTYPE, refer
to the individual commands in Developing UniBasic Applications.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

“U” UniData interprets commands and keywords consistent with the UniData
parser. Must be enclosed in quotation marks.

“P” UniData interprets commands and keywords consistent with the Pick®
BASIC parser. Must be enclosed in quotation marks.

“R” UniData interprets commands and keywords consistent with the Advanced
Revelation® BASIC parser. Must be enclosed in quotation marks.

BASICTYPE Parameters
 1-31

Examples
In the following example, the BASICTYPE command, executed without any param-
eters, returns the current BASICTYPE (in this case standard UniData.

:BASICTYPE
BASICTYPE u
:

In the next example, the BASICTYPE command sets the BASICTYPE to P, for
Pick® BASIC.

:BASICTYPE “P”
:

In the next example, UniData returns the BASICTYPE of the demo program
PHONE_FMT in the directory file BP_SOURCE.

:BASICTYPE BP_SOURCE PHONE_FMT
Basic program ‘BP_SOURCE/_PHONE_FMT’was compiled with mode ‘u’.
:

Warning: Take care not to mix BASICTYPES in an application. For instance, do not
call a P-type subroutine from a U-type program. Because the parsers interpret
commands and keywords differently, using different BASICTYPEs may produce
unexpected results.

Related Command
ECLTYPE

“M” UniData interprets commands and keywords consistent with the McDonnell
Douglas or Reality® BASIC parser. Must be enclosed in quotation marks.

filename DIR-type file containing the program to be compiled. If you indicate a
filename you must also name a program.

program UniBasic program to be compiled.

Parameter Description

BASICTYPE Parameters (continued)
1-32 UniData Commands Reference

BLIST

Syntax
BLIST filename record_ID [([lineM-lineN [option]]]

Description
The ECL BLIST command lists and formats a UniBasic source code program for
display to the terminal screen. When you issue the command without options,
UniData displays the program. For more information about UniBasic, see Devel-
oping UniBasic Applications.

In UniBasic, comment lines begin with *, !, or REM. The BLIST command converts
comments that begin with an exclamation point (!) to a row of asterisks (*). Two
exclamation points (!!) at the beginning of a line produces a page eject. UniData does
not convert comment lines that begin with * or REM.

Parameters
The following table describes each parameter of the syntax.

BLIST Parameters

Parameter Description

filename DIR-type file where the source code is stored.

record_ID Designates a record that contains the UniBasic source code program.

(lineM-lineN Indicates a range of line numbers. You must enter the single parenthesis
and hyphen.

option Formatting operations to be performed or output conditions to be met.
Only one option is allowed on the command line.
 1-33

BLIST Options
The following table lists the BLIST options.

BLIST Options

Option Description

A Indents all lines beginning with an asterisk (*) according to the original
starting position.

B The number of leading spaces for the first level of indentation. UniData
indents subsequent levels in multiples of this number.
When you use the B option, UniData prompts for a value. Valid values are 1
through 5. The default setting is 5. If you enter any other value, Unidata
ignores it and uses the default value.

C Places all comment lines at the left margin, regardless of their original staring
position.

D Output is double-spaced.

E Expands all $INSERT code segments into the listing.

F Prints the file name and program name on the first line of the listing.

K Suppresses the printing of a line of asterisks (*) when the system encounters
an exclamation mark (!) at the beginning of the line.

L Prints a period (.) at each level of indentation.

M Prints line numbers at the left margin.

N The listing scrolls continuously, instead of stopping at each page.

P Directs the listing to the printer that is assigned to your port or to a printer you
assign through SETPTR command options. The default is to send the list to
the display terminal.

X Always used with the E option. Prints a level number for each $INSERT
statement.
1-34 UniData Commands Reference

Examples
In the following example, a segment of the PHONE_FMT demo program has been
formatted so that lines 11 through 20 start at the left margin:

011: RET_DATA = ““
012: Counter = 1
013: LOOP WHILE Counter <= TotalValues
014: BEGIN CASE
015: CASE COUNTRY = ‘USA’
016: IF LEN(PHONE_NUM<1,Counter>) = 7 THEN
017: RET_DATA<1,-1> = FMT(PHONE_NUM<1,Counter>,”14R ###-####”)
018: END ELSE
...

The next example shows how UniData reformats the program by double spacing the
listing:

:BLIST BP_SOURSE PHONE_FMT (11-20 D

PAGE 1 Uni/Basic Wed May 31 11:37:18 2004
PHONE_FMT

011: RET_DATA = ““

012: Counter = 1

013: LOOP WHILE Counter <= TotalValues

014: BEGIN CASE

015: CASE COUNTRY = ‘USA’
016: IF LEN(PHONE_NUM<1,Counter>) = 7 THEN

017: RET_DATA<1,-1> = FMT(PHONE_NUM<1,Counter>,”14R ###-####”)

018: END ELSE
...
 1-35

BLOCK.PRINT

Syntax
BLOCK.PRINT expr

Synonym
BLOCK-PRINT

Description
The ECL BLOCK.PRINT command prints the value of expr to the printer.UniData
prints expr in large uppercase letters and cannot print more than ten characters on a
single line. To depict an initial capital letter, UniData prints the initial capital letter in
a slightly larger point size.

Note: In ECLTYPE U, this command prints to the printer. In ECLTYPE P, it prints to
the terminal screen.

Example
In the following example, using BASICTYPE P, the BLOCK.PRINT command
prints to the terminal:

:BLOCK.PRINT HELLO
#######
#
#
####### ##### # # # #
#
#
#######

:

1-36 UniData Commands Reference

RELATED COMMAND
BLOCK.TERM
 1-37

BLOCK.TERM

Syntax
BLOCK.TERM expr

Synonym
BLOCK-TERM

Description
The ECL BLOCK.TERM command displays the value of expr to the standard
output device, usually the display terminal. UniData displays expr in large uppercase
letters and cannot display more than 10 characters on a single line. To depict an initial
capital letter, UniData displays the initial capital letter in a slightly larger point size.

Tip: If expr exceeds 255 characters, you can use the UniData continuation character
(\) to enter the excess characters over 255 on the same line. For example, 1. Note
errors...2. Correct 3. Balance ...\10 Record time.

Example
In the following example, UniData displays an expression with the BLOCK.TERM
command:

1 :BLOCK.TERM HELLO
1 # # ####### # # #######
1 # # # # # # #
1 # # # # # # #
1 ####### ##### # # # #
1 # # # # # # #
1 # # # # # # #
1 # # ####### ####### ####### #######
1

:

1-38 UniData Commands Reference

Related Command
BLOCK.PRINT
 1-39

BUILD.INDEX

Syntax
BUILD.INDEX filename {attribute [attribute...] | ALL } ONLINE

Synonym
BUILD-INDEX

Description
The ECL BUILD.INDEX command activates alternate key indexes and populates
them with keys. If keys are already present in the index, UniData overwrites them. If
you specify the ONLINE option, UniData does not place an exclusive lock on the file
for which you are building the index, allowing updates to the file. If you do not
specify ONLINE, while the index is being built, users can access the related data file,
but cannot update it.

You must create the alternate key index file with CREATE.INDEX before you can
execute the BUILD.INDEX command. You must also execute BUILD.INDEX
against the index before UniData can access it. This is true even if the data file is
empty.

You cannot build an alternate key index when index updating has been disabled by
the DISABLE.INDEX command.

When BUILD.INDEX completes successfully, UniData sets
@SYSTEM.RETURN.CODE equal to the number of indexes built. A value of -1 in
@SYSTEM.RETURN.CODE indicates an unsuccessful build.

If you specified NO.DUPS when you executed CREATE.INDEX against a nonrecov-
erable file, BUILD.INDEX does not populate the index if it encounters duplicate
alternate key values. If you EXECUTE or PERFORM BUILD.INDEX from a
UniBasic program and the command fails because the data file contains duplicate
alternate key values, the UniBasic program aborts.
1-40 UniData Commands Reference

Note: You cannot build a UniData index on a file already converted to DB2 through
External Database Access (EDA).

Using Indexes Created in an Earlier Release

Keep the following in mind when upgrading or using an index that was created with
an earlier release of UniData:

On UniData for UNIX, when upgrading from a release earlier than 3.3, you
need to rebuild indexes. UniData added a time stamp feature at Release 3.3.
Indexes created at Release 4.1 of UniData for UNIX or Release 3.6 of
UniData for Windows NT are not backwardly compatible. Beginning with
these releases, indexes were no longer compressed.

Tip: Use the UniBasic INDICES function to find out when an index was created.

Parameters
The following table describes each parameter of the syntax:

BUILD.INDEX Parameters

Parameter Description

filename The name of the UniData file that is indexed.

attribute The name of the attribute used as the alternate key. You can build more than
one index at a time.

ALL Builds all indexes associated with filename.

ONLINE If you specify the ONLINE option, UniData does not place an
exclusive lock on the file for which you are building the index,
allowing updates to the file. If you do not specify ONLINE, while
the index is being built, users can access the related data file, but
cannot update it

Tip: Use BUILD.INDEX ALL to build all of the indexes associated with a file at the
same time. You cannot execute multiple BUILD.INDEX commands for individual
attributes simultaneously.
 1-41

Example
The following example creates an index on the COMPANY attribute of the
CLIENTS demo file. Then the BUILD.INDEX command activates and loads keys
into the index:

:CREATE.INDEX CLIENTS COMPANY
Alternate key length (default 20): 45
“COMPANY” created

:BUILD.INDEX CLIENTS COMPANY
Quick Build strategy is applied.
One “*” represents 1000 records

Building “COMPANY” ...

130 record(s) processed.

Related Commands
CREATE.INDEX, DELETE.INDEX, DISABLE.INDEX, ENABLE.INDEX,
LIST.INDEX, UPDATE.INDEX
1-42 UniData Commands Reference

BYE

Syntax
BYE

Synonyms
LO, QUIT

Description
The ECL BYE command exits the UniData environment and returns the cursor to the
host operating system prompt.

Example
In the following example, the user executes the BYE command to exit the UniData
environment.

:BYE
%

Related Command
udt
 1-43

CATALOG

Syntax
CATALOG filename [catalog] program [LOCAL | DIRECT] [FORCE]]
[NEWVERSION | newversion]

Description
The ECL CATALOG command copies the compiled object code of a UniBasic
program into a catalog space. By default, UniData catalogs a program globally and
copies it into a subdirectory of udthome/sys/CTLG on UniData for UNIX, or
udthome\sys\CTLG on UniData for Windows Platforms, the system catalog.

Multiple users can run globally cataloged programs simultaneously — UniData
brings one copy of the program into shared memory.

You can use the CATALOG command in conjunction with a select list of UniBasic
programs.

For more information about UniBasic programming, see Developing UniBasic Appli-
cations. For more information about shared memory and newversion, see
Administering UniData.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

catalog The name of a global catalog where UniData copies the object code,
if different from the default CTLG directory.

filename The UniData DIR-type file that contains the program to be cataloged.

program The UniBasic program that contains object code to be cataloged.

CATALOG Parameters
1-44 UniData Commands Reference

Modifying Globally Cataloged Programs

In order for multiple users to use a single program at the same time, UniData retrieves
a copy of a globally cataloged program into shared memory. When you modify a
program and recatalog it, any user who began using the program (the copy in shared
memory) before you cataloged the new version continues to use the copy in shared
memory.

Users who run the program after you recatalog it use the new version. When you
return to the ECL prompt, you have access to the new version.

To force users to attach to the new version, use the ECL NEWPCODE command.

Note: Simply copying the executable to the global catalog space does not update the
version of the program in shared memory.

DIRECT Catalogs the program locally without copying it to the local or system
CTLG directory. Instead, UniData creates an entry in the VOC file
that is a pointer to the directory where the program resides.

FORCE Overwrites programs in a catalog that have the same name as
filename. You can use the FORCE option in conjunction with the
DIRECT or LOCAL option.

LOCAL Catalogs the program locally and places a copy of it in a subdirectory
of the local CTLG catalog (in the account where the user is running
the program). UniData creates a VOC pointer to the subdirectory.
Note: UniData creates the CTLG and the subdirectory, if they do not
already exist.

NEWVERSION |
newversion

Replaces the current version of a globally cataloged program in
shared memory with the newly cataloged version. The UniData
background process sbcs controls this activity. (See the next section,
“Modifying Globally Cataloged Programs.”)
Root: You can use this keyword only if you are logged on as root on
UniData for UNIX or as Administrator on UniData for Windows
Platforms.

Parameter Description

CATALOG Parameters (continued)
 1-45

Calling Programs

You can call a globally cataloged program from the ECL prompt or from any
UniBasic CALL statement in any account. Locally and directly cataloged programs
must be cataloged in each account where they are used.

Pointing to Directly Cataloged Programs

A program that is cataloged using the DIRECT option does not have to be recata-
loged when you recompile the program. This is because UniData creates a pointer in
the VOC file that points to the program itself. If you change the location of the
program, however, you must recatalog it to update the VOC pointer.

The following example shows a VOC file pointer for the PSTLCODE_FMT program
in the demo database (PSTLCODE_FMT is called by the virtual attribute ZIP in both
the CLIENTS and ORDERS demo files.) The CT command lists the record. Notice
that the program resides in the BP_SOURCE directory.

:CATALOG BP_SOURCE PSTLCODE_FMT DIRECT
PSTLCODE_FMT has been cataloged, do you want to overwrite(Y/N)? Y
:CT VOC PSTLCODE_FMT
VOC:

PSTLCODE_FMT:
C
BP_SOURCE/_PSTLCODE_FMT
:LIST CTLG

No records listed.

Tip: To delete a VOC pointer for a cataloged program, use the ECL DELETE or AE
commands, or use UniEntry or the .D command. For more information on UniEntry
and the .D command, see Using UniData.

Examples
The following example lists the contents of the CTLG file in the demo database.
Notice that it is empty. If any of the demo database programs had been locally or
directly cataloged, a copy of the object code would reside in CTLG.

:LIST CTLG
No record listed.
1-46 UniData Commands Reference

In the next example, UniData catalogs the compiled object code of the
PSTLCODE_FMT program locally. Afterward, notice the following:

The local CTLG directory shows an entry for PSTLCODE_FMT.
A VOC pointer exists that shows a path to a copy of the program and shows
where the program actually resides (BP_SOURCE).

:CATALOG BP_SOURCE PSTLCODE_FMT LOCAL
:LIST CTLG
LIST CTLG 11:08:04 May 28 2005 1
CTLG......

PSTLCODE_F
MT
1 record listed

:CT VOC PSTLCODE_FMT
voc:

PSTLCODE_FMT:
C
/disk1/ud72/demo/CTLG/PSTLCODE_FMT
BP_SOURCE PSTLCODE_FMT

Note: On UniData for Windows Platoforms, the path in the previous example would
be \disk1\demo\CTLG\PSTLCODE_FMT.

The next example directly catalogs the PSTLCODE_FMT program. Notice that the
path to the program has changed from the previous example. DIRECT cataloging
creates a VOC pointer to the object code, but does not place a copy of it in either
CTLG directory.

:CATLOG BP_SOURCE PSTLCODE_FMT DIRECT
:CT VOC PSTLCODE_FMT
VOC:

PSTLCODE_FMT:
C
BP_SOURCE/_PSTLCODE_FMT

Tip: To remove a copy of a program from the local or system CTLG directory, use the
ECL DELETE or DELETE.CATALOG commands.

Related Commands
DELETE.CATALOG, NEWPCODE, newversion
 1-47

CENTURY.PIVOT

Syntax
CENTURY.PIVOT(4-digit year | nn)

Description
Prior to UniData 5.2, any 2-digit year entered from 1 through 29 defaulted to the next
century. For example, UniData interpreted 12/31/29 as December 31, 2029. 1930 was
the century pivot date.

You can set your own century pivot date. The century pivot date only applies to the
ICONV function when using the D2 format, not D3 or D4.

The CENTURY.PIVOT ECL command overrides the systemwide century pivot date
defined in the udtconfig file.

Parameters
The following table describes each parameter of the syntax.

CENTURY.PIVOT Parameters

Parameter Description

4-digit year The 4-digit year defining the century pivot date.

nn The century pivot date code, indicating that the next nn years are in the
next century.

You can change this value in one of the following ways:
1-48 UniData Commands Reference

Enter a 4-digit year. UniData interprets the first 2 digits as the century, and
the last 2 digits as the year. The last 2 digits of the year you enter, though 99,
are considered to be in the century you specify. 0, through the year you
entered -1, are considered to be in the next century. For example, if the
century pivot date is 1950, years 50 through 99 are in the 1900’s, and years
0 through 49 are in the 2000’s. If the century pivot date is 2000, 0 through
99 are in the 2000’s.
Enter a code in the form of nn, indicating that the next nn years are in the
next century. UniData calculates the century pivot date as:

current_year - (100 - nn)
For example, if the current year is 2000 and the century pivot code is 50, the
century pivot date is 1950 (2000 - (100 - 50)).

If you enter CENTURY.PIVOT with no options, UniData returns the current setting
for the century pivot date.
 1-49

CHECKOVER

Syntax
CHECKOVER

checkover

Description
The ECL CHECKOVER command and the system-level checkover command list
files in the current account that are in level 2 overflow. CHECKOVER also reports
the number of groups that have overflowed.

Static hashed files are divided into a specific number of groups (the file’s modulo).
When you first write data to the file, UniData stores IDs and data in the same file
block. When the block becomes full of data, a level 1 overflow occurs and data is
written to a second block. If enough records are written to the same block, the
primary keys also overflow — this is level 2 overflow.

Tip: Your system administrator should run this command for each UniData account
and periodically resize files for optimal system performance.

Example
In the following example, UniData indicates that the CTLGTB file has overflowed.
The last line of the display shows the file modulo (mod=17) and the number of level
2 overflowed blocks (overflow mod=111), including all level 2 overflowed headers.

:checkover
Current directory is ‘/home/claireg’
Overflowed files are listed in the file U_OVERFLOWED, which is
located in your current directory. Please resize files listed,
then rerun checkover again until no more overflowed files are
identified.
CTLGTB overflowed, mod=17, overflow mod=111
1-50 UniData Commands Reference

CLEAR.ACCOUNT

Syntax
CLEAR.ACCOUNT

Synonym
CLEAR-ACCOUNT

Description
The ECL CLEAR.ACCOUNT command deletes all records from the UniData
system _PH_ and _HOLD_ directories.

Note: The _PH_ directory stores COMO files and phantom log records. The
HOLD directory stores print hold files

Example
In the following example, the CLEAR.ACCOUNT command clears the _PH_ and
HOLD directories:

:CLEAR.ACCOUNT
Clear _PH_ directory(Y/N)? Y
Clear _HOLD_ directory(Y/N)? Y
:

 1-51

CLEAR.FILE

Syntax
CLEAR.FILE [DATA] [DICT] filename [FORCE]

Synonym
CLEAR-FILE

Description
The ECL CLEAR.FILE command deletes all records from the data or dictionary
sections of filename, or both the data and dictionary portions. If you do not stipulate
DATA or DICT in the statement, UniData deletes only the data records. You can clear
only files for which you have adequate permission. After execution of CLEAR.FILE,
the empty file remains.

The data portions of multifile and multidir files are defined in the dictionary as
@data.filename. UniData does not remove these pointers when you specify the DICT
keyword to clear a multifile or multidir file. UniData removes all dictionary records
except those beginning with the @ sign.

Without the FORCE option, filename cannot be a synonym.

UniData displays an error message if unable to execute this command due to the
presence of a trigger in the file header. For more information about UniData triggers,
see Using UniData.

Warning: CLEAR.FILE deletes all data records in a file and, for dynamic files,
returns the file to its original modulo and size.

Warning: Do not execute stopudt, deleteuser, or kill a process while running
CLEAR.FILE.

You can use an active select list with this command. You can create a select list of file
names by selecting VOC records of a particular type or by selecting VOC records by
record ID. The following sample UniQuery statements assume ECLTYPE U.
1-52 UniData Commands Reference

SELECT VOC WITH F1 LIKE “VOC_type”
SELECT VOC WITH @ID = “filename” [[OR] WITH @ID =
“filename”’...]

UniData handles multipart dynamic files in the following way with this command:

Truncates dat001 and over001 and removes all other part files, including idx
files, at the operating system level.
Preserves the minimum modulo for the existing file and uses it as the
modulo for CREATE.FILE logic, and so forth.
Uses the current part file.
May put new part files on different partitions from the original file system.

Warning: When you use a select list to clear files, UniData does not prompt for
individual record IDs before deleting all records.

Parameters
The following table describes each parameter of the syntax.

CLEAR.FILE Parameters

Parameter Description

DATA Deletes the data records in a file.

DICT Deletes the dictionary records in a file.

filename The name of the file to be cleared.

FORCE Deletes the data and/or dictionary records in a file; accepts a synonym file
name.
 1-53

Examples
In the following example, UniData deletes all records in the data portion of the
CLIENTS demo file:

:CLEAR.FILE CLIENTS
CLIENTS is cleared.
:LIST CLIENTS
LIST CLIENTS NAME COMPANY ADDRESS CITY STATE ZIP COUNTRY PHONE
PHONE_TYPE 16:32:47 Jun 14 2005 1

No record listed.

:

The next example demonstrates clearing files named in a select list. For this example,
a select list was created that contains the names of the CLIENTS and ORDERS demo
files. When this list is used with the CLEAR.FILE command, UniData deletes all of
the records in the named files. The LIST statements that follow the example confirm
this.

:SELECT VOC WTH F1 LIKE F AND F2 LIKE “INV...”

2 records selected to list 0.

>CLEAR.FILE
Use select list data(Y/N)? Y
Clear INV_FILE(Y/N)? Y
INV_FILE is cleared.
Next file(Y/N)? Y
Clear INVENTORY(Y/N)? Y
INVENTORY is cleared.
:LIST INVENTORY
LIST INVENTORY INV_DATE INV_TIME PROD_NAME FEATURES COLOR PRICE
QTY REORDER DIFF 15:47:27 May 29 2005 1

No records listed.

:LIST INV_FILE
LIST INV_FILE INV_DATE INV_TIME PROD_NAME FEATURES COLOR PRICE QTY
REORDER DIFF 15:47:30 May 29 2005 1

No records listed.

Related Command
DELETE.FILE
1-54 UniData Commands Reference

CLEAR.LOCKS

Syntax
CLEAR.LOCKS [lock_num]

Synonym
CLEAR-LOCKS

Description
The ECL CLEAR.LOCKS command clears semaphore locks previously placed by
your UniData session using the LOCK, LINE.ATT, and T.ATT commands. lock_num
is the number (0 through 64) of the semaphore lock you want to clear. If you do not
indicate a lock number, UniData releases all locks you have placed.

Tip: To release locks set by your pid from other terminals or windows, execute
SUPERCLEAR.LOCKS. You must be logged in as root on UniData for UNIX or
Administrator on UniData for Windows Platforms to use that command.

Example
The following example sets a lock, then clears it, for system resource 4.

:LOCK 4
:LIST.LOCKS
 UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME
DATE
 1 24775 1172 clair pts/0 semaphor -1 0 4 X 15:03:52 Jun
08
:CLEAR.LOCKS
:LIST.LOCKS

Related Commands
LIST.LOCKS, SUPERCLEAR.LOCKS
 1-55

CLEAR.ONABORT

Syntax
CLEAR.ONABORT

Synonym
CLEAR-ONABORT

Description
The ECL CLEAR.ONABORT command clears the setting of an ON.ABORT
command.

With the ON.ABORT command, you can stipulate that a UniData command be
executed if a subsequent UniBasic program aborts. CLEAR.ONABORT clears this
setting.

For more information about creating and running UniBasic programs, see Devel-
oping UniBasic Applications.

Note: UDT.OPTIONS 105 determines whether to allow ON.ABORT to take effect
from a PERFORMC or EXECUTE statement in UniBasic. For more information, see
the UDT.OPTIONS Commands Reference.

Example
In the following example, UniData sets ON.ABORT to a paragraph called
APOLOGY. Then, UniData clears the setting:

:ON.ABORT APOLOGY
:CLEAR.ONABORT
:

1-56 UniData Commands Reference

Related Command
ON.ABORT
 1-57

CLEAR.ONBREAK

Syntax
CLEAR.ONBREAK

Synonym
CLEAR-ONBREAK

Description
The CLEAR.ONBREAK command clears the setting of the ON.BREAK command.

The ECL ON.BREAK command determines the actions UniData takes when a user
presses the interrupt key during execution of a UniQuery statement. After
CLEAR.ONBREAK executes, a user who presses the interrupt key during execution
of these commands is returned to the environment from which he or she executed the
command.

Example
After the first command in the following example, UniData executes the sentence
MAIN_MENU when a user presses the break key during execution of a UniQuery
statement. However, the CLEAR.ONBREAK command removes that setting so that
the user is returned to the ECTL prompt after pressing the break key during execution
of the previously mentioned UniQuery command.

:ON.BREAK MAIN_MENU
:CLEAR.ONBREAK

Related Command
ON.BREAK
1-58 UniData Commands Reference

CLEARDATA

Syntax
CLEARDATA

Description
The ECL CLEARDATA command clears the data stack. After the data stack is
cleared, UniData displays subsequent input requests to the terminal screen.

The UniData data stack can be loaded by paragraphs or by the UniBasic DATA
command, then they can be read by the UniBasic INPUT commands or paragraph
inline prompts.

Examples
The following example shows a UniBasic program that clears the data stack:

Top of “CLEAR.PROCESS” IN “BP”, 1 line, 19 characters.
001: EXECUTE ‘CLEARDATA’
Bottom.

The next example shows a VOC sentence that creates select lists and loads the data
stack:

 VOC RECORD ID==>LAST_NAMES

0 @ID=LAST_NAMES
1 F1=PA
2 F2=SELECT CLIENTS WITH LNAME LIKE “<<Enter first letter of last name:
>>...”
3 F3=DATA <<Enter first letter of last name: >>
4 F4=RUN BP CLEAR.PROCESS
 1-59

In this example, we execute the LAST_NAMES paragraph more than once. If the
data stack was not cleared by calling CLEAR.PROCESS, the second time you
executed the paragraph, UniData would answer the inline prompt with input from the
first execution.

:LAST_NAMES
Enter the first letter of last name: M

11 records selected to list 0.

:LAST_NAMES
Enter first letter of last name: T

3 records selected to list 0.

:

1-60 UniData Commands Reference

CLEARPROMPTS

Syntax
CLEARPROMPTS

Description
The ECL CLEARPROMPTS command clears all responses to inline prompts in
paragraphs. Use this command within a paragraph after an inline prompt.

Note: Through UniData’s Process Control Language (PCL), you can create
paragraphs that require the user to respond before UniData continues executing the
paragraph. For example, a prompt like “Enter a client number” might appear on the
user’s terminal screen. After the prompt appears, UniData waits for the user to enter
a response. The device UniData uses to do this is called an inline prompt.

For more information on PCL and inline prompting, see Using UniData.
 1-61

clearq

Syntax
clearq qid

Description
The system-level clearq command clears all message queues on the system of
messages destined for processes that are no longer alive. qid represents the queue
number. Use this command at the system prompt, or use the ECL ! (bang) command
to execute this command from the colon prompt. For more information about clearq
and clearing message queues, see Administering UniData.

Note: You must log on as root on UniData for UNIX or Administrator on UniData
for Windows Platforms to execute the clearq command.

Tip: Execute the UniData system-level ipcstat command from the operating system
prompt to get the queue number.
1-62 UniData Commands Reference

CLR

Syntax
CLR

Synonym
CS

Description
The ECL CLR command clears the terminal screen and places the cursor at the upper
left side of the screen in the “home” position.
 1-63

CNAME

Syntax
To change a file name:

CNAME filename,new_filename

CNAME filename TO new_filename

To change a record ID:

CNAME [DICT] filename old_recordID,new_recordID

CNAME [DICT] filename old_recordID TO new_recordID

To change a multilevel part name:

CNAME filename,old_partname TO filename,new_partname

Description
The ECL CNAME command changes the names of files and record IDs. You can
change more than one record ID at a time.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

filename UniData file name. The file can be any hashed file, including multifiles
and multidir files.

new_filename New name assigned to the file.

CNAME Parameters
1-64 UniData Commands Reference

Examples
In the following example, UniData changes the name of the INVENTORY demo file
to MERCHANDISE. The LIST command that follows demonstrates that the old file
name no longer exists and that the name of the dictionary file for INVENTORY also
changed.

:CNAME INVENTORY,MERCHANDISE
INVENTORY changed to MERCHANDISE.
:LIST INVENTORY
Not a filename “
 INVENTORY
:LIST DICT INVENTORY
Not a filename :
 INVENTORY

The next example changes two records IDs in the INVENTORY demo file:

:CNAME INVENTORY 53050,NEW53050 56060,NEW56060
53050 changed to NEW53050.
56060 changed to NEW56060.
:

The next example creates a multifile named multi_file and a subfile named sub_file,
and then uses CNAME to change the subfile name to sub_one.

:CREATE.FILE MULTIFILE multi_file,sub_file
modulos for file multi_file,sub_file=4
4 is not a prime number, modulo changed to 5.
Create file multi_file/sub_file, modulo/5,blocksize/1024
Hash type = 0
Added “@sub_file” to DICT multi_file.
:CNAME multi_file,sub_file TO multi_file,sub_one
multi_file,sub_file changed to multi_file,sub_one.

DICT Dictionary file. Used when changing dictionary file or record names.
Note: When you use CNAME to change file names, UniData changes
both the dictionary and data file names.

record_ID Record ID in a file. You may change more than one record ID on the
same command line.

new_recordID New name assigned to the record ID.

Parameter Description

CNAME Parameters (continued)
 1-65

cntl_install

Syntax
cntl_install [-forcerestart]

Description
The system-level cntl_install command reinitializes counters in the udt.control.file,
the log files, the archive files, the system.status.file, the restart.fileend file, and the
restart.newblk file, all located in /usr/ud72/include. cntl_install executed the
log_install command, for use with recoverable files.

Warning: Since cntl_install reinitializes files needed for recovery, make sure none of
these files are needed before executing cntl_install.

Note: To execute the cntl_install command, you must log on as root.

For more information about the Recoverable File System, see Administering the
Recoverable File System.
1-66 UniData Commands Reference

Parameter
The following table describes the parameter of the syntax:

cntl_install Parameter

Parameter Description

forcerestart Prompts if you want to continue restarting UniData, and
attempts to open the $UDTHOME\include\system.status file on
Windows platforms or the /usr/udnn/system.status file on UNIX
platforms. If UniData cannot open this file, it tries to create a
new one.
If the status in the system.status file reports the system is already
in system recovery mode, UniData returns a message similar to
“System is already in crash recovery status (status). You might
want to remove (/usr/ud72/include/system.status) and rerun
cntl_install -forcerestart.
If the status in the system.status file reports an unrecognized
code, UniData returns a message similar to “System is in
unknown status (status), will be forced to recovery mode.
 1-67

COMO

Syntax
COMO [ON [HUSH] | OFF] [APPEND | DELETE | LIST | SPOOL [-T]] record

Description
The ECL COMO command creates a history of a UniData session by sending user
input and system output to a designed record. UniData stores the COMO record in a
UniData DIR-type file called _PH_ within the current account. UniData stores the
COMO record by preceding the record name by _O.

Tip: Turn off COMO files when you finish recording your UniData session. If you do
not, UniData continues to record input and output until you end the UniData session.
This could cause the _PH_ file to become extremely large. Periodically review the
PH file and delete records that are no longer needed.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

record The name you assign to the COMO session. If you do not indicate a record
name, UniData prompts to name a record or quit the COMO session.

APPEND Opens an existing COMO record and appends new information to the end of
it.

DELETE Deletes the COMO record from the _PH_ file.

HUSH Directs output to the COMO record, suppressing output to the terminal.

LIST Lists the COMO records in _PH_.

OFF Ends a COMO session.

COMO Parameters
1-68 UniData Commands Reference

Note: When you use the COMO command with APPEND, LIST or SPOOL, record is
the name of the COMO record without the O_ prefix.

ON Starts a COMO session.

SPOOL Sends a copy of a COMO record to the printer. The COMO session must be
turned OFF.

-T Instructs the SPOOL option to send the output to the terminal, not the
printer.

Parameter Description

COMO Parameters (continued)
 1-69

Examples
In the following example, UniData starts a COMO session, lists five records in the
CLIENTS demo data file, and then ends the COMO session:

:COMO ON save
/home/claireg/_PH_/O_save established
:LIST INVENTORY SAMPLE 5
LIST INVENTORY SAMPLE 5 INV_DATE INV_TIME PROD_NAME FEATURES COLOR
PRICE QTY REO
RDER DIFF 13:27:06 Jun 11 2004 1
INVENTORY 15001
Inventory Date 08/20/1995
Inventory Time 01:00PM
Product Name Modem
Features 14.4K Internal V34
Color Price Quantity Reorder Difference
N/A $119.00 7486 40 7446

INVENTORY 35000
Inventory Date 07/09/1995
Inventory Time 10:00AM
Product Name Speaker
Features 250W, Direct/reflecting
Color Price Quantity Reorder Difference
Black $198.93 148 50 98
Charcoal $198.93 125 50 75

INVENTORY 15002
Inventory Date 08/12/1995
Inventory Time 07:00AM
Product Name Modem
Enter <New line> to continue...Q
:COMO OFF
/home/claireg/_PH_/O_save closed
:

The next example prints the contents of the COMO file. Notice that you enter the
como session name without the prefix of “O_”:

:COMO SPOOL save
:

Two COMO sessions can run at the same time. When you open first one session and
then another, UniData nests the second session within the first. The first session is
REC_1. The second session, REC_2, is initiated with REC_1 is still active.
1-70 UniData Commands Reference

Execute SPOOL to display the COMO record for REC_2 to the screen. Notice that
this record consists only of the input and output from the time UniData established
the session for REC_2 until the session ended:

:COMO SPOOL REC_2 -T
:LIST CTLGTB
LIST CTLGTB 09:34:49 Jun 30 2001 1
CATALOG NAME...............

SCHEMA_UPDATE_PRIVILEGES
SCHEMA_LIST_USERS
SCHEMA_VIEW_CHECK
...
Enter <New line> to continue...A
:COMO OFF REC_2

The next example shows the COMO session for REC_1. Notice that UniData
recorded all input before, after, and including the session for REC_2:

:COMO SPOOL REC_1 -T
/home/claireg/demo/_PH_/O_REC_1 established

:LIST VOC WITH F1 LIKE “F”
LIST VOC WITH F1 LIKE “F” 09:34:05 Jun 30 2001 1
VOC........

privilege
INV_FILE
inv
REPORT
ENGLISH.MS
...
Enter <New line> to continue ...Q
:COMO ON REC_2
/home/claireg/demo/_PH_/O_REC_2 established
:LIST CTLGTB
LIST CTLGTB 09:34:49 June 30 2001 1
CATALOG NAME...........

SCHEMA_UPDATE_PRIVILEGES
SCHEMA_LIST_USERS
SCHEMA_VIEW_CHECK
...
Enter <New line> to continue...Q
:COMO OFF REC_2
/home/claireg/demo/_PH_/O_REC2 closed
:COMO OFF REC_1
:

 1-71

COMPILE.DICT

Syntax
COMPILE.DICT filename [attribute]

Synonyms
CD, COMPILE-DICT

Description
The ECL COMPILE.DICT command checks the syntax of a virtual attribute. If you
do not specify attribute, Unidata compiles all virtual attributes in filename.
Compiling creates attributes 8 and 9 in the dictionary record for the virtual attribute.

UniData compiles a virtual attribute each time it is executed unless it is compiled in
advance by COMPILE.DICT. Compiling in advance may speed execution.

You must compile virtual attributes before you can execute them in UniBasic
programs (with the CALCULATE, {}, or ITYPE functions).

If COMPILE.DICT is unsuccessful, @SYSTEM.RETURN.CODE is set to -1, if it is
successful @SYSTEM.RETURN.CODE is set to 0.

For more information about virtual attributes, see Using UniData.

Tip: Use AE (Alternate Editor) to display the dictionary record for a compiled virtual
attribute. UniEntry does not display attributes 8 and 9.
1-72 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

COMPILE.DICT Parameters

Parameter Description

filename Name of the file that contains the virtual attribute.

attribute Virtual attribute name.

Examples
The ORDERS demo file contains the virtual attribute GRAND_TOTAL. In the next
example, UniData compiles this virtual attribute:

:COMPILE.DICT ORDERS GRAND_TOTAL
GRAND_TOTAL=PRICE*QTY; SUM(SUM(@1))
Virtual field GRAND_TOTAL is syntactically correct.

The next example lists the dictionary record for the GRAND_TOTAL virtual
attribute. Notice attributes 8 and 9, created by the compile process:

:Note: ü and y are (nonprinting) UniData delimiters. The character used to display
them varies with terminal or printer type.

:AE DICT ORDERS GRAND_TOTAL
Top of “GRAND_TOTAL” in “DICT ORDERS”, 9 lines, 107 characters.
*--: P
001: V
002: PRICE*QTY; SUM(SUM(@1))
003: MD2,$
004: Grand Total
005: 14R
006: S
007:
008: GRAND_TOTALyQTYü6üPRICEü7yPRICE*QTY; SUM(SUM(@1))
009: ORDERS
Bottom.
 1-73

CONFIGURE.FILE

Syntax
CONFIGURE.FILE filename [SPLIT.LOAD split_percent] [MERGE.LOAD
merge_percent] [MINIMUM.MODULO modulo] [KEYONELY | KEYDATA]

Synonym
CONFIGURE-FILE

Description
The ECL CONFIGURE.FILE command changes the split load, merge load,
minimum modulo, and/or split/merge type for a dynamic file. A dynamic file is one
that UniData automatically resizes when data is added or removed, according to the
SPLIT.LOAD and MERGE.LOAD percentages.

For more information about dynamic files, see Administering UniData and Using
UniData.

Tip: The default settings for split and merge thresholds are controlled by parameters
in the UniData configuration file (/usr/ud61/include/udtconfig on UniData for UNIX
or \udthome\include\udtconfig on UniData for Windows Platforms). The defaults are
different between KEYONLY and KEYDATA dynamic files. To change the defaults for
your system, edit the lines for SPLIT_LOAD and MERGE_LOAD (for KEYONLY
files) or KEYDATA_SPLIT_LOAD and KEYDATA_MERGE_LOAD (for KEYDATA
files) in the udtconfig file.

Note the following points about CONFIGURE.FILE:

If you change the split/merge type, and you do not specify the split load or
merge load in the command line, CONFIGURE.FILE sets the split and
merge loads to the defaults for the split/merge type you specify.
CONFIGURE.FILE displays a message to the screen if the split and merge
load percentages are changed.
1-74 UniData Commands Reference

CONFIGURE.FILE changes only the file’s configuration parameters. This
command does not redistribute the records in the file, and does not split or
merge the file. After you run CONFIGURE.FILE, use ANALYZE.FILE and
the guide utility to determine if you should rebuild your file with
REBUILD.FILE.

Parameters
The following table describes each parameter of the syntax.

CONFIGURE.FILE Parameters

Parameter Description

filename Name of a UniData dynamic file.

SPLIT.LOAD split_percent Load factor at which a group is eligible for splitting.
The default splitting threshold is 60 percent for
KEYONLY files and 95 percent for KEYDATA files.

MERGE.LOAD merge_percent Load factor at which groups are eligible for merging.
The default merging threshold for both KEYONLY
and KEYDATA files is 40 percent.

MINIMUM.MODULO modulo Minimum number of groups in the file.

[KEYONLY | KEYDATA] Split/merge type for the target file. If this is not
specified, CONFIGURE.FILE keeps the split/merge
type of the source file.

Examples
The following examples use a copy of the INVENTORY demo file:

:ANALYZE FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 0, blocksize = 1024
Split load = 60, Merge load = 40
Split/Merge type = KEYONLY
...
 1-75

In the following example, the split load and merge load are changed:

:CONFIGURE.FILE INVENTORY SPLIT.LOAD 70 MERGE.LOAD 45
:ANALYZE.FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 0, blocksize = 1024
Split load = 70, Merge load = 45
Split/Merge type = KEYONLY
...

In the next example, the split/merge mode is changed to KEYDATA:

:CONFIGURE.FILE INVENTORY KEYDATA
Split load has been implicitly changed to 95
Merge load has been implicitly changed to 40

:ANALYZE.FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 0, blocksize = 1024
Split load = 95, Merge load = 40
Split/Merge type = KEYDATA
...

Related Commands
ANALYZE.FILE, guide, memresize, REBUILD.FILE
1-76 UniData Commands Reference

confprod

Syntax
confprod

Description
The system-level command confprod displays and updates licensing information for
your system.This command also provides a configuration code that you must supply
to IBM after installing UniData. For more information about confprod and licensing
products on UniData, see Installing and Licensing UniData Products.

Use this command at the system prompt, or use the ECL ! (bang) command to execute
this command from the colon prompt.

Note: To execute the confprod command, you must be logged on as root on UniData
for UNIX or as Administrator on UniData for Windows Platforms.

You have 30 days to authorize UniData after installation.
 1-77

Example (UniData for UNIX)
confprod displays the products licensed on your system and the number of UniData
licenses authorized, as illustrated in the following example:

%confprod

For an explanation of the commands listed in the preceding example, see Installing
and Licensing UniData Products.
1-78 UniData Commands Reference

Example (UniData for Windows Platforms)
confprod displays the products licensed on your system and the number of UniData
licenses authorized, as shown in the next example:

Note: Use this command at the MS-DOS prompt.
 1-79

CONNECT

Syntax
CONNECT data.source [option setting [option setting...]]

Description
Use the CONNECT command with UniBasic SQL Client Interface (BCI) to connect
to a data source from a UniData client. You enter the CONNECT command at the
ECL prompt. The CONNECT command enables you to submit SQL statements to the
data source and receive results at your terminal.

While you are connected to a data source, you can enter any SQL statement under-
stood by the DBMS engine on the data source, including SELECT, INSERT,
UPDATE, DELETE, GRANT, and CREATE TABLE. ODBC data sources can use
SQL language that is consistent with the ODBC grammar specification as
documented in Appendix C of Microsoft ODBC 2.0 Programmers Reference and
SDK Guide.

The CONNECT command runs in autocommit mode: that is, all changes made to the
data source DBMS are committed immediately. Do not use transaction control state-
ments such as TRANSACTION START, TRANSACTION COMMIT, and
TRANSACTION ABORT when you are using CONNECT.
1-80 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

CONNECT Parameters

Parameter Description

data.source The name of the data source to which you want to connect. The data
source is an ODBC data source defined on your system. For example, on
Windows platforms, a data source is defined in the ODBC Data Source
Administrator.

options You can specify any of the following options with the CONNECT
command. See the following section for a detailed description of each
option

BLOCK
NULL
PREFIX
UDOUT
VERBOSE
WIDTH

Command Options
You can specify any option with the CONNECT command. You must specify a
setting for the option.
 1-81

BLOCK

The BLOCK option defines how UniData BCI terminates input statements. setting is
one of the following:

BLOCK Option Settings

Setting Description

ON Enables BLOCK mode. In this mode, you can enter a series of SQL statements,
ending with a ; (semicolon). To terminate the block of SQL statements, press
RETURN immediately after an SQL+ prompt.

OFF Disables BLOCK mode. In this mode if you type a semicolon at the end of a
line of input, UniData BCI terminates your input and sends it to the data source.
This is the default setting.

string Enables BLOCK mode (see ON, above). string must be from 1 to 4 characters.
To terminate the block of SQL statements, enter string immediately after an
SQL+ prompt.

For more details, see Using the UniBasic SQL Client Interface (BCI).

NULL

The way UniData BCI treats null values coming from the data source depends on the
setting of the NULL_FLAG parameter in the udtconfig file.

NULL FLAG Settings

NULL Flag Description

0 Remote nulls are translated to or from the data source as an empty string.

1 Remove nulls are translated to or from the data source as the null value mark.
1-82 UniData Commands Reference

The NULL option defines how to display the SQL null value. This option is only
valid if NULL_FLAG is set to 1 in the udtconfig file, located in /usr/ud61/include.
setting is one of the following:

NULL Option Settings

Setting Description

SPACE Displays the SQL null value as a blank space.

NOCONV Displays the SQL null value as defined by null value mark setting in
UDTLANGCONFIG.

string Displays the SQL null value as string. The string can be from 1 to 4
characters. By default, null is displayed as the 4-character string NULL.

Prefix

The PREFIX option defines the prefix character for local commands. setting is any
valid prefix character. The default prefix character is a period (.). You can use only
the following characters as the prefix character:

Character Description

! Exclamation point.

@ At sign.

Hash sign.

$ Dollar sign.

% Percent.

& Ampersand.

* Asterisk.

/ Slash.

\ Backslash.

: Colon

= Equal sign.

Valid Prefix Characters
 1-83

For more details, see Using SQL Client Interface (BCI).

+ Plus sign.

- Minus sign.

? Question mark.

(Left parenthesis.

) Right parenthesis.

{ Left brace.

} Right brace.

[Left bracket.

] Right bracket.

' Left quotation mark.

‘ Right quotation mark.

. Period.

| Vertical bar.

“ Double quotation mark.

, Comma.

Character Description

Valid Prefix Characters (continued)
1-84 UniData Commands Reference

UDOUT

The UDOUT option specified how to handle output from SELECT statements
executed on the data source. setting is either:

UDOUT Option Settings

Setting Description

filename Stores output in filename on the client, then displays the output from
filename. If the file does not exist, the CONNECT command creates it.

OFF Displays output from the data source directly on the screen of the client. This
is the default setting.

For more details, see Using SQL Client Interface (BCI).

VERBOSE

The VERBOSE option displays extended column information and system messages.
setting is either:

VERBOSE Option Settings

Setting Description

ON Enables verbose mode. In this mode, the name, SQL data type, precision, scale,
and display size are displayed for each column definition when selecting data
from the data source. Error messages are displayed in extended format that
includes the type of call issued, status, SQLSTATE, error code generated by the
data source, and the complete error text.

OFF Disables verbose mode. This is the default setting.
 1-85

WIDTH

The WIDTH option defines the width of display columns. setting is one of the
following:

WIDTH Options Settings

Setting Description

col#,width Sets the width of column col# to width. Do not enter a space after the
comma. Specify col# as * (asterisk) to set the width of all columns. width
can be from 4 to the maximum line length allowed by your terminal. The
default width for all columns is 10.

T Truncates data that is wider than the width you specify. This is the default
setting.

F Folds data that is wider than the specified width onto multiple lines.

? Displays the current column width settings, and tells whether data will be
truncated or folded.
1-86 UniData Commands Reference

CONTROLCHARS

Syntax
CONTROLCHARS {OFF | ON | IGNORE}

The ECL CONTROLCHARS command determines UniData’s response to user input
of nonprinting characters (control or escape sequences) in response to UniBasic
INPUT statements. You can:

Allow nonprinting characters.
Convert nonprinting characters to tilde (~).
Ignore input of nonprinting characters.

Parameters
The following table describes each parameter of the syntax.

CONTROLCHARS Parameters

Paramete
r Description

ON Allows nonprinting characters.

OFF Converts nonprinting characters to tilde (~).

IGNORE Does not return nonprinting characters. Screens out the escape character and
most of the ASCII codes between 000-031 and 127-255 inclusive.
IGNORE does not screen out the following ASCII codes within those ranges:

008—backspace
010 and 013—line feed and carriage return
009—tab

Note: UDT.OPTIONS 83 validates the escape character (ASCII code 027) as input
to UniBasic INPUT statements. When this option in ON, UniBasic accepts the escape
character as valid input when CONTROLCHARS is set to OFF and IGNORE, but
screens out other control characters.
 1-87

UDT.OPTIONS 103 determines how UniData treats the TAB character when
CONTROLCHARS is set to off or ignore.

Examples
In the following example, CONTROLCHARS converts nonprinting characters to
tilde (~).

:CONTROLCHARS OFF

In the next example, CONTROLCHARS allows nonprinting control or escape
sequences as user response to the UniBasic INPUT statement:

:CONTROLCHARS ON

In the next example, CONTROLCHARS screens out nonprinting characters:

:CONTROLCHARS IGNORE
1-88 UniData Commands Reference

convcode

Syntax
convcode {filename | directory | -i}

Description
The system-level convcode command converts UniData object files from Motorola
68000 internal integer format. Format information is embedded within the file
header. This command automatically determines if object files match the present
machine integer format. If the files do not need to be converted, UniData displays a
message that no files were converted.

You can run convcode more than once on a UniData file to convert between the two
formats.

Execute this command from the system prompt, or use the ECL ! (bang) command
to execute convcode from the colon prompt.

Parameters
The following table describes each parameter of the syntax.

convcode Parameters

Parameter Description

filename UNIX name of the file to be processed.

directory Name of a dictionary that holds files, all of which are to be processed.
The convcode command traverses the directory recursively.

-i Run convcode interactively.

Related Commands
convdata, convidx
 1-89

convdata

Syntax
convdata [-s] {filename [filenameM...filenameN] | [-r] directory}

Description
The system-level convdata command converts UniData hashed data files from
Motorola 68000 internal integer format to Intel 386 internal integer format. Format
information is embedded within the file header. This command automatically deter-
mines if files match the present machine integer format. If files do not need to be
converted, UniData displays a message that no data files were converted.

You can run convdata more than once on a UniData file.

Execute this command at the system prompt, or use the ECL ! (bang) command to
execute this command from the colon prompt.

Parameters
The following table describes each parameter of the syntax.

convdata Parameters

Parameter Description

filename The name of a UniData file to convert. To use more than on file name,
separate the names with spaces.

-s Suppresses requests for operator action. Error messages still appear.

-r Processes subdirectories recursively. Used only with the directory option.

directory The name of a directory that contains file names to be processed by convdata.
1-90 UniData Commands Reference

Example
The following example illustrates an attempt to convert the format for several files.
If the files do not need to be converted, UniData displays informational messages.

 % convdata -r .
./BP_SOURCE/GPA1: not a Unidata file
./BP_SOURCE/PHONE_FMT: not a Unidata file
./BP_SOURCE/PSTLCODE_FMT: not a Unidata file
./BP_SOURCE/UP_NAME: not a Unidata file
./BP_SOURCE/_GPA1: not a Unidata file
./BP_SOURCE/_PHONE_FMT: not a Unidata file
./BP_SOURCE/_PSTLCODE_FMT: not a Unidata file
./BP_SOURCE/_UP_NAME: not a Unidata file
./BP_SOURCE/AddRecord: not a Unidata file
./BP_SOURCE/DelRecord: not a Unidata file
./BP_SOURCE/EXAMPLE: not a Unidata file
./BP_SOURCE/EXAMPLE_C: not a Unidata file
./BP_SOURCE/EXAMPLE_CPP: not a Unidata file
./BP_SOURCE/EXAMPLE_DELPHI: not a Unidata file
./BP_SOURCE/FndRecord: not a Unidata file
./BP_SOURCE/UpdRecord: not a Unidata file
./BP_SOURCE/_AddRecord: not a Unidata file
./BP_SOURCE/_DelRecord: not a Unidata file
./BP_SOURCE/_EXAMPLE_C: not a Unidata file
./BP_SOURCE/_EXAMPLE_CPP: not a Unidata file
.
.
.
./D_BRI1234: converted
./BRI1234: converted (dynamic file)
41 data file(s) converted
#

Related Commands
convcode, convidx
 1-91

convhash

Syntax
convhash [-T targetdir] [filename1 ... filename(n)]

Description
The system-level convhash command converts static hashed files to dynamic hashed
files. This tool invokes the UniData memresize tool, creating a dynamic file with the
following characteristics:

Minimum modulo — the current modulo of the static file
Hash type — the current hash type of the static file
Split/merge type — KEYONLY (the UniData default)

Note: We recommend that you use the memresize command, rather than the convhash
command, to convert a static file to a dynamic file.

Execute this command at the system prompt, or use the ECL ! (bang) command to
execute this command from the ECL prompt.
1-92 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

convhash Parameters

Parameter Description

filename1...filename(n) The file or list of files to be converted. You can name more
than one file by separating the file names with spaces.
filename must be a static hashed file or multilevel file.

-T targetdir Directory in which you want UniData to store the data
portion of the converted file. If you do not name a directory,
UniData stores the new dynamic file in the same directory as
the static file.
Note: If you specify the -T option, the DICT portion of the
file remains in your current working directory. To access the
data, you must edit the VOC pointer in your current account
to add the path name for the data file.

Examples
In the following example, UniData converts a static hashed file called
CONVHASH.TEST and the subfiles of a multilevel file called MULTI1 to dynamic
files:

% convhash CONVHASH.TEST MULTI1
Converting ‘CONVHASH.TEST’...
‘CONVHASH.TEST’ has been successfully converted
Converting ‘MULTI1/FILE1’...
‘MULTI1/FILE1’ has been successfully converted
Converting ‘MULTI1/FILE2’...
‘MULTI1/FILE2’ has been successfully converted
Converting ‘MULTI1/FILE3’...
‘MULTI1/FILE3’ has been successfully converted
%

 1-93

You can verify the file type for the converted file by displaying file statistics. The
next example uses the ANALYZE.FILE command:

:ANALYZE.FILE MULTI1,FILE3
Dynamic File name = MULTI1,FILE3
Number of groups in file (modulo) = 11
Minimum groups of file = 11
Hash type = 0, blocksize = 1024
Split load = 60, Merge load = 40
Split/Merge type = KEYONLY
Group Keys Key Loads Percent
===
0 19 331 32
1 21 358 34
2 24 407 39
...

When you use convhash to convert a file, no splitting or merging takes place. This
could result in a poorly sized file immediately after convhash. Use guide or
ANALYZE.FILE to determine if you should rebuild your new dynamic file. The
following example shows the output in the GUIDE_ADVICE.LIS (generated by the
guide utility), indicating that a dynamic file should be rebuilt.

% pg GUIDE_ADVICE.LIST
FAMILY_FILE1
Management advice:
Running REBUILD.FILE may improve performance
for access to the file. This conclusion was reached
for the following reasons:
- File is in level two overflow.
- File has 101 groups over split load.
Files processed: 1
Errors encountered: 0
%

1-94 UniData Commands Reference

convidx

Syntax
convidx [-r] [-s] [filename [filenameM...filenameN]|directory
[directoryM...directoryN]

Description
The system-level convidx command converts UniData index files from Motorola
68000 internal integer format to Intel 386 internal integer format. Format information
is embedded within the file header. This command automatically determines if files
match the present machine integer format. If files do not need to be converted,
UniData displays a message to that effect.

You can run convidx more than once on a UniData file.

Static index files have a prefix of X_. Dynamic index files are named idx001,
idx002,.... See the Using UniData manual for more information about working with
index files and alternate key indexes.

Use this command at the system prompt, or use the ECL ! (bang) command to execute
this command from the ECL prompt.
 1-95

Parameters

convidx Parameters

Parameter Description

-r Processes subdirectories recursively. Converts all index files in directory.

-s Suppresses system messages.

filename The index to be converted. Separate multiple index names with spaces.

directory The UniData DIR-type file that contains indexes to be converted. Separate
directory names with spaces.

Examples
In the following example, UniData attempts to convert the index file for the
CLIENTS demo file. CLIENTS is a static file, so the index file has a X_ prefix. Since
the index is already converted, UniData displays informational messages instead:

% convidx -r X_CLIENTS
X_CLIENTS: already been converted
0 index file(s) converted.
%

The next example shows an attempt to convert two dynamic file index files. Since
they have already been converted, UniData displays informational messages instead:

% convidx -r INVENTORY ORDERS
INVENTORY/idx001: already been converted
ORDERS/idx001: already been converted
0 index file(s) converted.
%

Related Commands
convdata, convcode
1-96 UniData Commands Reference

convmark

Syntax
convmark [-o] [-t] [-f] language_group_ID [[path1 [path2...]]

convmark [-o] [-t] [-f] -s old_value [-d new_value][[path1 [path2...]]

Description
The system-level convmark command searches for and converts ASCII values in
UniData files. new_value must be one that is not contained in the file to be converted.

Based on the option selected, UniData does one of the following:

 Displays the number of occurrences of a particular ASCII value.
 Counts the number of UniData delimiters in files.
 Converts a single ASCII character (ASCII values 128 – 255 only).
 Converts the UniData delimiters for your language group. (Be sure you
have changed the language group with the system-level command udtlang-
config. For instructions, see UniData International.)

convmark Constraints
You cannot use the convmark command to convert in the following conditions:

 If your source file contains the new ASCII values the ones to which you are
attempting to convert no data in the file is converted. UniData instead
returns a message indicating that the data already contains the new mark,
and returns the cursor to the ECL prompt. This does not mean that the file
has been converted or that it does not require conversion. You must review
and change the records manually.
 On UniData for UNIX, directories indicated by path1, and so forth, cannot
contain any UNIX links (created with the UNIX ln command). If they do,
convmark produces an error message and aborts.
 1-97

Parameters
The following table describes each parameter of the syntax.

convmark Parameters

Parameter Description

-o Overwrites marks that already existing in the file.

-t For use in test mode. Returns the number of files in the specified
directory that need to be converted, but does not convert them.
You can combine -t with any other options.

-f Forces conversion without asking for confirmation or displaying
warnings.

language_group_ID The language group ID is made up of the ASCII values that
represent the record mark, the cursor control escape sequence,
and the null value for that language group:

159/130/129 French, Japanese, and English
255/192/129 English

path 1 [path2...] The full path to files to convert. May be for a directory (all files
are converted) or for a file name. On UniData for UNIX, these
directories cannot contain UNIX links.

-s old_value Used without new_value, counts the occurrences of new_value.
Used with new_value, converts from old_value. Must be a single
ASCII value from 128 through 255.

-d new_value Replacement value. Must be a single ASCII value from 128
through 255.
Note: If new_value already appears in the data, UniData does
not execute the conversion. Instead, an informational message
appears and the cursor returns to the environment from which
you executed convmark.
1-98 UniData Commands Reference

Examples
In the following example, UniData counts the occurrences of ASCII value 254 in the
ORDERS demo file:

:convmark -s 254 ORDERS
ORDERS: number of value 254: 1152
1 UniData file(s) need conversion.
%

In the next example, the -t option counts ASCII value 254 in all files in the current
directory and in all subdirectories, but does not convert those characters. If the user
in this example had not included the -t option, the command would have converted
all ASCII values 254 to 129 (the null value in the English language group):

% convmark -t -s 254 -d 129
./BP/GREETING: not a UniData file
./BP/_GREETING: not a UniData file
./BP/TEST_PROG: not a UniData file
./BP/_TEST_PROG: not a UniData file
./BP/CLEAR.PROCESS: not a UniData file
./BP/_CLEAR.PROCESS: not a UniData file
./BP_SOURCE/GPA1: not a UniData file
./BP_SOURCE/PHONE_FMT: not a UniData file
./BP_SOURCE/PSTLCODE_FMT: not a UniData file
./BP_SOURCE/UP_NAME: not a UniData file
./BP_SOURCE/_GPA1: not a UniData file
./BP_SOURCE/_PHONE_FMT: not a UniData file
./BP_SOURCE/_PSTLCODE_FMT: not a UniData file
./BP_SOURCE/_UP_NAME: not a UniData file
./CATEGORIES: no conversion is need
./CLIENTS: need conversion.
./COURSES: need conversion.
./CUSTOMER: need conversion.
./D_BP: need conversion.
./D_BP_SOURCE: need conversion.
./D_CATEGORIES: need conversion.
./D_CLIENTS: need conversion.
...
40 UniData file(s) need conversion.

In the following example, convmark converts all ASCII values 129 (the null value in
the English language group) to 193.

The following is a display of record 40008 in the demo INVENTORY file, previously
modified by the addition of the null value to each multivalued and multi-subvalued
attribute. Notice lines 5 – 8.
 1-99

Note: The UniData-supplied editor AE is used here, and the user has pressed Shift-6
to display nonprinting characters.

...
*--: T
Top.
*--: P
001: 10026
002: 53760
003: Telephone
004: Cordless 9 # Memory
005: Burgundy^253Tan^253Black^253White^253^129
006: 350^253200^253300^253148^253^129
007: 6992^2536992^2536992^2536992^253^129
008: 70^25370^25370^25370^253^129
Bottom.
*--:

Next, after terminating the UniData session, the user changes directories to udthome,
and executes convmark to accomplish the conversion:

% convmark -s 129 -d 193 /home/carolw/demo/INVENTORY
WARNING: All 129’s in data of the given file(s) will be
replaced with 193. Are you sure (Y/N) ? y

/home/carolw/demo/INVENTORY: converted
1 UniData file(s) were converted successfully.

Here is the same record, 40008, redisplayed to show the converted characters: ASCII
129 has been converted to 193 for each multivalued and multi-subvalued attribute
(lines 5 through 8):

...
*--: T
Top.
*--: P
002: 53760
003: Telephone
004: Cordless 9 # Memory
005: Burgundy^253Tan^253Black^253White^253^193
006: 350^253200^253300^253148^253^193
007: 6992^2536992^2536992^2536992^253^193
008: 70^25370^25370^25370^253^193
Bottom.
*--:

Related Command
udtlangconfig
1-100 UniData Commands Reference

CONVERT.SQL

Syntax
CONVERT.SQL [filename][length] [CHECKONLY | FORCE] [PUBLIC
[privilege]]

Synonym
CONVERT-SQL

Description
The ECL CONVERT.SQL command checks the UniData file for conformance to
ODBC’s requirements. If it detects an inconsistency, UniData responds depending
upon the CONVERT.SQL option selected. If you do not use the CHECKONLY,
FORCE, or PUBLIC option, UniData displays each file and attribute name that does
not conform to ODBC requirements, suggests an acceptable name, and waits for you
to enter an acceptable name or press ENTER to accept the generated name.

Note: To execute the CONVERT.SQL command, you must be the owner of the file or
a system administrator or another user with root access on UniData for UNIX or as
Administrator on UniData for Windows Platforms.

In the conversion process, UniData takes the following actions:

 Checks the name of the file being converted. If filename is ODBC-
compliant, UniData uses this name for the file. If filename is not ODBC
compliant, UniData creates a new, duplicate dictionary file with a compliant
name for use by ODBC/UniData SQL.
 Checks attribute specifications for missing value code and format
specification.
 Creates synonyms (also called aliases) in the dictionary for attribute names
that do not conform to ODBC’s conventions. For each noncompliant
attribute name, UniData creates or adds an entry in the attributes
@SYNONYM and @ORIGINAL to link the new compliant attribute name
with the original attribute name.
 1-101

Adds conforming names of the converted files to the UniData SQL privilege
table.

CONVERT.SQL does not:

 Change the data portion of files being converted.
 Create 1NF schema (1NF views or subtables); therefore, converted tables
are not necessarily accessible through UniDesktop tools. For more infor-
mation on UniData ODBC, see Developing UniData ODBC Applications.

Note: Converted files are called base tables.

For a table to be accessible through UniData SQL, it must meet the following
conditions:

 The table and attribute name must:
 Not be longer than 30 characters.
 Be made up of alphabetic characters, numbers, and special characters:
_, @, #, $; the first character must be alphabetic. Be unique among
table, subtable, and view names, and UniData SQL reserved words.

 If an attribute name is part of an association, the association name must
exist in the dictionary as a PH attribute.
 An association may not contain a singlevalued (S) attribute.

For information about using UniData SQL, see Using UniData SQL.
1-102 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

CONVERT.SQL Parameters

Parameter Description

filename Specifies the name of the file to convert. If filename is
omitted, CONVERT.SQL converts all file names contained
in the active select list, if one exists.

length Specifies the length of the input file name (maximum is 30
characters).

CHECKONLY | FORCE CHECKONLY reports the problems found in the
conversion process, but does not make any changes.
FORCE makes necessary file changes during the conversion
process and displays changes on the terminal. UniData does
not prompt for user input.

PUBLIC Automatically grants the privilege specified in privilege to
all users. If PUBLIC is specified, but privilege is omitted,
privilege defaults to ALL.

privilege Specifies the privileges to grant. You may use the following
options: ALL, INSERT, UPDATE, DELETE, or SELECT.
For further information, see the “Granting Privileges”
section in Using UniData SQL.
 1-103

Example
In the following example, UniData converts a file named test.fil so it can be accessed
in UniData SQL. During the conversion process, the system prompts the user for
information. User responses appear in boldface type.

:CONVERT.SQL test.fil
default name length 30 is used
checking file ‘test.fil’ ...
single-valued field ‘NUM-FLD’ will be dropped from association
‘NUM-DOLLAR’
association ‘NUM-DOLLAR’ has no corresponding PH field
PH field ‘NUM-DOLLAR’ has been created
invalid FMT ‘’ in field ‘account_no’
enter new FMT [number[R10R
FMT spec of field ‘account_no’ has been changed to ‘10R’
field name ‘@ID’ will be changed to ‘ID’
enter <CR> to accept, or enter a new synonym:
field name ‘NUM-FLD’ will be changed to ‘NUM_FLD’
enter <CR> to accept, or enter a new synonym:
field name ‘dollar$’ will be changed to ‘dollar_’
enter <CR> to accept, or enter a new synonym:
invalid FMT ‘T’ in field ‘@CHAR%’
enter new FMT [number[R10T
FMT spec of field ‘@CHAR%’ has been changed to ‘10T’
field name ‘@CHAR%’ will be changed to ‘CHAR_’
enter <CR> to accept, or enter a new synonym: CHAR_FLD
invalid FMT ‘T’ in field ‘_FLDNAME’
enter new FMT [number[R8T
FMT spec of field ‘_FLDNAME’ has been changed to ‘8T’
field name ‘_FLDNAME’ will be changed to ‘FLDNAME’
enter <CR> to accept, or enter a new synonym:
...
synonym ‘ID’ has been created for field ‘@ID’
synonym ‘NUM_FLD’ has been created for field ‘NUM-FLD’
synonym ‘dollar_’ has been created for field ‘dollar$’
synonym ‘CHAR_FLD’ has been created for field ‘@CHAR%’
synonym ‘FLDNAME’ has been created for field ‘_FLDNAME’
synonym ‘NUM_DOLLAR’ has been created for field ‘NUM-DOLLAR’
7 conversions have been made to dictionary
file name ‘test.fil’ will be changed to ‘test_fil’
enter <CR> to accept, or enter your own synonym name:
file synonym ‘test_fil’ has been added to VOC
1 file has been converted
:

1-104 UniData Commands Reference

COPY

Syntax
COPY FROM [DICT] filename1 [TO [DICT] filename2][id [...]|id, new_id
[...] | ALL] [DELETING | OVERWRITING | SQUAWK]

Description
The ECL COPY command copies individual records from one file to another or
within the same file. If you include the DICT keyword, UniData copies dictionary
records.

The dictionary and data files must already exist before you copy records into them.
See CREATE.FILE for instructions on creating UniData dictionary and data files.

UniData displays an informational message if unable to execute a
COPY...DELETING statement due to the presence of a trigger. For more information
about UniData triggers, see Using UniData or Developing UniBasic Applications.

Warning: You cannot use system-level commands (such as cp and tar) to copy
UniData recoverable files while UniData is running. If you use these commands on
recoverable files, you could corrupt data.

In ECLTYPE P, the COPY command has the following syntax: COPY filename [*]

Notice the following:

 The FROM, DELETING, OVERWRITING, and SQUAWK keywords are
not valid.
 A left (open) parenthesis must proceed a file name.

You do not enter a target file name; UniData prompts for it. The optional asterisk
copies all records.
 1-105

Parameters
The following table describes each parameter of the syntax.

COPY Parameters

Parameter Description

filename A UniData file. filename must be a record in the VOC file. filename1 and
filename2 can refer to the same file. If you are making a copy of a record
in the same file, do not use the TO keyword.

DICT The Dictionary file.

FROM Copies records from a source file, filename1.

TO Copies records to a target file, filename2.

id The record ID to be copied. You can copy more than on record ID at the
same time by separating multiple record IDs with a space.
Note: Remember, when you copy records from a dictionary file, the
record ID is the dictionary attribute name.

new_id The new name you assign to a record ID you are copying.

ALL Copies all records from the source file to the target file.

DELETING Deletes records from the source file after they are copied to the target file.

OVERWRITI
NG

Overwrites any record of the same name already present in filename2.
Warning: UniData does not prompt to confirm that you intend to
overwrite the record.

SQUAWK Lists the records being copied to the display terminal.
1-106 UniData Commands Reference

Copying the Dictionary

After you copy a UniData file, you may want to copy the dictionary portion of the
file you have copied to the new dictionary. If you created a new file to copy records
to, the dictionary portion of the new file most likely contains the @ID record only. A
UniQuery statement executed against the new file may look something like the
following example, indicating that you have not copied the dictionary attributes.

:LIST MERCHANDISE ALL
LIST MERCHANDISE ALL 12:07:32 Jun 21 1999 1
MERCHANDISE
55040
51090
11020
...
 1-107

When you copy the dictionary records, be sure to specify the DICT parameter with
the target file name in the COPY statement. If you do not, UniData copies the
dictionary records into the data portion of the file. The following example illustrates
the results of a COPY statement when the DICT parameter with the target file name
was not specified. It also illustrates copying dictionary records from the original file
to the new file.

:COPY FROM DICT INVENTORY TO MERCHANDISE ALL
18 records copied
:LIST MERCHANDISE
LIST MERCHANDISE 10:29:29 May 29 1999 1
MERCHANDISE
PROD_NAME
13004
54030
40014
52060
40015
13005
36000
13006
50090
51040
DIFF
11110
INV_DATE
.
.
.
:COPY FROM DICT INVENTORY TO DICT MERCHANDISE ALL
@ID exists in MERCHANDISE, cannot overwrite
17 records copied
:LIST MERCHANDISE
LIST MERCHANDISE 10:32:29 May 29 1999 1
MERCHANDISE
52060
40015
13005
36000
13006
50090
51040
11110
...
1-108 UniData Commands Reference

ECLTYPE U Examples

In the following example, UniData copies a dictionary record (INV_DATE) to a new
name (MORE_INV) in the same file. Notice that the TO keyword does not appear on
the command line. It is not necessary, since the record is being copied from the source
file to the source file.

:COPY FROM DICT INVENTORY INV_DATE, MORE_INV
1 records copied
:

The next example copies a dictionary record to a different file and gives it a new
name. In this example, the TO keyword is required, since the target file differs from
the source file.

:COPY FROM DICT INVENTORY TO DICT ORDERS PROD_NAME, ITEM_NAME
1 records copied
:

The next example demonstrates use of the SQUAWK keyword to display informa-
tional messages to the terminal during the copy process. The OVERWRITING
keyword overwrites existing records of the same name without user verification:

:COPY FROM CLIENTS TO ORDERS 10011, C-10011 10013, C-10013 10015,
C-10015 OVER-WRITING
SQUAWK
10011 copied to C-10011
10013 copied to C-10013
10015 copied to C-10015
3 records copied
:

The following example copies ORDERS record 838 to record 10001:

:COPY FROM ORDERS 838, 1000
1 records copied

ECLTYPE P Examples

The following example illustrates a simple COPY statement. UniData makes a
second copy of a record in the CLIENTS demo file:

:COPY CLIENTS 9999
TO: X-9999
1 records copied
:

 1-109

In the next example, UniData copies a record from CLIENTS demo file to the
ORDERS demo file. Notice UniData prompts for the target file name with TO:, and
that the user proceeds the file name with a left parenthesis.

:COPY CLIENTS 10011
TO: (ORDERS
1 records copied
:

The next example shows a COPY statement that copies the dictionary record from
the CLIENTS file to the dictionary of ORDERS file. The new dictionary record is
called DISTRIBUTION.

:COPY DICT CLIENTS ZIP_CODE
TO: (DICT ORDERS DISTRIBUTION
1 records copied
:

In ECLTYPE P, you can display the all of the records in a file to the terminal by
including an asterisk (*) and pressing ENTER at the TO: prompt, as shown in the
following example:

COPY CLIENTS *
TO:
9999:
Paul
Castiglione
Chez Paul
45, reu de Rivoli
Paris
75008
France
3342425544y3342664857
WorkyFax
10034:
Fredrick
Anderson
Otis Concrete
854, reu de Rivoli
Paris
...
1-110 UniData Commands Reference

CREATE.ENCRYPTION.KEY

Syntax
CREATE.ENCRYPTION.KEY key.id [password]

Description
Use the CREATE.ENCRYPTION.KEY command to create an encryption key in the
UniData key store. We recommend that you create a password for the key.

Parameters
The following table describes each parameter of the syntax.

CREATE.ENCRYPTION.KEY Parameters

Parameter Description

key.id The encryption key ID.

password The password for key.id.

Example
The following example illustrates creating an encryption key using the
CREATE.ENCRYPTION.KEY command:

:CREATE.ENCRYPTION.KEY test myunidata
Create encryption key test successful.
:

 1-111

CREATE.FILE

Syntax
CREATE.FILE [DICT | DATA] [DIR | MULTIFILE | MULTIDIR] filename
[,subfile] [modulo [,block.size.multiplier]] [TYPE hashtype] [DYNAMIC
[KEYONLY | KEYDATA] [PARTTBL part_tbl]] [RECOVERABLE]
[OVERFLOW]

Note: The PARTTBL option is available on UniData for UNIX only.

Synonym
CREATE-FILE

Description
The ECL CREATE.FILE command creates a UniData file. If you do not indicate the
kind of file to create (such as dictionary, data, or directory), UniData creates filename
(both the data and dictionary files) as a static hashed file. If an operating system-level
file of the same name already exists in the target account, CREATE.FILE fails.

See Administering UniData for more information on UniData file types, such as
multifiles and part files.

Tip: The name you choose for a file must not exceed the length supported by your
operating system. To view your operating system limitation, execute the ECL LIMIT
command. The maximum operating system file name limit is the value of
U_MAXFNAME. After you create the file, you can create a longer synonym in your
VOC file to be used in UniData. For information about creating file name synonyms,
see SETFILE.
1-112 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

Parameter Description

block.size.multiplier The size, expressed as a multiplier, of each group in a hashed
file. If you specify a block size multiplier of 0, UniData creates
512-byte groups. A block size multiplier of 1 represents 1024
bytes, 2 represents 2048 bytes, and so on. The maximum block
size multiplier is 16. See “Estimating the File Size” in this
section. If you specify a block size multiplier greater than 16,
16 is used.

filename The name of the UniData file to be created.

hashtype UniData supports three proprietary hashing algorithms (hash
type 0, hash type 1, and hash type 2), which determine what
data groups contain each record. The default hash type for both
static files and dynamic files is 0. See Administering UniData
for more information about the UniData hashing algorithms.

modulo Number of groups allocated to filename. When hash type is 0,
modulo must be a prime number. If the number you choose is
not prime, UniData automatically increases the number to the
nearest prime number. See “Estimating the Modulo” in this
section.

part_tbl The path and file name for a UNIX text file to be used as the
part table for a dynamic hashed file. UniData copies the part
table into the directory with the dynamic file.
This option is only supported on UniData for UNIX.
Note: UniData distributes part files across file systems by using
ASCII files called part tables.

,subfile Name of a subfile to be created when you use the MULTIFILE
or MULTIDIR options. You must separate filename and subfile
with a comma.

DATA Creates only the data portion of filename.

DICT Creates only the dictionary portion of filename. All UniData
dictionary files are static hashed files. UniData prefixes
dictionary file names with D_.

CREATE.FILE Parameters
 1-113

DIR Creates a file whose data portion is a directory, rather than a
UniData hashed file. Records in a DIR-type data file are text
and data files.
Note: The DYNAMIC, KEYONLY, KEYDATA, PARTTBL,
TYPE, and RECOVERABLE keywords are invalid for a DIR-
type file.

DYNAMIC Creates a dynamic hashed file. Dynamic files resize based on
split and merge parameters.
For more information on UniData dynamic files, see Using
UniData or Administering UniData.

KEYONLY Used only with the DYNAMIC keyword. Set the split/merge
type for a dynamic file to KEYONLY, meaning that the load
factor in each group is based on keys and pointers only. This is
the default split/merge type.

KEYDATA Used only with the DYNAMIC keyword. Set the split/merge
type for a dynamic file to KEYDATA, meaning that the load
factor in each group is based on keys and pointers plus data.
For more information about split/merge types, see “Special
Considerations for Dynamic Files” in this section.

MULTIDIR Creates a multilevel directory file, consisting of multiple DIR-
type files (subfile) under a directory (filename). The VOC entry
for a MULTIDIR file is type LD.

MULTIFILE Creates multiple DATA-type hashed files (subfile) under a
directory (filename). The VOC entry is type LF. If you do not
specify a subfile name, UniData creates a hashed file and names
both it and the directory filename.

PARTTBL Used only with the DYNAMIC keyword. Copies the specified
text file (part_tbl) into the dynamic file directory. The text file
you specify with the PARTTBL option must exist. The contents
of this file are copied into the dynamic file directory in a file
named parttbl.
This option is supported on UniData for UNIX only.

Parameter Description

CREATE.FILE Parameters (continued)
1-114 UniData Commands Reference

Note: On UniData for UNIX, when you create a DIR, MULTIDIR, or MULTIFILE,
UniData attempts to set permissions on the UNIX directory to 775 (rwxrwxr-x).
These permissions allow users in the same UNIX group as the file owner add, modify,
and delete records, subdirectories, and subfiles. UniData can set these permissions
only if your umask allows. If your umask is more restrictive than 003, the umask
rather than UniData determines the permissions setting for a DIR, MULTIDIR, or
MULTIFILE.

Estimating the Modulo
UniData blocks a hashed file into a specific number of groups called the modulo. The
best number of groups (modulo number) depends on variable factors, such as record
size and length of the primary key. When you execute CREATE.FILE, the modulo
and block size multiplier that you enter determine the size of the file. It is important
to create a file that is adequate in size to store data efficiently. If you create a static
file with only a few groups, the file can overflow quickly, which causes slow perfor-
mance. When you create a dynamic hashed file, the modulo increases automatically
when records are added to the file. However, you should still calculate the best initial
modulo before you create the file. The following steps describe how to estimate a
modulo number for a static hashed file (or initial modulo for a dynamic hashed file):

RECOVERABLE Creates a recoverable file. You can define only the following
types of files as recoverable:

Static hashed file or multilevel subfile
Dynamic hashed file or multilevel subfile

For more information about recoverable files, see
Administering the Recoverable File System.

TYPE hashtype Hashing algorithm for the file. Hash type is 0 or 1. The default
hash type for static and dynamic files is 0.

OVERFLOW If specified, UniData creates a dynamic file with an overflow
file for each dat file. For example, over001 corresponds to
dat001, over002 corresponds to dat 002, and so forth. When the
file is cleared, UniData maintains this overflow structure.

Parameter Description

CREATE.FILE Parameters (continued)
 1-115

1. Estimate an average record size. The average record size (in bytes) is the
sum of the size of the primary key, an estimated record size, and the integer
9. Suppose you’re designing a file with the following characteristics:

 Primary key Primary key is a 10-character field.
 Estimated record length – There are 20 data attributes that are each 10
characters in length, for a record length of 200.

Therefore, the average record size is: 10 + 200 + 9 = 219 bytes.

Note: If you are planning to resize an existing file or copy records from an existing
file, you can use the FILE.STAT command (in ECLTYPE U) to display average
number of bytes in a record and average number of bytes in a record ID. For an
existing file, compute the average record size as the sum of the average number of
bytes in the record, the standard deviation from average, the average number of bytes
in the record ID, and 9 for overhead.

2. Compute the number of records per block as:
(Block size in bytes - 32) / Average record size
Note that the pointer array in each block requires 32 bytes. In the example,
if you want to use 1024-byte blocks, then the number of records per block
is (1024 -32) / 219, or 4.5.

3. Divide the number of records in the file by the number of records per block
to compute the calculated modulo:
1000 records / 4.5 records per block = 222 blocks

4. Add 10 –15% for optimum hashing, bringing the calculated modulo to 255.
5. Round this number up to the nearest prime number. This becomes the

modulo for the file. For this example, the nearest prime number is 257. Use
the ECL PRIMENUMBER command to find the prime number.

Estimating the File Size
UniData determines the size for a file by adding 1 to the modulo (for the group that
contains the file header) and multiplying that sum by the block size.

Block size is the product of a block size multiplier (block.size.multiplier) times 1024.
The block size multiplier is an integer between 0 and 16 inclusive. Except for 0, these
integers represent multiples of 1,024 bytes. If you use 0 for block.size.multiplier,
UniData interprets that as 512. If you use a number greater than 16, UniData uses
16K.
1-116 UniData Commands Reference

Note: A recoverable file must have a block size multiplier of at least 1 (1,024 bytes).
A 512-byte block size is not supported.

For efficient I/O performance, we recommend that you use only the values of 0, 1, 2,
4, 8, and 16 for the block.size.multiplier. Do not use odd numbers for block sizes.

Special Considerations for Dynamic Files
If you are creating a dynamic hashed file, selecting an appropriate starting
(minimum) modulo is critical to the future efficiency of the file. All subsequent
splitting and merging operations are affected by the initial modulo. Starting with a
modulo that is very small (for instance, 3) produces inefficient hashing and splitting
as the file grows. Starting with a modulo that is very large produces a file that may
take up more disk space than needed, but that impact is better than the slow perfor-
mance and inefficiency that results if the starting modulo is too small.

When you create a dynamic file, estimate the initial modulo using the same procedure
you would use to estimate the modulo for a static file.

KEYDATA Files and Block Size

If you are creating a KEYDATA dynamic file, make certain the block size is large
with respect to the record length. We recommend that you choose a block size that is
at least 10 times the average record length. Load factor in a KEYDATA file is based
on the percentage of the space in each block that is occupied by both keys and data.
If the block size is not large with respect to record size, the file will occupy a large
amount of space and much of that space will be unused.

KEYONLY Files and Block Size

If you are creating a KEYONLY dynamic file, make certain the block size is large
with respect to the average key length. We recommend that you choose a block size
that is at least 10 times the average key length. Load factor in a KEYONLY file is
based on the percentage of the space in each block that is occupied by keys and
pointers. If the block size is not large with respect to the average key length and the
hashing is not even, certain groups will be split over and over, resulting in an ineffi-
cient distribution of keys.
 1-117

Example
In the following example, UniData creates a dynamic file. Notice the informational
message related to modulo number. Also, notice that UniData creates both data and
dictionary files, by default.

:CREATE.FILE CONTRACTS 4,2 DYNAMIC
4 is not a prime number, modulo changed to 5.
Create file D_CONTRACTS, modulo/1,blocksize/1024
Hash type = 0
Create dynamic file CONTRACTS, modulo/5,blocksize/2048
Hash type = 0
Split/Merge type = KEYONLY
Added “@ID”, the default record for UniData to DICT CONTRACTS.
:

Related Commands
CLEAR.FILE, DELETE.FILE
1-118 UniData Commands Reference

CREATE.INDEX

Syntax
CREATE.INDEX filename attribute1 [attributeM...attributeN] [NO.DUPS]
[NO.NULLS]

Synonym
CREATE-INDEX

Description
The ECL CREATE.INDEX command creates an index file for a UniData file and
creates alternate key indexes for data attributes you indicate. The index file stores all
of the alternate key indexes created on a file.

When you create alternate key indexes, you can screen out empty strings or duplicate
values, or both (for nonrecoverable files).

If an alternate key index exists for the attribute you are indexing, UniData displays a
message indicating that you cannot create more than one index for the same attribute
(location).

UniData stores index files in two places:

 Static files – The UniData account directory. Static index files have a X_
prefix.
 Dynamic files – The UniData file directory. Dynamic index files are named
idx001, idx002,....

The CREATE.INDEX command does not populate the alternate key index. To add
keys to the index, use the ECL BUILD.INDEX command.

When CREATE.INDEX completes successfully, @SYSTEM.RETURN.CODE is
set to the number of indexes created. If an error occurs,
@SYSTEM.RETURN.CODE is set to -1.
 1-119

IBM recommends that alternate key length be as large as the longest attribute being
indexed to help prevent alternate key overflow. For example, if the indexed attribute
is a virtual field that concatenates CITY (35 characters), STATE (2 characters), and
ZIP (10 characters), the alternate key length should be 47.

Note: You cannot create a UniData index on a file already converted to DB2 through
External Database Access (EDA).

Tip: Use the LIST.INDEX command to display a list of alternate key indexes for a
UniData file.

Using Indexes Created in an Earlier Release

Keep the following in mind when upgrading or using an index that was created with
an earlier release of UniData:

 When upgrading from a release earlier than 3.3, you need to rebuild
indexes. UniData added a time stamp feature at Release 3.3.
 Indexes created at Release 4.1 of UniData for UNIX or Release 3.6 of
UniData for Windows NT are not backwardly compatible. Beginning with
these releases, indexes were no longer compressed.
1-120 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

CREATE.INDEX Parameters

Parameter Description

filename Name of a UniData data file to be indexed.

attribute Data attribute on which to base an alternate key index. You can name
multiple data attributes to create multiple alternate key indexes simulta-
neously. You cannot create multiple alternate key indexes on the same
location (attribute).

NO.DUPS For nonrecoverable files, the parameter blocks creation of duplicate keys
in an alternate key index. If UniData encounters duplicate data values
when building the index or writing a record, the operation terminates.
Here is a summary of the effect of NO.DUPS on other commands:
BUILD.INDEX — If the nonrecoverable file contains duplicate values
in the alternate key attribute, UniData displays an error message and does
not build the index. UniData allows duplicates in indexes for RFS files.
(UniBasic) WRITE/WRITEU/WRITEV/WRITEVU — For
nonrecoverable files, the ON ERROR clause executes if you attempt to
write a record that contains a duplicate alternate key value, and the
STATUS return value is set to 10. For recoverable files, UniBasic writes
the duplicate keys, but sets STATUS to 10 after the write.

NO.NULLS Specifies that records that have an empty string as the alternate key not
be included in an alternate key index. Key values that are the null value
are included in indexes created with the NO.NULLS keyword specified
and null value handling turned on.
 1-121

Example
The following example creates an index file for the CLIENTS demo file and three
alternate key indexes. When you create an index file, UniData prompts for an
alternate key length. If you press ENTER instead of entering a key length, UniData
uses the default (20).

:CREATE.INDEX CLIENTS LNAME COUNTRY ZIP_CODE
Alternate key length (default 20):
“LNAME” created
“COUNTRY” created
“ZIP_CODE” created
:

Related Commands
BUILD.INDEX, DELETE.INDEX, DISABLE.INDEX, ENABLE.INDEX,
LIST.INDEX, UPDATE.INDEX
1-122 UniData Commands Reference

CREATE.TRIGGER

Syntax
CREATE.TRIGGER [DATA | DICT] filename trigger [BEFORE] {UPDATE
|DELETE}

Synonym
CREATE-TRIGGER

Description
Use the ECL CREATE.TRIGGER command to place a trigger name in a file
header. Depending on the kind of trigger, UniData references a UniBasic trigger
subroutine with the trigger name before a user attempts to execute either update or
delete operations on a file.

For detailed information about creating trigger subroutines, see Developing UniBasic
Applications.

Note: To execute the CREATE.TRIGGER command, you must be the owner of the file
at the operating system level or have root permissions on UniData for UNIX or
Administrator permissions on UniData for Windows Platforms.
 1-123

Parameters
The following table describes each parameter of the syntax.

CREATE.TRIGGER Parameters

Parameter Description

DATA The data portion of a file.

DICT The dictionary portion of a file.

filename The name of the file that contains the header where the trigger name is
inserted.

trigger The name of the UniBasic trigger subroutine.

BEFORE The type of trigger that UniData executes before processing an update or
delete operation on the file.

UPDATE The trigger related to updated operations on a file. A file header can
reference only one UPDATE trigger.

DELETE The trigger related to delete operations on a file. A file header can
reference only one DELETE trigger.

Examples
The following example creates a BEFORE UPDATE trigger in the header of the
INVENTORY file. The trigger calls the globally cataloged UniBasic trigger
subroutine PRICE_UPDATE.

:CREATE.TRIGGER INVENTORY PRICE_UPDATE UPDATE
:

To find out if triggers are present in a file header, use the LIST.TRIGGER command.
UniData indicates whether an UPDATE or DELETE trigger is defined and provides
the trigger name:

:LIST.TRIGGER INVENTORY
BEFORE UPDATE TRIGGER: PRICE_UPDATE
BEFORE DELETE TRIGGER: not defined
:

1-124 UniData Commands Reference

Related Commands
DELETE.TRIGGER, LIST.TRIGGER
 1-125

DATE

Syntax
DATE

Description
The ECL DATE command displays the current system date and time on the terminal
screen.

Example
The following example displays the current system date and time.

:DATE
Wed Jul 30 10:20:50 MDT 1999
1-126 UniData Commands Reference

DATE.FORMAT

Syntax
DATE.FORMAT [2]

Synonym
DATE-FORMAT

Description
The ECL DATE.FORMAT command establishes the default display format for dates
in output from ECL, UniQuery, and UniBasic statements for the current UniData
session.

To reset the display to United States format, you must exit your current UniData
session and open a new session.

This command has no effect on output from the DATE command.

Note: To display dates in all uppercase, set UDT.OPTIONS 4 ON.

The setting of UDT.OPTIONS 34 toggles the system date format between
alphanumeric and numeric for the month display when you specify HEADING with
the D option in a UniQuery statement. ON produces alphanumeric output. OFF
produces numeric output. See the UDT.OPTIONS Commands Reference for more
information about UDT.OPTIONS.

If you always want to display dates in the international format for all users, you can
change the date value in the DEFAULTS record to 2. The DEFAULTS record is
located in the language message file in udthome/sys on UniData for UNIX or
udthome\sys on UniData for Windows Platforms. The date value is the last value in
attribute 1, and has a default setting of 0. For more information about the language
message file, see UniData International.
 1-127

Parameters
The following table describes each parameter of the syntax.

DATE.FORMAT Parameters

Parameter Description

no option European: DD/MM/YY

2 International format: YY/MM/DD

Example
The following example executes DATE.FORMAT 2, and then a UniQuery statement
that displays the system date in the header. Notice the international date format:

:DATE.FORMAT 2
:LIST INVENTORY QTY HEADING “‘D’”
1999-07-30
INVENTORY. Quantity
10140 12000
149
13002 104
12006 396
11010 8781
3986
54090 575
...
1-128 UniData Commands Reference

DB.TOXML

Syntax
DB.TOXML “xml_doc_filename” “xmap_filename” “condition”

Description
Use the DB.TOXML command to create an XML document from the UniData
database.

Note: The XML options set previously at the session level through the
XMLSETOPTIONS command or through the XMLSetOptions() API are used when
you run the DB.TOXML command in the current UniData session.

Parameters
The following table describes each parameter of the syntax.

DB.TOXML Parameters

Parameter Description

xml_doc_filename The name of the XML document to create. If you do not enter a full
path, the file is written to the _XML_ directory.

xmap_filename The file name for the XMAP file.

condition A UniQuery condition string, for example, WITH SCHOOL =
“CO002”

Example
The following example illustrates using DB.TOXML from ECL to create an XML
document.

DB.TOXML SCHOOL_STUDENT.XML STUDENT.MAP WITH SCHOOLID = “CO002”
 1-129

dbpause

Syntax
dbpause

Description
dbpause is a UniData system-level command that blocks most updates to the database
made in a UniData session. Any updates made from the operating system level are
not blocked. You can use this feature to perform some tasks that normally require
UniData to be stopped, such as backing up your data.

When the dbpause command is issued, all current writes and transactions complete
before

UniData pauses. Updates are blocked until the system administrator executes the
dbresume command.

System-level commands, such as cp or mv on UniData for UNIX or COPY or MOVE
on UniData for Windows Platforms, are not blocked. In addition, updates to the
HOLD file and the _PH_ file are not blocked, and printing of reports is not
interrupted.

If you execute dbpause when running the Recoverable File System (RFS), UniData
forces a checkpoint, flushes the after image logs to the archive files (if archiving is
enabled), and marks the next available logical sequence number in the archive file for
use after the backup. UniData displays this information on the screen where you
execute dbpause, and writes it to udtbin/sm.log.

Note: To execute the dbpause command, you must log on as root on UniData for
UNIX or as Administrator on UniData for Windows Platforms.

For more information about dbpause, see Administering UniData and Administering
the Recoverable File System.

Related Commands
dbpause_status, dbresume
1-130 UniData Commands Reference

dbpause_status

Syntax
dbpause_status

Description
The UniData system-level dbpause_status command returns information about the
status of dbpause. If dbpause is in effect, dbpause_status returns the message
DBpause is ON. If dbpause is not in effect, dbpause_status returns the message
DBpause is OFF.

For more information about dbpause_status, see Administering UniData and Admin-
istering the Recoverable File System.

Related Commands
dbpause, dbresume
 1-131

dbresume

Syntax
dbresume

Description
The dbresume system-level command resumes processing after the dbpause
command is issued. When dbresume is executed, all writes that were blocked when
dbpause was issued complete.

Note: You must log on as root on UniData for UNIX or Administrator on UniData
for Windows Platforms to issue the dbresume command.

For more information about dbresume, see Administering UniData and Adminis-
tering the Recoverable File System.

Related Commands
dbpause, dbresume
1-132 UniData Commands Reference

DEACTIVATE.ENCRYPTION.KEY

Syntax
DEACTIVATE.ENCRYPTION.KEY key.id password

Description
Use the DEACTIVATE.ENCRYPTION.KEY command to deactivate a key or a
wallet. This command is useful to deactivate keys to make your system more secure.

Parameters
The following table describes each parameter of the syntax.

DEACTIVATE.ENCRYPTION.KEY Parameters

Parameter Description

key.id The key ID or wallet ID to deactivate. If you provide a Wallet ID,
UniData deactivates all keys in the wallet.

password The password corresponding to key.id.

Example
The following example illustrates deactivating the “test” encryption key:

DEACTIVATE.ENCRYPTION.KEY test myunidata
DEACTIVATE.ENCRYPTION.KEY successful.
 1-133

DEBUG.FLAG

Syntax
DEBUG.FLAG [ON | OFF]

Synonym
DEBUG-FLAG

Description
The ECL DEBUG.FLAG command enables the UniBasic DEBUG command. This
flag is automatically on when UniData is installed.

For information about writing UniBasic programs, see Developing UniBasic
Applications.

Parameters
The following table describes each parameter of the syntax.

DEBUG.FLAG Parameters

Parameter Description

ON Enables the UniBasic DEBUG command.

OFF Suppresses the UniBasic DEBUG command.
1-134 UniData Commands Reference

Example
The following program contains the UniBasic DEBUG command at line 002:

:AE BP convertit
Top of “convertit” in “BP”, 19 lines, 411 characters.
*--: p
001: PROMPT ““
002: DEBUG
003: LOOP
004: PRINT “Input or output [I/O]?” :
005: INPUT i_or_o
006: IF i_or_o = ““ THEN STOP
...
019: END
Bottom.

As expected, when you execute this program, it exits to the debugger when this line
executes:

:RUN BP convertit
***DEBUGGER called at line 2 of program BP/_convertit

If you execute DEBUG.FLAG OFF before running the program, the DEBUG
command is ignored. Notice that the prompt is found on line 004, after the DEBUG
command in the program displayed previously:

:DEBUG.FLAG OFF
:RUN BP convertit
Input or output [I/O]?

If we then turn the flag back on, the DEBUG command executes the next time we run
the program:

:DEBUG.FLAG ON
:RUN BP convertit
***DEBUGGER called at line 2 of program BP/_convertit
 1-135

DEBUGLINE.ATT

Syntax
DEBUGLINE.ATT

Synonym
DEBUGLINE-ATT

Description
The ECL DEBUGLINE.ATT command attaches a terminal for dual-terminal
debugging with the UniBasic debugger. You must first initialize the communication
line with SETDEBUGLINE.

For more information on UniBasic and the UniBasic debugger, see Developing
UniBasic Applications.

Related Commands
DEBUGLINE.DET, SETDEBUGLINE, UNSETDEBUGLINE
1-136 UniData Commands Reference

DEBUGLINE.DET

Syntax
DEBUGLINE.DET

Synonym
DEBUGLINE-DET

Description
The ECL DEBUGLINE.DET command terminates dual-terminal debugging with
UniBasic.

For more information on UniBasic and the UniBasic debugger, see Developing
UniBasic Applications.

Related Commands
DEBUGLINE.ATT, SETDEBUGLINE, UNSETDEBUGLINE
 1-137

DECRYPT.FILE

Syntax
DECRYPT.FILE filename ... {WHOLERECORD | fieldname},alg,key[,pass]
[fieldname,alg,key{,pass]]...

Description
The DECRYPT.FILE command decrypts data in a file or in the fields you specify.

Parameters
DECRYPT.FILE accepts all memresize command parameters. If the file you are
decrypting is empty, you do not need to specify any of the memresize parameters. If
the file you are decrypting is not empty, and you know that the file needs resizing
because decrypting the file will decrease the record size, you should specify the
memresize parameters.

The following table describes each parameter of the syntax.

Parameter Description

filename The name of the file to be decrypted.

WHOLERECORD Specifies to fully decrypt every record in the file.

fieldname,key,pass Specifies the field name to decrypt, and the key, and password to
use.
If you do not specify a password, but created the key using
password protection, UniData prompts for the password. If
several fields use the same password, you only have to specify it
once, at the first field that uses that key.

DECRYPT.FILE Parameters
1-138 UniData Commands Reference

If the encrypted file was created using the WHOLERECORD keyword, you should
specify WHOLERECORD when decrypting the file. If the file was not encrypted
using the WHOLERECORD keyword, do not specify WHOLERECORD when
decrypting the file.

Example
The following example illustrates decrypting a file that was originally encrypted with
the WHOLERECORD option:

:DECRYPT.FILE CUSTOMER WHOLERECORD,test,myunidata
The temporary file for DECRYPT.FILE is C:\IBM\ud72\Demo\rsztpa05492.
29 record(s) in file.
Decrypt CUSTOMER successfully.
Total time used = 0 (sec)

fieldname The name of the field to encrypt.

key The key ID to use for the field decryption.

pass The password corresponding to the key.

Parameter Description

DECRYPT.FILE Parameters (continued)
 1-139

DEFAULT.LOCKED.ACTION

Syntax
DEFAULT.LOCKED.ACTION [BELL [interval] | OFF]

Synonym
DEFAULT-LOCKED-ACTION

Description
The ECL DEFAULT.LOCKED.ACTION command turns on or off terminal
beeping at intervals while the process waits for an exclusive file or record lock to be
released.

Note: To avoid holding up a process when it encounters a lock, include the LOCKED
clause in the UniBasic command that attempts to set an exclusive lock.

Some UniBasic commands that set exclusive locks include the following:

 READU
 READVU
 MATREADU
 RECORDLOCKU
1-140 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax

DEFAULT.LOCKED.ACTION Parameters

Parameter Description

BELL Turns on the bell.

interval The interval, in seconds, at which the bell sounds. The default is 10
seconds.

OFF Turns off the bell.

.

Example
The following example sets the terminal bell to sound every 20 seconds when the
process encounters a locked file or record:

:DEFAULT.LOCKED.ACTION BELL 20
 1-141

DELETE

Syntax
DELETE [DICT] filename [record_ID [...]]

Description
The ECL DELETE command deletes one or more record IDs from a file. If you do
not indicate a record ID, UniData steps through the file, prompting with each record
key in turn.

You can execute this command against an active select list.

Warning: UniData deletes all data for record IDs listed in an active select list
without prompting for confirmation.

UniData displays an informational message if unable to execute this command due
to the presence of a DELETE trigger. For more information about UniData triggers,
see Using UniData.

Note: UDT.OPTIONS 16 governs the kind of message that displays when you use an
active select list to delete records. When this option is ON, UniData displays only the
number of records deleted. When this option is OFF, UniData displays the record
IDs, but not the number of records deleted.

Parameters
The following table lists the DELETE command parameters.

DELETE Parameters

Parameter Description

DICT Deletes the dictionary. If you do not include the DICT keyword, UniData
deletes records from the data file.

filename File from which records are to be deleted.

record_ID ID of a record to be deleted. Separate multiple record IDs with a space.
1-142 UniData Commands Reference

Examples
In the following example, UniData deletes two records from the INVENTORY demo
file:

:DELETE INVENTORY 31000 39300
‘31000’ deleted.
‘39300’ deleted.
:

In the next example, UniData prompts for a record to delete from the dictionary file
of the INVENTORY demo file. You can enter only one record ID each time UniData
prompts:

:DELETE DICT INVENTORY
Delete more records from file INVENTORY (Y/N)?Y
please type in key: INV_DATE
‘INV_DATE’ deleted from INVENTORY
Delete more records from file INVENTORY (Y/N)?N

In the next example, UniData deletes the records listed in an active select list. If you
respond Y to the prompt UniData immediately deletes all records in the list.

:SELECT INVENTORY WITH @ID LIKE “5...”
83 records selected to list 0.
>DELETE INVENTORY
Do you want to delete records in select list?(Y/N)Y
‘56060’ deleted.
‘57030’ deleted.
‘53040’ deleted.
‘56070’ deleted.
‘55040’ deleted.
 1-143

DELETECOMMON

Syntax
DELETECOMMON [“common.name”]

Description
The ECL DELETECOMMON command deletes one or all named common areas. If
you do not specify common.name, all named common areas are deleted.

If control returns to a UniBasic program after execution of DELETECOMMON, or
if the specified common area does not exist, UniData displays a warning message and
does not delete common.

Note: The UniBasic named common areas store variables that can be accessed from
any subroutine or program. For information on declaring and using named common
areas, see Developing UniBasic Applications, or COMMON in the UniBasic
Commands Reference.

Examples of allowed and disallowed processes.

Allowed Not Allowed

A user executes DELETECOMMON
from the ECL prompt.

1. A UniBasic program
2. EXECUTEs DELETECOMMON

1. Paragraph or Proc
2. Executes DELETECOMMON

1. A UniBasic program.
2. EXECUTEs a paragraph or Proc
3. that executes DELETECOMMON

1. A UniBasic program
2. CHAINs to a paragraph or Proc
3. that executes DELETECOMMON

1. A UniBasic program
2. CHAINs to a UniBasic program
3. CHAINS to another UniBasic program
4. that EXECUTEs DELETECOMMON

Allowed and Disallowed Processes
1-144 UniData Commands Reference

Example
The following example demonstrates passing and deleting named common. These
two programs pass the variable VAR in the named common COMVAR.

Note: Named common remains in memory until deleted.

FIRST_PROG
COMMON /COMVAR/ VAR
VAR = VAR+1
PRINT “IN FIRST_PROG”
PRINT VAR
CALL NEXT_PROG
Program Example
NEXT_PROG
*Program NEXT_PROG
COMMON /COMVAR/ VAR
PRINT “IN NEXT_PROG”
VAR = VAR+1
PRINT VAR

1. A UniBasic program
2. CHAINs to a UniBasic program
3. that CHAINs to another UniBasic
program
4. that CHAINs to a paragraph or Proc
5. that executes DELETECOMMON

1. A Paragraph or Proc
2. runs a UniBasic program
3. that EXECUTEs DELETECOMMON

1. A Proc or paragraph
2. runs a UniBasic program
3. that CHAINs to a paragraph or Proc
5. that executes DELETECOMMON

UDT.OPTIONS 40 ON:
1. A Proc or paragraph
2. runs a UniBasic program
3. that EXECUTE a UniBasic program
4. that CHAINs to a paragraph or Proc
5. that executes DELETECOMMON

UDT.OPTIONS 40 OFF:
1. A Proc or paragraph
2. runs a UniBasic program
3. that EXECUTE a UniBasic program
4. that CHAINs to a paragraph or Proc
5. that executes DELETECOMMON

Allowed Not Allowed

Allowed and Disallowed Processes (continued)
 1-145

Here is the output from these programs (the first time you execute FIRST_PROG):

:RUN BP FIRST_PROG
IN FIRST_PROG
1
IN NEXT_PROG
2

VAR remains in the named common area COMVAR, which remains in memory,
getting incremented by two each time you execute FIRST_PROGRAM, or once each
time you execute NEXT_PROG until you execute DELETECOMMON or until the
operating system is rebooted. Here we execute FIRST_PROG a second time, execute
DELETECOMMON, then execute FIRST_PROG a third time. Only after executing
DELETECOMMON is VAR reset to 0.

:RUN BP FIRST_PROG
IN FIRST_PROG
3
IN NEXT_PROG
4
:DELETECOMMON
:RUN BP FIRST_PROG
IN FIRST_PROG
1
IN NEXT_PROG
2

1-146 UniData Commands Reference

DELETE.CATALOG

Syntax
DELETE.CATALOG program

Synonyms
DECATALOG, DELETE-CATALOG

Description
The ECL DELETE.CATALOG command deletes the object code and removes the
VOC record for the program from the CTLG subdirectory in which it is cataloged.

Note: DECATALOG works only in ECLTYPE P.

Even though you delete a cataloged program, as long as the program resides in the
DIR file in which it was created, you can run it from the UniData ECL prompt with
the RUN command. It cannot, however, be called with a UniBasic external call.

If a program is cataloged locally and globally, you must execute
DELETE.CATALOG once for each entry. UniData deletes the local program first.

UniData places a copy of globally cataloged programs in shared memory for all users
to access. Therefore, when you delete the object code and the VOC entry with this
command, users who may be running the program from shared memory are not
affected.

UniData stores locally cataloged programs in the CTLG directory of the local
account. UniData stores globally cataloged programs in a subdirectory of the CTLG
directory in udthome/sys on UniData for UNIX or udthome\sys on UniData for
Windows Platforms. For more information about programming in UniBasic, see
Developing UniBasic Applications.Formore information about cataloging and shared
memory, see Administering UniData.
 1-147

Examples
The following examples are taken from UniData for UNIX. On UniData for
Windows Platforms, the path contains backslashes rather than forward slashes.

The first example shows the VOC file pointer for a UniBasic program called
PRICE_UPDATE, which has been locally and globally cataloged. When you catalog
a program locally, UniData creates the VOC pointer:

:CT VOC PRICE_UPDATE
VOC:
PRICE_UPDATE:
C
/users/claireg/demo/CTLG/PRICE_UPDATE
BP PRICE_UPDATE
:

The next example shows the entries in the local and global catalogs for
PRICE_UPDATE:

:!pwd
/users/claireg/demo
:
:LS CTLG
LS CTLG
PRICE_UPDATE
:
:!ls $UDTHOME/sys/CTLG/p
!ls $UDTHOME/sys/CTLG/p

PRICE_UPDATE
:

The next example deletes the catalog entries and the VOC pointer with the
DELETE.CATALOG command. After UniData deletes the object code from the
catalogs, this program is no longer available for subroutine calls or direct execution
as a cataloged item.

:DELETE.CATALOG PRICE_UPDATE
:
:LS CTLG
:
:DELETE.CATALOG PRICE_UPDATE
:
:!ls $UDTHOME/sys/CTLG/p
:
:CT VOC PRICE_UPDATE
VOC:
PRICE_UPDATE is not a record in VOC.
:

1-148 UniData Commands Reference

DELETE.ENCRYPTION.KEY

Syntax
DELETE.ENCRYPTION.KEY [FORCE] key.id [password]

Description
Use the DELETE.ENCRYPTION.KEY command to delete a key from a key store.
You must be the owner of the file or logged on as root or Administrator to delete an
encryption key, and you must provide the correct password. If the key is referenced
by any encrypted field or file, deleting the key will fail unless you specify FORCE.

Parameters
The following table describes each parameter of the syntax.

DELETE.ENCRYPTION.,KEY Parameters

Parameter Description

FORCE Forces the encryption key to be deleted, even if it is referenced by an
encrypted record or field.

key.id The encryption key to delete.

password The password for the encryption key to delete.

Example
The following example illustrates deleting an encryption key using the
DELETE.ENCRYPTION.KEY command:

:DELETE.ENCRYPTION.KEY test myunidata
Would you like to remove this encryption key? (Y/N)Y
Remove encryption key test successful.
 1-149

DELETE.FILE

Syntax
DELETE.FILE [DATA] [DICT] filename [,filename2] [FORCE]

Synonym
DELETE-FILE

Description
The ECL DELETE.FILE command deletes a UniData file and all records in it. If you
do not indicate DATA or DICT, UniData deletes both. If the file is multilevel,
UniData deletes all part files unless you stipulate filename2.

Note: UDT.OPTIONS 87 determines what UniData deletes when you execute
DELETE.FILE against a file in a remote account. If UDT.OPTIONS 87 is on,
UniData deletes the file pointer in the current directory and the file in the remote
account. If UDT.OPTIONS 87 is off, UniData deletes only the VOC entry that points
to the file.

You must have appropriate permissions to delete a UniData file.

Warning: You cannot use system-level commands (such as cp, rm,andtar) to operate
on UniData recoverable files when UniData is running. If you use these commands
on recoverable files, you could corrupt your data.
1-150 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

DELETE.FILE Parameters

Parameter Description

DATA Deletes only the data file.

DICT Deletes only the dictionary file.

filename The name of the file to be deleted.

filename2 The multifile subdirectory to be deleted if filename is a multilevel file.
UniData does not delete other LD or LF type files within filename.

FORCE Deletes the file without prompting for confirmation.

Examples
The following example deletes both the data and dictionary files of the CLIENTS
demo file. Notice that UniData prompts before deleting the file.

:DELETE.FILE CLIENTS
Do you really want to delete file CLIENTS?(Y/N):Y
Deleting file D_CLIENTS.
Deleting file CLIENTS.
:

The next example displays a VOC pointer to the INVENTORY file in the demo
directory on UniData for UNIX. Then DELETE.FILE deletes the VOC file pointer.

:CT VOC inventory
VOC:
inventory:
F
/disk1/ud72/demo/INVENTORY
/disk1/ud72/demo/D_INVENTORY
:DELETE.FILE inventory
inventory is a synonym, the real data file name is
/disk1/ud72/demo/INVENTORY
inventory has a synonym dict file, The real dict file is
/disk1/ud72/demo/D_INVENTORY
:CT VOC inventory
VOC:
inventory is not a record in VOC.
:

 1-151

Related Commands
CLEAR.FILE, CREATE.FILE
1-152 UniData Commands Reference

DELETE.INDEX

Syntax
DELETE.INDEX filename {attribute [attributeM...attributeN] | ALL}

Synonym
DELETE-INDEX

Description
The ECL DELETE.INDEX command deletes an alternate key index from an index
file. You can delete multiple indexes simultaneously.

If DELETE.INDEX executes successfully, UniData sets
@SYSTEM.RETURN.CODE to the number of indexes deleted. If an error occurs,
UniData sets @SYSTEM.RETURN.CODE to -1.

DELETE.INDEX fails if the index has been disabled (with DISABLE.INDEX).

Tip: Occasionally index files can become corrupted due to hardware or software
failures. In these cases, we recommend that you use the ALL option with
DELETE.INDEX to delete the index file and all alternate key indexes, and then
rebuild the index file and the alternate key indexes.
 1-153

Parameters
The following table describes each parameter of the syntax.

DELETE.INDEX Parameters

Parameter Description

filename The name of the data file that contains an index file.

attribute The name of the alternate key index. You can name as many alternate key
indexes as you want.

ALL Deletes all alternate key indexes from an index file and deletes the index file
itself.
If the index is in an overflowed state, you can delete it completely with the
ALL keyword, then re-create the index file with CREATE.INDEX. This
allows UniData to prompt for a key length, at which point you can assign a
longer key length.

Example
The following example removes all alternate key indexes in the CLIENTS demo file:

:DELETE.INDEX CLIENTS LNAME COUNTRY ZIP
“LNAME” deleted
“COUNTRY” deleted
“ZIP” deleted
:LIST.INDEX CLIENTS
No indices created on file “CLIENTS”
:

For more information and creating, building, and deleting indexes, see Using
UniData.

Related Commands
BUILD.INDEX, CREATE.INDEX, DISABLE.INDEX, ENABLE.INDEX,
LIST.INDEX, UPDATE.INDEX
1-154 UniData Commands Reference

DELETE.TRIGGER

Syntax
DELETE.TRIGGER [DATA | DICT] filename [BEFORE] {UPDATE | DELETE}

Synonym
DELETE-TRIGGER

Description
The ECL DELETE.TRIGGER command deletes a trigger name from a file header.

For more information about triggers, see Using UniData or Developing UniBasic
Applications.

Note: To delete a trigger, you must be the owner of the file at the operating system
level, or you must log in as root on UniData for UNIX or Administrator on UniData
for Windows Platforms.

Parameters
The following table lists the parameters for the DELETE.TRIGGER command.

Parameter Description

DATA Deletes a trigger associated with a data file.

DICT Deletes a trigger associated with a dictionary file.

filename The name of the file from which the trigger is to be deleted.

DELETE.TRIGGER Parameters
 1-155

Example
The following example creates, lists, and deletes a trigger on the ORDERS demo file:

:CREATE.TRIGGER ORDERS DEMO_RTN BEFORE UPDATE
:LIST.TRIGGER ORDERS
BEFORE UPDATE TRIGGER: DEMO_RTN
BEFORE DELETE TRIGGER: not defined
:DELETE.TRIGGER ORDERS UPDATE
:LIST.TRIGGER ORDERS
BEFORE UPDATE TRIGGER: not defined
BEFORE DELETE TRIGGER: not defined
:

Related Commands
CREATE.TRIGGER, LIST.TRIGGER

BEFORE UniData executes the trigger subroutine before processing an update or
delete operation on the file.

UPDATE Deletes an UPDATE trigger.

DELETE Deletes a DELETE trigger.

Parameter Description

DELETE.TRIGGER Parameters (continued)
1-156 UniData Commands Reference

deleteuser

Syntax
deleteuser pid

Description
The system-level deleteuser command deletes a process, removing its identification
number (pid) from the active UniData user list, and freeing up a UniData license. This
command sends a signal to the process requesting that the process terminate in an
orderly manner, then waits for five seconds to see if the process was terminated. If
the process is still active, deleteuser forces immediate termination of the process.

deleteuser can be helpful to clean up orphaned processes after a system crash or when
an active process aborts.

Use this command at the system prompt, or use the ECL ! (bang) command to execute
this command from the ECL prompt.

Warning: Killing a process that may be accessing a file may cause file corruption.
Forcing a process to terminate interrupts writes in progress.

Note: To execute the deleteuser command, you must log on as root on UniData for
UNIX or as Administrator on UniData for Windows Platforms.
 1-157

Example
The following example lists and identifies user processes with the LISTUSER
command, then deletes user process 1976. The pid is found in USRNBR column
(second column).

listuser
Max Number of Users UDT SQL TOTAL
~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
32 2 0 2
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 1913 1283 carolw udt pts/1 17:01:14 Jul 30 1999
2 1976 1283 carolw udt pts/4 17:35:15 Jul 30 1999
# deleteuser 1913
# listuser
Max Number of Users UDT SQL TOTAL
~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
32 1 0 1
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
2 1976 1283 carolw udt pts/4 17:35:15 Jul 30 1999
#

Related Command
LISTUSER
1-158 UniData Commands Reference

DISABLE.DECRYPTION

Syntax
DISABLE.DECRYPTION filename [, <multilevel-filename>], <field_list>

Description
Use the DISABLE.DECRYPTION command to turn off decryption on a field or
fields you specify.

Parameters
The following table describes each parameter of the syntax.

DISABLE.DECRYPTION Parameters

Parameter Description

filename The name of the file on which you want to disable decryption.

field_list A comma-separated list of fields for which you want to disable
decryption. Do not enter spaces between the field names.

Example
The following example illustrates disabling decryption on two fields in the
CUSTOMER file:

:DISABLE.DECRYPTION CUSTOMER NAME,ZIP
Set disable decryption on field NAME successful.
Set disable decryption on field ZIP successful.
 1-159

DISABLE.INDEX

Syntax
DISABLE.INDEX filename

Synonym
DISABLE-INDEX

Description
The ECL DISABLE.INDEX command blocks automatic updating of alternate key
indexes. When automatic updating is disabled, UniData writes updates to a log file.
You must then execute ENABLE.INDEX to reactivate the index. This applies
updates to RFS files. For non-RFS files, you must also execute UPDATE.INDEX to
apply the updates.

If a data file is being accessed when you execute DISABLE.INDEX, UniData
continues to update the alternate key indexes until the file is closed.

The index log file for static files is x_filename on UniData for UNIX and
L_FILENAME on UniData for Windows Platforms. The files are located in the
current account. The index log file for dynamic files is xlog001, xlog002, and so
forth. The log files are located in the dynamic file directory, rather than the account.

Note: Depending on the number and size of alternate key indexes, automatic index
updating may slow system performance.

Example
The following example disables automatic index updating for the CLIENTS demo
file:

:DISABLE.INDEX CLIENTS
Automatic Updates have been disabled for CLIENTS
:

1-160 UniData Commands Reference

Related Commands
BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, ENABLE.INDEX,
LIST.INDEX
 1-161

DISABLE.RFS.FILE

Syntax
DISABLE.RFS.FILE [DICT | DATA] filename [,subfile] [FORCE]

Description
The DISABLE.RFS.FILE command allows you to turn off the RFS flag in a
recoverable file while UniData is running.

To make the file recoverable again, you must issue the udfile command with UniData
shut down. For more information, see “udfile” on page 535.

Warning: Any updates made to the file after executing this command will not be
recovered should you experience a system crash.

Parameters
The following table describes each parameter of the syntax:

DISABLE.RFS.FILE Parameters

Parameter Description

DICT Specifies only the DICT portion of the file. If you do not specify DICT or
DATA, UniData acts on both the dict and data portions of the file.

DATA Specifies only the DATA portion of the file. If you do not specify DICT
or DATA, UniData acts on both the dict and data portions of the file.

filename
[,subfile]

The name of the file for which you want to turn off the RFS flag.

FORCE Forces UniData to turn off the RFS flag wihout prompting for
confirmation.
1-162 UniData Commands Reference

DISABLE.USERSTATS

Syntax
DISABLE.USERSTATS

Description
The DISABLE.USERSTATS command discontinues collection of statistics for a
UniData session.
 1-163

DTX

Syntax
DTX decimal.number

Description
The ECL DTX command translates a decimal number to its equivalent hexadecimal
value. DTX performs the inverse operation of the XTD command. If you input
invalid characters, DTX returns 0.

Valid decimal values range from -2,147,483,647 to 2,147,483,647. Hexadecimal
values ranging from 80000001 (-2,147,483,647) to FFFFFFFF (-1) are negative.

Example
In the following example, the DTX command translates the decimal numbers to their
equivalent hexadecimal value:

:DTX 2738
AB2
:DTX -2121
FFFFF7B7
:DTX 1996
7CC
:

Related Command
XTD
1-164 UniData Commands Reference

dumpgroup

Syntax
dumpgroup filename group [-doutputfile][-p]

Description
The system-level dumpgroup command extracts readable records from a specified
group in a UniData file. If the file was corrupted, dumpgroup unloads only the
complete, valid records, leaving behind any information it cannot read.

If you execute dumpgroup without specifying an output file, the output simply
displays on the screen. You will not be able to use that output to verify records or
repair the damaged group. If you do specify an output file, dumpgroup extracts
readable records in uneditable form, suitable for reloading. dumpgroup also creates a
directory in the /tmp directory on UniData for UNIX or the \TEMP directory on
UniData for Windows Platforms for each dumped group. The directory is named
FILE_GROUP, where FILE and GROUP are the file name and group number you
specified. This directory contains an ASCII file for each record, so that you can check
them for consistency before reloading the damaged file.

For more information about how to use dumpgroup to recover files, see Adminis-
tering UniData.

Use this command at the system prompt, or use the ECL! (bang) command to execute
this command from the ECL prompt.

Warning: When you use the -d parameter, make sure you name your output file with
a name that does not already exist in your account name. If you specify a duplicate
name, your data may be overwritten.
 1-165

Parameters
The following table describes each parameter of the syntax.

dumpgroup Parameters

Parameter Description

filename Name of the file that contains groups to be extracted.

group Number of the group to be dumped.
Tip – The output from guide and verify2 identifies damaged groups.

-doutputfile Directs output to outputfile.
Output file that contains the readable records from the dumped group.
You cannot edit this file. If you do not include -d, dumpgroup displays
readable records on the display screen.
Do not insert a space between -d and outputfile.
Warning – Make sure outputfile is not the name of another item in your
account. If it is, UniData will overwrite it.
Tip – This file is the input file for the fixgroup command.

-p Converts nonprinting field markers to printable characters in output file.
Makes outputfile editable. This option is valid only with -d.

Related Commands
fixfile, fixgroup, guide
1-166 UniData Commands Reference

DUP.STATUS

Syntax
DUP.STATUS [ON|OFF]

Description
The ECL DUP.STATUS command turns on or off the UniBasic checking for
duplicate alternate index keys when reading or writing records. The setting of
DUP.STATUS affects only files for which an alternate key index exists.

DUP.STATUS with no option returns the current setting: ON or OFF.

With DUP.STATUS ON, the following commands set the UniBasic STATUS
function return value to 10 when one of the following commands reads or writes a
duplicate alternate index key:

 WRITE, WRITEU, WRITEV, WRITEVU
 READFWD, READFWDL, READFWDU
 READBCK, READBCKL, READBCKL

With DUP.STATUS turned off, the return value of the UniBasic STATUS function
returns 0 after successful execution of the preceding commands, regardless of the
presence or absence of duplicate alternate key values.

Note: When you create an index, you can specify NO.DUPS to prevent UniData from
creating duplicate values in the alternate key index of a nonrecoverable file. This
blocks completion of the ECL BUILD.INDEX command and all UniBasic write
commands when they would result in duplicate values being written to the alternate
key index.
 1-167

Examples
The following program writes duplicate alternate key values to the index LNAME.
With DUP.STATUS ON, the STATUS function returns 10 after the WRITE (see the
WRITE command and STATUS function in bold typeface).

OPEN ‘CLIENTS’ TO clients ELSE PRINT “Open error”
SETINDEX ‘LNAME’, FIRST_ALT_KEY ON clients

LOOP
READFWD rec FROM clients THEN
 ID = @ID
 IF STATUS() = 10 THEN
 PRINT “Duplicate record “:ID:” “:rec<2>:”, “:rec<3>
 END ELSE
 PRINT “NOT duplicate record “:ID:
 PRINT “,”:rec<2>:”,”:rec<3>:” STATUS: “:STATUS()
 ID = ID + 1000
 WRITE rec TO clients,ID ON ERROR PRINT “ STATUS: “:STATUS()
 PRINT “New record: “:ID:”,”:rec<2>:”,”:rec<3>:” STATUS:
“:STATUS()
 READFWD rec FROM clients THEN CONTINUE
 END
 END ELSE EXIT
REPEAT

This program produces the following results with DUP.STATUS on:

:RUN BP DUPSTAT
NOT duplicate record 9968,Adams,United Hospital STATUS: 0
New record: 10968,Adams,United Hospital STATUS: 10
NOT duplicate record 10054,Alps,Weld Engineering STATUS: 0
New record: 11054,Alps,Weld Engineering STATUS: 10
NOT duplicate record 10034,Anderson,Otis Concrete STATUS: 0
New record: 11034,Anderson,Otis Concrete STATUS: 10
NOT duplicate record 10020,Andropolis,Calgary Aluminum STATUS: 0
New record: 11020,Andropolis,Calgary Aluminum STATUS: 10

NOT duplicate record 10008,Anitpoli,W Systems STATUS: 0
New record: 11008,Anitpoli,W Systems STATUS: 10
NOT duplicate record 9987,Asakawa,Pearl Security STATUS: 0
New record: 10987,Asakawa,Pearl Security STATUS: 10
NOT duplicate record 10074,Barry,Lyon Repair STATUS: 0
1-168 UniData Commands Reference

ECLTYPE

Syntax
ECLTYPE [P | U]

Description
The ECL command ECLTYPE determines the parser used to interpret UniData
commands issued at the UniData colon (:) prompt.

If you enter the ECLTYPE without indicating P or U, UniData displays the setting for
UDT.OPTIONS 2. When UDT.OPTIONS 2 is off, ECLTYPE is U. When it is on,
ECLTYPE is P.

We recommend that you use ECLTYPE U. ECLTYPE P is available for backward
compatibility with legacy Pick® databases.

Note: Another way to change ECLTYPE is to change the setting of UDT.OPTIONS
2. By default, UDT.OPTIONS 2 is off. See the UDT.OPTIONS Commands Reference
for more information about UDT.OPTIONS.

The ECLTYPE command has no effect on UniBasic programs. The parser used to
execute a UniBasic program is determined by the BASICTYPE in which the program
is compiled. See the UniBasic $BASICTYPE command documentation for more
information.

Parameters
The following table describes each parameter of the syntax.

ECLTYPE Parameters

Parameter Description

P UniData interprets commands consistent with the Pick®
parser.

U UniData interprets commands consistent with the UniData
parser.
 1-169

Example
In this example, UniData performs the following tasks:

 Displays the setting for UDT.OPTIONS 2 (OFF), indicating ECLTYPE U.
 Changes ECLTYPE to P.
 Displays the new setting for UDT.OPTIONS 2 (ON), which indicates
ECLTYPE P.

:ECLTYPE
2 U_PSTYLEECL OFF
:
:ECLTYPE P
:
:ECLTYPE
2 U_PSTYLEECL ON
:

1-170 UniData Commands Reference

ED

Syntax
ED [DICT] filename [record_ID]

Description
The ECL ED command invokes the standard operating system editor supported by
UniData. On UniData for UNIX, the default system editor is vi. On UniData for
Windows Platforms, the default system editor is the MS-DOS editor. To select a
system editor other than the default, set the environment variable UDT_EDIT or
modify the VOC record ED. You can create and edit UniBasic programs, VOC
records, and data and dictionary files with the system editor. The UniData interface
to the operating system allows the system editor to work with active select lists and
to interactively prompt for record IDs.

You can edit only one record at a time in a UniData hashed file or DIR-type file.

UniData displays a warning message if a trigger prevents record update or deletion.
For more information on UniData triggers, see the CREATE.TRIGGER command in
this manual or Developing UniBasic Applications.

Note: On UniData for Windows Platforms, the ED command invokes the MS-DOS
editor. This editor requires a graphical user interface, and is therefore unusable in a
Telnet session. If you log on to UniData through UDSerial or UDTelnet services and
execute ED, UniData displays a message advising you to use AE.

Tip: To direct UniData to automatically invoke an editor other than the default when
executing the ED command, set the UniData environment variable UDT_EDIT to the
full path of the editor of your choice. On UniData for Windows platforms, be aware
that users logged on through the UDSerial or UDTelnet services will be unable to use
ED unless you have purchased a third-party character-based editor. For more infor-
mation on supported editors, see your operating system documentation.
 1-171

Regarding UniData editors:

The ECL AE command invokes the UniData Alternate Editor. You can use
this line editor to edit UniData hashed files and UniBasic source programs.
 UniData supplies UniEntry for modifying UniData records.
 You can edit UniData hashed files and DIR-type files with any ASCII text
editor. For more information on supported editors, see your operating
system documentation. Be aware, though, of any changes or conversions the
editor might make to files it opens.
 On UniData for UNIX, the ECL VI command invokes vi, the UNIX system
V visual editor, from within UniData.

Parameters
The following table describes each parameter of the syntax.

ED Parameters

Parameter Description

DICT Indicates a UniData dictionary file.

filename The name of the file to be edited. filename can be a hashed data file or a
DIR-type file (such as _PH_ or _HOLD_).

record_ID The primary key of the record within filename to be edited. If the item is
not found, UniData creates a new record with this ID.

UniData Delimiters
Before displaying a record through ED, UniData converts the UniData delimiters in
hashed files (not DIR files) into symbols. The following table lists the symbols to
which delimiters are converted.

UniData Delimiters

Symbol Delimiter Name
ASCII
Character

} Value mark ASCII 253

| Subvalue mark ASCII 252
1-172 UniData Commands Reference

During the ED session, you can use theses symbols to insert value and subvalue
marks into a record. UniData converts the delimiters to the corresponding ASCII
value when you save the edited record at the end of the session.

Examples
The following example retrieves an existing record in the INVENTORY demo file
with the ED editor:

:ED INVENTORY
Please enter key: 52020

After the ID is entered, the user presses ENTER. UniData clears the screen and
displays the record.

In the following example, taken from UniData on UNIX, the UniData environment
variable UDT_EDIT was set so that the ED command invokes the system editor vi.

10236
28560
Printer
9 Pin Dot Matrix
Gray
56
19999
30
~
...
“/tmp/__ED7267” 8 lines, 54 characters
 1-173

EDA.CONNECT

Syntax
EDA.CONNECT datasource [WITH logon_name [, password]

Description
Use the EDA.CONNECT command to connect your EDA system to the DB2 data
source. You may want to use this command if you want to connect using a log on ID
and password different from the default.

If you issue the EDA.CONNECT command, UniData maintains the connection until
you issue the EDA.DISCONNECT command.

Parameters
The following table describes each parameter of the syntax.

EDA.CONNECT Parameters

Parameter Description

datasource The name of the data source to which you are connecting. The
datasource must exist in the EDA_DATASOURCE file.

WITH logon_name,
password

The logon name on the DB2 data source. If you do not specify
logon_name, UniData searches the EDA_DATASOURCE file
for a qualified user. If you specify logon_name without
password, UniData searches the Connection Password file and
connects with logon_name and that password. If you specify
both logon_name and password, UniData uses both the make the
connection.
1-174 UniData Commands Reference

EDA.CONVERT

Syntax
EDA.CONVERT {[XMAP] eda_schema | EDA.FILE [DICT] eda_file |
DEFAULT.MAP} [DATA.SOURCE data_source] [OBJECT.SET
[name_space.]primary_table] [FILE.NAME target_file] [FORCE | VERBOSE]

Description
Use the EDA.CONVERT command to convert UniData data to the DB2 database
based on an EDA Schema. The conversion results in an EDA Object Set on the DB2
database. An EDA file replaces the original UniData file in the UniData database.

If the UniData file you are converting is an EDA file, the conversion process removes
the file and creates the new EDA file. If the file exists but is not an EDA file, the
conversion process renames the file as <filename>.edasave and creates the new EDA
file.

The conversion process copies data, trigger, and index information to the new EDA
file.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

eda_schema Specifies the name of the EDA schema to use for the conversion. The
schema resides either in the _EDAMAP_ or _EDAXMAP_ file.

eda_file Specifies the name of the EDA file from which UniData extracts the
EDA schema. If you specify FILE.NAME target_file, UniData uses the
schema to convert target_file, UniData remaps eda_file.

DEFAULT.MAP Specifies only to map the primary key (@ID) when converting a
UniData file to EDA.

EDA.CONVERT Parameters
 1-175

data_source Specifies the data source name to use for the conversion.

primary_table Specifies the name of the primary table, containing singlevalued attri-
butes, to use for the conversion. If you also specify name_space,
UniData uses it as the DB2 schema name for the target DB2 table/view
set.

target_file Specifies the name of the UniData file to convert. If you also specify
eda_schema, target_file overrides the name of the UniData file
contained in eda_schema. If you specify eda_file, UniData extracts the
EDA schema from eda_file and uses it to convert target_file to EDA.

FORCE Specifies that all existing DB2 tables, views, indexes and user-defined
functions are dropped prior to remapping the file.

VERBOSE Displays the DB2 Data Definition Language (DDL) used in the
conversion process.

Parameter Description

EDA.CONVERT Parameters (continued)
1-176 UniData Commands Reference

EDA.DISCONNECT

Syntax
EDA.DISCONNECT datasource

Description
Use the EDA.DISCONNECT command to disconnect from the DB2 data source.

Parameter
The following table describes the parameter of the syntax.

EDA.DISCONNECT Parameter

Parameter Description

datasource The name of the datasource from which you want to disconnect.
 1-177

EDA.EXCEPTION

Syntax
EDA.EXCEPTION [ON | OFF]

Description
UniData records exceptions occuring during the conversion process or an INSERT,
UPDATE, or DELETE operation in the EDA_EXCEPTION file.

The EDA_EXCEPTION file is a multilevel file, with each subfile relating to one
EDA data source. The name of the subfile is EDA_datasource. The
EDA_EXCEPTION file resides in /udthome/sys on UniData for UNIX and
\udthome\sys on UniData for Windows Platforms.

The following table describes each attribute of the EDA_EXCEPTION file.

Location Attribute Name Description

0 @ID The ID of the exception record. The ID concatenates
the process ID, timestamp, and a sequential number.

1 ACCOUNT The full path to the account where the data record
resides.

2 FILE_NAME The name of the EDA file where the exception
happened.

3 FULL_PATH The full path of the EDA file.

4 UID The user ID of the user generating the exception.

5 DATE The date the exception occurrred.

6 TIME The time the exception occurred.

7 ERROR_MSG The error message returned from the external
database.

EDA_EXCEPTION File Attributes
1-178 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

EDA.EXCEPTION Parameters

Parameter Description

ON Activates exception processing.

OFF Deactivates exception processing.

Example
In the following example, one record from the UniData STUDENT file failed be
converted to DB2:

In C:\IBM\ud72\sys\CTLG\e\EDAMAPSUB at line 2056 EDA_write_tuple error, id
= “521814564”
In C:IBM\ud72\sys\CTLG\e\EDAMAPSUB at line 2056 EDA DB2 Driver: [IBM] [CLI
Driver] CLI0109E String data right truncation, SQLSTATE=22001
5 records passed data verification.
1 records failed on data verification.

8 OPERATION The operation causing the exception. Valid values are
EDA.CONVERT, UPDATE, INSERT, or DELETE.

9-13 Reserved for future enhancements

14 - n REC_START The data record causing the exception.

Location Attribute Name Description

EDA_EXCEPTION File Attributes (continued)
 1-179

The next example lists the record in the EDA_EXCEPTION file corresponding the
conversion failure above:

LIST EDA_EXCEPTION,EDA_silver ALL 14:45:03 Feb 25 2005 1
EDA_EXCEPTION 1356-1109367719-1
ACCOUNT PATH C:\IBM\ud72\edatest
EDA VOC NAME STUDENT
EDA FILE PATH C:\IBM\ud72\edatest\STUDENT
USER NAME Administrators
EXCEPTION DATE 25 Feb 2005
EXCEPTION TIME 14:41:59
EDB MESSAGE EDA DB2 Driver: [IBM][CLI Driver] CLI0109E String data
right truncation. SQLSTATE=22001

EXCEPTION OP CONVERT
RECORD @ID 521814564

1 record listed
1-180 UniData Commands Reference

EDA.VERSION

Syntax
EDA.VERSION datasource

Description
Use the EDA.VERSION command to retrieve information about the EDA Driver.

Parameter
datasource is the name of the external data source.

The EDA.VERSION command returns the following information:

The driver target database name
The driver target database version
The supplier of the driver
The version of the driver
The data the driver was created
 1-181

ENABLE.DECRYPTION

Syntax
ENABLE.DECRYPTION filename [, <multilevel-filename>], <field_list>

Description
Use the ENABLE.DECRYPTION command to turn on decryption on specific fields
in a file on which the decryption was previously turned off by the
DISABLE.DECRYPTION command.

Parameters
The following table describes each parameter of the syntax..

ENABLE.DECRYPTION Parameters

Parameter Description

filename The name of the file on which you want to enable decryption.

A comma-separated list of fields for which you want to enable
decryption. Do not enter spaces between the field names.

Example
The following example illustrates enabling decryption of two fields in the
CUSTOMER file:

:ENABLE.DECRYPTION CUSTOMER NAME,ZIP
Enable decryption on field NAME successful.
Enable decryption on field ZIP successful.
1-182 UniData Commands Reference

ENABLE.INDEX

Syntax
ENABLE.INDEX filename

Description
The ECL ENABLE.INDEX command turns on automatic updating of alternate key
indexes for a data file.

For nonrecoverable files, ENABLE.INDEX does not apply updates that were
deferred as a result of the DISABLE.INDEX command. To apply them, execute
ENABLE.INDEX followed by UPDATE.INDEX.

For recoverable files, ENABLE.INDEX automatically applies updates that were
deferred as a result of the DISABLE.INDEX command, so you do not have to update
their indexes with UPDATE.INDEX.

Warning: Execute UPDATE.INDEX on a nonrecoverable file immediately after
executing ENABLE.INDEX to avoid data integrity problems.

Tip: You can display the current state of index updating with the LIST.INDEX
command.

Examples
In the following example, the ENABLE.INDEX command turns on automatic index
updating:

:ENABLE.INDEX CLIENTS
Automatic Updates have been enabled for CLIENTS
 1-183

In the next example, LIST.INDEX is used to find out if an alternate key index has
been updated. In line 8 of the report, “Index updates,” UniData reports that the
alternate key indexes require updating, indicating that updates were made to records
in the data file between the time when updates were deferred (as a result of the
DISABLE.INDEX command) and the point when ENABLE.INDEX was executed.

:LIST.INDEX CLIENTS
Alternate Key Index Details for File CLIENTS Page 1
File.................. CLIENTS
Alternate key length.. 20
Node/Block size....... 4K
OV blocks............. 1 (1 in use, 0 overflowed)
Indices............... 4 (4 D-type)
Index updates......... Enabled, Indices require updating
Index-Name...... F-type K-type Built Empties Dups In-DICT S/M F-
no/VF-expr....
FNAME D Txt Yes Yes Yes Yes S 1
LNAME D Txt Yes Yes Yes Yes S 2
COUNTRY D Txt Yes Yes Yes Yes S 8

Related Commands
BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, DISABLE.INDEX,
LIST.INDEX, UPDATE.INDEX
1-184 UniData Commands Reference

ENABLE.USERSTATS

Syntax
ENABLE.USERSTATS

Description
The ENABLE.USERSTATS command begins collection of detailed statistics about
the current UniData session. Each time you issue the command, UniData zeros all of
the statistics for your process.
 1-185

ENCRYPT.FILE

Syntax
ENCRYPT.FILE filename ... {WHOLERECORD | fieldname},alg,key[,pass]
[fieldname,alg,key{,pass]]...>

Description
Use the ENCRYPT.FILE command to create a file in which each record is encrypted.

Note: You cannot encrypt an index file.

ENCRYPT.FILE accepts all parameters of the memresize command. If the file you
are encrypting is empty, you do not need to specify any of the memresize parameters.
If the file you are encrypting is not empty, and you know that the file needs resizing
because encrypting the file will increase the record size, you should specify the
memresize parameters.

Parameters
The following table describes encryption parameters of the syntax.

Parameter Description

filename The name of the file to be encrypted.

WHOLERECORD Specifies to fully encrypt every record in the file.

fieldname,alg,key,pass Specifies the field name to encrypt, and the algorithm, key, and
password to use. You can use a different algorithm and key for
each field.
If you do not specify a password, but created the key using
password protection, UniData prompts for the password. If
several fields use the same password, you only have to specify it
once, at the first field that uses that key.

fieldname The name of the field to encrypt.

ENCRYPT.FILE Parameters
1-186 UniData Commands Reference

Encrypting a file requires exclusive access to the file and is very time consuming.
During the encryption process, UniData creates a temporary file and writes the newly
encrypted data to that file. If any errors occur during the encryption process, the
command aborts and the original file is left intact.

Warning: The ENCRYPT.FILE command can run for a very long time if you are
encrypting a file that already contains a large amount of data. All parameters for
ENCRYPT.FILE, including the password for each encryption key, can potentially be
seen by other users. Therefore, we recommend that you do not specify passwords on
the command line but enter them when prompted by ENCRYPT.FILE.

Example
The following example illustrates encrypting the CUSTOMER file using the
WHOLERECORD option:

:ENCRYPT.FILE CUSTOMER WHOLERECORD,aes128,test,myunidata
The temporary file for ENCRYPT.FILE is C:\IBM\ud72\Demo\rsztpa04076.
29 record(s) in file.
Encrypt CUSTOMER successfully.
Total time used = 0 (sec)

alg The algorithm to use for encryption. See “UniData
Encryption Algorithms” in UniData Security
Features for a list of valid values.

key The key ID to use for the field encryption.

pass The password corresponding to the key.

Parameter Description

ENCRYPT.FILE Parameters (continued)
 1-187

FILE.STAT

Syntax
FILE.STAT [DICT] filename [LPTR]

Synonym
FILE-STAT

Description
The ECL FILE.STAT command displays statistical information on a data file,
including hash type, split/merge type (for dynamic files), block size, number of
records, overflow status, record size, and total bytes used.

Note: The output from FILE.STAT differs depending on ECLTYPE.

Parameters
The following table describes each parameter of the syntax.

FILE.STAT Parameters

Parameter Description

DICT Displays information about the dictionary portion of a file.

filename The name of the file to be analyzed.

LPTR Directs output to the printer instead of the display terminal.
1-188 UniData Commands Reference

Examples
The following example shows FILE.STAT output for the CLIENTS file in the demo
database, in ECLTYPE P and in ECLTYPE U:

:ECLTYPE P
:FILE.STAT CLIENTS
15:51:48 Apr 28 1999
FILE MOD OV HTY ITEMS BYTES MNI/G MXI/G MNB/I MXB/I
CLIENTS 19 0 0 130 14452 6 8 93 140
------- ------- -------
19 130 14452
:
:ECLTYPE U
:FILE.STAT CLIENTS
File name = CLIENTS
Number of groups in file (modulo) = 19
Static hashing, hash type = 0
Block size = 1024
File has 1 groups in level one overflow.
Number of records = 130
Total number of bytes = 14452
...
 1-189

In the next example, the convhash command changes CLIENTS to a dynamic file.
Notice that FILE.STAT displays the hash type and also the split/merge type:

:ECLTYPE U
:!memresize CLIENTS DYNAMIC
Resize CLIENTS mod(,sep) = 0(,-1) type = -1 memory = 8000 (k)
dynamic
KEYONLY PARTTBL=DEFAULT
RESIZE file CLIENTS to 101.
134 record(s) in file.
CLIENTS RESIZED from 101 to 101
Total time used =1 (sec)
:FILE.STAT CLIENTS
File name(Dynamic File) = CLIENTS
Number of groups in file (modulo) = 101
Dynamic hashing, hash type = 0
Split/Merge type = KEYONLY
Block size = 1024
Number of records = 134
Total number of bytes = 14585
Average number of records per group = 1.3
Standard deviation from average = 0.6
Average number of bytes per group = 144.4
Standard deviation from average = 62.7
Average number of bytes in a record = 108.8
Average number of bytes in record ID = 5.8
Standard deviation from average = 16.1
Minimum number of bytes in a record = 14
Maximum number of bytes in a record = 140
Minimum number of fields in a record = 2
Maximum number of fields in a record = 16
Average number of fields per record = 9.9
Standard deviation from average = 1.0
:

Related Commands
ANALYZE.FILE, GROUP.STAT
1-190 UniData Commands Reference

FILELIMIT

Syntax
FILELIMIT

Description
The ECL FILELIMIT command displays the maximum file size, in blocks, that the
current process can write.

Standard block sizes vary depending upon the host machine and the operating system
version.

Tip: To determine the maximum modulo number for a UniData file, multiply the
number of blocks by the standard block size (512) and divide by 2048 or by a block
size supported by your operating system.

Example
In the following example, UniData displays the maximum file size available to create
a new file on one particular installation:

:FILELIMIT
File size limit for this process is 4194304 blocks
:

 1-191

FILEVER

Syntax
FILEVER [filenameM...filenameN]

filever [filenameM...filenameN]

Description
The ECL FILEVER command and the system-level filever command display the
following information on UniData files:

 high-byte or low-byte (also provided by the system-level filever command)
 recoverable or nonrecoverable
 static or dynamic

filename is the name of a UniData file.

Example
The following example shows FILEVER output for three demo database files:

:FILEVER INVENTORY CLIENTS ORDERS
This machine is a high byte machine.
Recoverable INVENTORY is high byte machine 2.0 dynamic version.
Non-recoverable CLIENTS is high byte machine 2.0 static version.
Recoverable ORDERS is high byte machine 2.0 dynamic version.
1-192 UniData Commands Reference

fixfile

Syntax
fixfile {[-doutputfile]-f | -t | -k | -p]} [-mmessagefile][-wdirectory][-iinputfile |
filename group]

Description
The system-level fixfile command repairs a damaged group in a UniData file by
extracting and reloading readable records.

fixfile with the -i option accepts as input a file created by the system-level guide
command.

UniData operates differently depending on whether the file is static or dynamic, and
whether one group is damaged or multiple groups are damaged. For detailed infor-
mation about using fixfile to repair damaged groups, refer to Administering UniData.

To repair files, you must include the -d and -f options.

Warning: Do not let users access UniData files while fixfile is running you could lose
records.

Before creating new output files, the guide utility renames all files it processes by
appending a date. We recommend you remove the original (old) versions of these
files after fixfile finishes running.
 1-193

Parameters
The following table describes each parameter of the syntax.

Parameter Description

-doutputfile For each readable record, UniData creates an ASCII file in a directory in
the current UniData account. UniData also takes the following actions for
static and dynamic files:
Static files – Stores readable records in (uneditable) outputfile.
Dynamic files – Stores readable records in (uneditable) outputfile and in
a subdirectory in the /tmp directory named filename_groupno on UniData
for UNIX, or in the \TEMP directory on UniData for Windows Platforms.
Note: To repair files, you must include both the -f parameter (to clear the
group) and the -d parameter (to restore readable records).

-f Clears damaged groups. Must be combined with the -d or -t parameters.

-k Does not clear records before reloading them, so that damaged records are
retained in the file. Must be combined with the -d or -f parameters.
? To copy readable records to another file, include the -k and the -d

parameters.

? To copy readable records to another file and return them to the file,
include the -k, -d, and -f options.

-o[filename] Stores output in filename. If filename is not specified, sends output to the
standard output device. Default output device is the display terminal.
Specify output device at the operating system level.

-p Combine with the -d option to convert UniData delimiters and
nonprinting characters in the ASCII files as follows:
? Attribute mark – New line

? Value mark – “}”

? Subvalue mark – “|”

? Text mark – “{“

? Nonprinting – “.”

fixfile Parameters
1-194 UniData Commands Reference

-t Record key and the record length are reported for each readable record.
Directs output to the terminal only. All attributes in the record are listed,
indented by two spaces. In the display, UniData delimiters and
nonprinting characters are represented as follows:
? Attribute mark – New line

? Value mark – “}”

? Subvalue mark – “|”

? Text mark – “{“

? Nonprinting – “.”

Note: The -t and -d options are mutually exclusive.

-mmessagefile Writes error messages and statistics to messagefile instead of the terminal.

-wdirectory Specifies directory for storing work files.

-iinputfile The file containing names of files and groups to be repaired.
inputfile is produced by the guide command. If you do not designate
inputfile with guide, fixfile reads damaged file and group names from
GUIDE_FIXUP.DAT in the current directory. The following describes the
format of GUIDE_FIXUP.DAT:
filenameM
group_num
...
filenameN
group_num
group_num
group_num
Note: -iinputfile and filename group are mutually exclusive.

filename The name of the damaged file.

group The number of the damaged group.

Parameter Description

fixfile Parameters (continued)
 1-195

How fixfile Works with Static Files
When you execute fixfile with the -t parameter against a static file, UniData displays
the readable records from the file and group to the terminal. The group is not cleared
or repaired. You can supply the names of the damaged files and groups from the
command line or from an input file. The default input file is GUIDE_FIXUP.DAT,
created if the guide utility detects damaged groups.

When you execute fixfile with the -d parameter on a static file, UniData creates:

 On UniData for Windows Platforms, an NTFS directory named FILE_dir,
where FILE is the name of the static file. Each FILE_dir contains a subdi-
rectory for each damaged group in FILE. The name of each subdirectory is
the group number of the damaged group. Each subdirectory contains a text
file for every readable record in the damaged group. Each file name is the
key for the corresponding UniData record. These group records are in a
format suitable for editing.
 A file, with the name you specified on the command line, containing the
records fixfile could read in uneditable format. This file is used to reload the
records into the damaged groups after the groups are cleared.

Note: If you specify the -p parameter, fixfile translates nonprinting characters in the
records when it creates the editable files. Otherwise, only attribute marks are
translated to new lines.

When you run fixfile with the -d and-f parameters against a static file, UniData
reloads the records into the damaged groups, taking them from the file you specified
on the command line. Unless you specify the -k parameter, fixfile clears the groups,
removing all contents, before reloading the data. If you specify the -k parameter,
UniData adds the records back, but does not clear any data from the group.

How fixfile Works with Dynamic Files on UniData
for UNIX
When you execute fixfile with the -d option against a dynamic file, UniData creates
the following:

 Each FILE_GROUP directory contains a text file for every readable record
in the damaged group. Each record name is the key for the corresponding
UniData record. These records are in a format suitable for editing.
1-196 UniData Commands Reference

 A file containing the records fixfile could read, in uneditable format
suitable for reloading into the group after it has been cleared. This file is
located in /tmp (or in the directory identified by the tmp environment
variable) and is names ud_dp_pid. pid is the process ID of the process that
executed fixfile.

When you execute fixfile with the -d and -f parameters against a dynamic file,
UniData reads the file you specify with the -d parameter on the command line, and
also reads the uneditable file of dumped records. UniData then reloads the records
from that file into the damaged groups. Unless you specified the -k parameter, fixfile
clears the groups, removing all contents, before reloading the data. Otherwise,
UniData adds the records back, but does not clear any data from the group.

How fixfile Works with Dynamic Files on UniData
for Windows Platforms
When you execute fixfile with the -d option against a dynamic file, UniData creates
the following:

 An NTFS directory located in \TEMP for each file/group combination
being repaired. The directories are named FILE_GROUP, where FILE is a
damaged file (created from the guide utility) and GROUP is a damaged
group. If several groups in a file are damaged, UniData creates a directory
for each damaged group.
 Each FILE_GROUP directory contains a text file for every readable record
in the damaged group. Each records name is the key for the corresponding
UniData record. These records are in a format suitable for editing.
 A file containing the records fixfile could read, in uneditable format
suitable for reloading into the group after it has been cleared. This file is
located in \TEMP (or in the directory identified by the tmp environment
variable) and is named ud_dp_pid. pid is the process ID of the process that
executed fixfile.

When you execute fixfile with the -d and -f parameters against a dynamic file,
UniData reads the file you specify with the -d parameter on the command line, and
also reads the uneditable file of dumped records. UniData then reloads the records
from that file into the damaged groups. Unless you specified the -k parameter, fixfile
clears the groups, removing all contents, before reloading the data. Otherwise,
UniData adds the records back, but does not clear any data from the group.
 1-197

Examples
:!fixfile -ddump -f
Fixing dynamic file /usr/udt71/demo/INVENTORY, group 0
6 records dumped for group 0
The records can be found under directory /tmp//INVENTORY_0
Check them before fixing the file
1 block(including the group header) of group 0 was made empty
6 records written to file /usr/udt71/demo/INVENTORY.

In this case the user can look in the /tmp/INVENTORY_0 directory for copies of
readable records. The file name suffix represents the group number from which the
records were extracted. In this example, records were extracted from group 0. The
user could compare this version of INVENTORY with recent backups to find out if
records are missing in the new version.
1-198 UniData Commands Reference

After this execution of fixfile, guide reveals that the INVENTORY file is repaired.

:!guide INVENTORY -o
INVENTORY
Basic statistics:
File type............................... Recoverable Dynamic
Hashing
File size
[dat001].............................. 20480
[over001]............................. 9216
File modulo............................. 19
File minimum modulo..................... 19
File split factor....................... 60
File merge factor....................... 40
File hash type.......................... 1
File block size......................... 1024
File integrity:
No errors were found
Group count:
Number of level 1 overflow groups....... 8
Primary groups in level 1 overflow...... 8
Record count:
Total number of records................. 175
Average number of records per group..... 9.21
Standard deviation from average......... 3.58
Record length:
Average record length................... 71.17
Standard deviation from average......... 18.25
Key length:
Average key length...................... 5.00
Standard deviation from average......... 0.00
Data size:
Average data size....................... 86.17
Standard deviation from average......... 18.25
Total data size......................... 15080

Predicted optimal size:
Records per block....................... 10
Percentage of near term growth.......... 10
Scalar applied to calculation........... 0.00
Block size.............................. 1024
Modulo.................................. 19
Files processed: 1
Errors encountered: 0

Related Commands
dumpgroup, fixgroup, guide
 1-199

fixgroup

Syntax
fixgroup filename group [-iinputfile][-k]

Description
The system-level fixgroup command reloads a single hashed file group from the
output file generated by the dumpgroup command.

Warning: If you run fixgroup without including an input file (using the -i parameter),
UniData clears the damaged group and leaves it empty. Be sure that you have previ-
ously saved the readable records with the dumpgroup command. If you clear the
damaged group and you have not saved the readable records, the data in that group
is lost. The syntax for clearing a group without reloading it is:

fixgroup filename group
%fixgroup INVENTORY 5
Fixgroup INVENTORY 5 will make group 5 empty,
do you wish to do it? [y/n]

Execute this command at the system prompt, or use the ! (bang) command to execute
this command at the ECL prompt.

Tip: Some types of file corruption (for example, file corruption that is not associated
with a group number) can be repaired with the memresize command.
1-200 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

fixgroup Parameters

Parameter Description

filename The name of the file to be repaired.

group The damaged group.

-iinputfile Uses inputfile to replace group. inputfile is generated by the dumpgroup
command. If you do not name an input file, UniData clears group without
reloading it.
Note: No space is allowed between -i and inputfile.

-k Reloads damaged records from inputfile without clearing the group first.
This option may be useful if the group has updated since dumpgroup was
executed.
Tip: Do not allow user access while a file is being repaired. We suggest that
you clear damaged groups to ensure that damage is removed before
reimporting records (in other words, do not use -k option) on the final
executing of fixgroup.

Example
To prepare for this example, group 0 in the demo file INVENTORY was damaged.
Then dumpgroup was executed to create the output file d_group. In this example,
fixgroup first clears group 0, then copies repaired records from d_group into the
group.

:!dumpgroup INVENTORY 0 -dd_group
6 records dumped for group 0
The records can be found under directory /tmp//INVENTORY_0
Check them before fixing the file
:!fixgroup INVENTORY 0 -id_group
1 block(including the group header) of group 0 was made empty
6 records written to file INVENTORY.
:

Related Commands
dumpgroup, fixfile, guide
 1-201

fixtbl

Syntax
fixtbl [-fix]

Description
The system-level fixtbl command detects and optionally repairs certain error condi-
tions that can affect dynamic files. Execute fixtbl from the UNIX prompt. This
command is supported on UniData for UNIX only.

Note: fixtbl is an offline tool. If you attempt to execute fixtbl while UniData is running
or paused, an error message displays and the command fails. This tool is intended
for system administrators performing maintenance functions. It is not intended for
end users.

When a dynamic file expands outside the file system where it was created, the part
files are placed in a file system selected from a part table (a list of locations where the
original file can expand). The original dynamic file directory contains UNIX
symbolic links to the physical location of the data and overflow part files. In each file
system where dynamic files expand, UniData maintains a UNIX hidden file called
.fil_prefix_tbl that relates part file names back to their original dynamic file and
account. The symbolic links may become out of sync with.fil_prefix_tbl if users
manipulate dynamic part files with the UNIX mv, cp, or rm command. The fixtbl tool
detects the following error conditions:

 .fil_prefix_tbl is missing. If a dynamic file directory contains links to
another partition, but there is no .fil_prefix_tbl at that location, fixtbl can
create a new one.
 A prefix in .fil_prefix_tbl references a different directory than the symbolic
links from a dynamic file in the current account. fixtbl can select a new
prefix, then move and relink the part files for consistency.
 There are symbolic links from a dynamic file to another partition, but there
is no entry in the .fil_prefix_tbl that matches the links. Assuming the prefix
in the links is not used by another directory, fixtbl can create an entry in
.fil_prefix_tbl that is consistent with the links from dynamic files in the
current account directory.
1-202 UniData Commands Reference

See Administering UniData for more information about part tables and per-file part
tables.

Parameters
The behavior of fixtbl depends on whether you specify the optional parameter [-fix].
If you specify -fix, fixtbl creates or modifies the .fil_prefix_tbl in the target partition.
Otherwise, fixtbl creates or modifies a working copy of .fil_prefix_tbl, called
.fil_prefix_tbl.new. The following table summarizes the behavior of fixtbl with and
without -fix.

Behavior of fixtbl Command

Error Condition fixtbl fixtbl -fix

.fil_prefix_tbl missing Creates/updates
.fil_prefix_tbl.new.

Creates new .fil_prefix_tbl.

Naming inconsistency Displays information messages
on the screen.

Adds necessary entries to
.fil_prefix_tbl; move and
relink part files; display no
messages.

Missing entry in
.fil_prefix_tbl.

Creates/updates
.fil_prefix_tbl.new.

Creates/updates
.fil_prefix_tbl.

Examples
The following examples show fixtbl output.
 1-203

In the first example, there is a naming conflict between .fil_prefix_tbl and the
symbolic links in the dynamic file directory:

% fixtbl
Creating new /tmp/partfiles/.fil_prefix_tbl.new file
Error: Problem entry in prefix table
/tmp/partfiles/.fil_prefix_tbl. Prefix AA
in /tmp/partfiles/.fil_prefix_tbl corresponds to /disk1/ud41/demo
but the dynamic file /home/terric/SAMPLE/SAMPLE_FILE/dat001 is
located in
/home/terric/SAMPLE. Please resolve the inconsistency.
Error: Problem entry in prefix table
/tmp/partfiles/.fil_prefix_tbl. Prefix AA
in /tmp/partfiles/.fil_prefix_tbl corresponds to /disk1/ud41/demo
but the dynamic file /home/terric/SAMPLE/SAMPLE_FILE/over001 is
located in
/home/terric/SAMPLE. Please resolve the inconsistency.

Notice that in the previous example fixtbl was run without the -fix option. Executing
fixtbl -fix adds a new entry to .fil_prefix_tbl and moves and relinks the part files.

In the next example, the dynamic file contains links to
/tmp/partfiles/BBSAMPLE_FILE3, but the prefix table does not match:

% fixtbl
Creating new /tmp/partfiles/.fil_prefix_tbl.new file
Error: File /home/terric/SAMPLE/SAMPLE_FILE3/dat001. Inconsistency
between
the symbolic link (/tmp/partfiles/BBSAMPLE_FILE3/dat001) and
/tmp/partfiles/.fil_prefix_tbl. Please locate the part file, and
either rename/relink it or change /tmp/partfiles/.fil_prefix_tbl.
Error: File /home/terric/SAMPLE/SAMPLE_FILE3/over001.
Inconsistency between
the symbolic link (/tmp/partfiles/BBSAMPLE_FILE3/over001) and
/tmp/partfiles/.fil_prefix_tbl. Please locate the part file, and
either rename/relink it or change /tmp/partfiles/.fil_prefix_tbl.

Notice that the -fix parameter was not used in the previous example, so updates were
made to the working file .fil_prefix_tbl.new. Executing fixtbl with -fix moves and
relinks the part files to resolve the inconsistency.

In the next example, a user attempts to execute fixtbl while the UniData daemons are
running:

:!fixtbl
fixtbl has detected that the UniData daemons are running.
The system administrator must stop the daemons (with stopud)
before fixtbl can execute.
1-204 UniData Commands Reference

FLOAT.PRECISION

Syntax
FLOAT.PRECISION [0|1|2|3|4[,round]]

Synonym
FLOAT-PRECISION

Description
The ECL FLOAT.PRECISION command controls how UniData applies truncation
and rounding for the following operations:

Arithmetic calculations
Display or printing (numbers are always converted from decimal to string)
Comparisons
UniBasic INT function

When you execute an arithmetic operation, UniData invokes the appropriate host
operating system command, which performs the operation in floating point. When
the results are converted to string format for print or display, the rounding that is
automatically applied may produce unexpected results, so FLOAT.PRECISION
provides a mechanism for controlling this conversion and rounding.

Points to Remember
FLOAT.PRECISION influences UniData in the following ways:
 1-205

Modifies operation of the UniBasic INT function based on the option you
select:

 0 – UniData truncates all digits after the decimal point; no rounding
occurs.
 1, 2, and 3 – UniData rounds numbers before converting them to
integers.
4[,round] – Arithmetic operations in UniBasic truncate results at the
level of precision set by the UniBasic PRECISION function. round
further refines this option.

 C internal double – UniData does not round the results of a C function that
performs internal double calculation.

Note: The UniBasic PRECISION command sets the number of decimal places
expressed for the current UniData session. The default is 4. For more information, see
the UniBasic Commands Reference.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

no option Displays the current FLOAT.PRECISION setting.

0 Default setting. UniData rounds numbers after conversion to string format
and after comparisons are made.

1 UniData rounds results after each calculation or comparison.

FLOAT.PRECISION Parameters
1-206 UniData Commands Reference

Rounding Before Truncating with
FLOAT.PRECISION 4, round
Because of the way the operating system represents floating point numbers,
FLOAT.PRECISION with option 4 may occasionally return unexpected results,
especially for users accustomed to Pick ® processing. Therefore, you can specify
round to round the number before truncation.

The point at which the number is rounded is calculated as PRECISION + round. The
default is 3.

For example, when PRECISION is set to 1, and round is 3, UniData rounds up at the
fourth position after the decimal point.

2 UniData rounds numbers at these times:
? After conversion to string format

? After relational operations.

? Before executing the UniBasic INT (integer) function.

3 UniData converts the results of calculations to integers (executes the
UniBasic INT function). UniData rounds numbers before comparisons.
? If PRECISION is set to 5 or less, UniData adds 1 to the eighth digit

after the decimal point before rounding.

? If PRECISION is set to a number greater than 5, UniData adds 1 to the
digit two decimal places to the right of the precision setting before
rounding.

Note: See the example program run at the end of this section for an
illustration.

4[,round] Arithmetic operations in UniBasic truncate results at the level of precision
set by the UniBasic PRECISION function.
round further refines this option for compatibility with Pick®. The point
at which the number is rounded is calculated as PRECISION + round.
Default is 3.
See “Rounding Before Truncating with FLOAT.PRECISION 4,round”
following this table, for a complete description.

Parameter Description

FLOAT.PRECISION Parameters (continued)
 1-207

Here is another illustration: Because of the operating systems previously mentioned
floating point representation, 4.7 may actually be represented internally as
4.699999999999. Because of this, FLOAT.PRECISION 1 causes UniBasic to return
4.6 rather than 4.7. Use FLOAT.PRECISION 4,round to correct this, as shown in the
following examples:

PRECISION 1 and FLOAT.PRECISION 4, 4

rounding point =1 +4 =5
4.699999999999 + .00005 = 4.700049999999

truncates correctly to 4.7.

PRECISION 1 and FLOAT.PRECISION 4 (remember, round defaults to 3)

rounding point =1 +3 =4
4.699999999999 + .0005 = 4.700499999999

also truncates correctly to 4.7.

We recommend that you not specify a large number for round. In general, the
operating system floating point calculations can handle a maximum of 14 significant
digits, depending on your hardware and operating system. When you exceed this
maximum, the rightmost digits in the results of any arithmetic calculations on the
number are likely to be incorrect. The actual number of digits used by the operating
system to truncate a number depends on the following:

d = I + MAX(F,(P+T))

 d – The number of digits used to truncate.
 I – The number of integer digits in the number.
 F – The number of fractional digits in the number.
 P – PRECISION.
 T – round.

Tip: If d exceeds the maximum number of significant digits supported by your
operating system, truncation may be wrong. So, when I or PRECISION is large, keep
round small.
1-208 UniData Commands Reference

Examples
If you execute FLOAT.PRECISION with no option, UniData returns the current
settings, as shown in the following example:

:FLOAT.PRECISION 4,6
:FLOAT.PRECISION
FLOAT.PRECISION mode 4 , 6

The following UniBasic program requests the user to input a setting for PRECISION.
Then the program performs some calculations and executes the UniBasic INT
function.

PRINT ““
PRINT “Enter PRECISION: “;INPUT prec.var
PRECISION prec.var
PRINT “4/3*2 = “:4/3*2
PRINT “8/3*2 = “:8/3*2
PRINT “INT(2.999999999) = “:INT(2.999999999)
PRINT “INT(2.999995999) = “:INT(2.999995999)
IF 2.999995999=3 THEN PRINT “2.999995999 = 3”
ELSE PRINT “2.999995999 # 3”
IF 2.999999999=3 THEN PRINT “2.999999999 = 3”
ELSE PRINT “2.999999999 # 3”
END
 1-209

The following sample executions of the preceding program demonstrate how
different FLOAT.PRECISION and PRECISION settings affect results produced by
arithmetic calculations and the UniBasic INT function.

:FLOAT.PRECISION 0
:RUN BP precision.test
Enter PRECISION:
?5
4/3*2 = 2.66667
8/3*2 = 5.33333
INT(2.999999999) = 2
INT(2.999995999) = 2
2.999995999 # 3
2.999999999 # 3
:FLOAT.PRECISION 1
:RUN BP precision.test
Enter PRECISION:
?5
4/3*2 = 2.66666
8/3*2 = 5.33334
INT(2.999999999) = 3
INT(2.999995999) = 3
2.999995999 # 3
2.999999999 # 3
:FLOAT.PRECISION 2
:RUN BP precision.test
Enter PRECISION:
?5
4/3*2 = 2.66667
8/3*2 = 5.33333
INT(2.999999999) = 3
INT(2.999995999) = 3
2.999995999 = 3
2.999999999 = 3

In this next execution, the result of applying the UniBasic INT function to
2.999995999 is 2 because UniData adds 1 to the eighth digit to the right of the
decimal point, causing the number to be rounded to 2.999996. Then, UniData
truncates all digits to the right of the decimal point in order to make the number an
integer. However, the result of the same procedure against 2.99999999 is 3 because
the addition of 1 to the eighth digit results in 3, which is an integer.

:FLOAT.PRECISION 3
:RUN BP precision.test
Enter PRECISION:
?5
4/3*2 = 2.66667
8/3*2 = 5.33333
INT(2.999999999) = 3
INT(2.999995999) = 2
2.999995999 # 3
2.999999999 = 3
1-210 UniData Commands Reference

The next two executions demonstrate use of FLOAT.PRECISION option 4: Compare
the results of the first two operations in these executions to see that results of arith-
metic operations are truncated at the level of precision set by the UniBasic
PRECISION command.

Also, because PRECISION is applied before numbers are printed, option 4 causes
2.999995999 and 2.999999999 to be truncated to 2.99 in the last two operations, so
the program selects the # (not equal to) symbol: 2.999995999 # 3 and 2.999999999
3.

:FLOAT.PRECISION 4
:RUN BP precision.test
Enter PRECISION:
?2
4/3*2 = 2.66
8/3*2 = 5.32
INT(2.999999999) = 2
INT(2.999995999) = 2
2.999995999 # 3
2.999999999 # 3
:RUN BP precision.test
Enter PRECISION:
?1
4/3*2 = 2.6
8/3*2 = 5.2
INT(2.999999999) = 2
INT(2.999995999) = 2
2.999995999 # 3
2.999999999 # 3

Related Commands

UniBasic

INT, PRECISION – For information, see the UniBasic Commands Reference.
 1-211

forcecp

Syntax
forcecp

Description
The system-level forcecp command forces a Recoverable File System (RFS) check-
point. A checkpoint flushes the system buffer and conducts other RFS-related
activities. For more information about the recoverable file system, see Administering
the Recoverable File System.

Execute this command at the system prompt, or use the ECL ! (bang) command to
execute this command from the ECL prompt.

Example
The following example illustrates the forcecp command from the ECL prompt:

:!forcecp
CheckPoint time before ForceCP: Wed Jun 30 15:11:20 1999
.CheckPoint time after ForceCP: Wed Jun 30 18:00:21 1999
.CP has been forced successfully.
CP has been forced successfully
1-212 UniData Commands Reference

GETUSER

Syntax
GETUSER

Description
The ECL GETUSER command displays the user number, name, and ID for the
current UniData session:

USER NUMBER – The UNIX or Windows NT process ID (pid). All
UniData processes that are invoked in a single session use this pid.
USER NAME – The login name for this process.
USER ID – The ID for your login name assigned by UNIX or Windows NT.

Example
In the following example, UniData displays a user number, name, and ID:

:GETUSER
USER NUMBER=2000
USER NAME =carolw
USER ID =1283

Related Command
LISTUSER
 1-213

GRANT.ENCRYPTION.KEY

Syntax
GRANT.ENCRYPTION.KEY key.id [password] {PUBLIC | grantee {,grantee...}

Description
Use the GRANT.ENCRYPTION.KEY command to grant other users access to the
encryption key. When a key is created, only the owner of the key has access. The
owner of the key can grant access to other users.

Account-based access control and password protection are two ways to protect
encryption keys, independent of each other. You must grant access to an encryption
key even if it does not have password protection if you want other users to use the
key. Conversely, even if you have the correct password for the key, you cannot access
it without being granted access.

Parameters
The following table describes each parameter of the syntax.

GRANT.ENCRYPTION.KEY Parameters

Parameter Description

key.id The encryption key.

password The password for the encryption key.

PUBLIC Grants access to the encryption key to all users on the system.

grantee Grants access to the encryption key to the grantee you specify. grantee
can be a user name or a group name. If you specify a group name, prefix
the name with an asterisk (“*”). On Windows platforms, you can qualify
a group name with a domain name, such as mydomain\users. When you
specify a group name, UniData grants access to all users belonging to the
group.
Grantees cannot grant access to the encryption key to other users.
1-214 UniData Commands Reference

Example
The following example illustrates granting PUBLIC access to the “test” encryption
key:

:GRANT.ENCRYPTION.KEY test myunidata PUBLIC
GRANT.ENCRYPTION.KEY to PUBLIC successful.
 1-215

GROUP.STAT

Syntax
GROUP.STAT [DICT] filename [LPTR]

Synonyms
GROUP-STAT, ISTAT

Description
The ECL GROUP.STAT command displays file and group statistics, including size
and number of records.

Parameters
The following table describes each parameter of the syntax.

GROUP.STAT Parameters

Parameter Description

DICT Analyzes the dictionary portion of the file.

filename The name of a UniData file to be analyzed.

LPTR Sends output to the printer instead of the terminal screen.
1-216 UniData Commands Reference

Examples
The following example displays group statistics for the INVENTORY demo file.
During command execution a greater than sign (>) displays to represent each record.

:GROUP.STAT INVENTORY
File = INVENTORY modulo=19 hash type=0 blocksize=1024
Split/Merge type = KEYONLY
Grp# Bytes Records
 0 764 9>>>>>>>>>
 1 628 8>>>>>>>>
 2 736 9>>>>>>>>>
 3 542 7>>>>>>>
 4 558 7>>>>>>>
 5 672 9>>>>>>>>>
 6 662 9>>>>>>>>>
 7 722 10>>>>>>>>>>
 8 736 10>>>>>>>>>>
 9 840 11>>>>>>>>>>>
 10 868 11>>>>>>>>>>>
 11 987 12>>>>>>>>>>>>
 12 757 11>>>>>>>>>>>
 13 642 8>>>>>>>>
 14 600 9>>>>>>>>>
 15 740 9>>>>>>>>>
 16 759 10>>>>>>>>>>
 17 697 9>>>>>>>>>
 18 595 7>>>>>>>
======= =====
 13505 175 Totals
 542 7 Minimum in a group
 987 12 Maximum in a group
 710.8 9.2 Averages per group
 110.66 1.44 Standard deviation from average
 0.16 0.16 Percent std dev from average
File has 1 over files, 1 prime files
:GROUP.STAT DICT INVENTORY
File = DICT INVENTORY modulo=1 hash type=0 blocksize=1024
Grp# Bytes Records
 0 575 16>>>>>>>>>>>>>>>>
======= =====
 575 16 Totals
 575 16 Minimum in a group
 575 16 Maximum in a group
 575.0 16.0 Averages per group
 0.00 0.00 Standard deviation from average
 0.00 0.00 Percent std dev from average
The actual file size in bytes = 2048.
:

 1-217

The next example shows the sort of distribution that contributes to inefficient file
access. To generate the next example, memresize converted a copy of the
INVENTORY demo database file to the KEYDATA split/merge type (inappropriate
because of the wide variation in record sizes) and REBUILD.FILE rehashed the keys:

:GROUP.STAT INV_COPY
File = INV_COPY modulo=69 hash type=0 blocksize=1024
Split/Merge type = KEYDATA
Grp# Bytes Records
 0 295 4>>>>
 1 0 0
 2 291 4>>>>
 3 0 0
 4 282 3>>>
 5 72 1>
 6 186 3>>>
 7 77 1>
 8 296 4>>>>
 9 93 1>
.
.
.
 67 153 2>>
 68 613 7>>>>>>>
======= =====
 13505 175 Totals
 0 0 Minimum in a group
 687 8 Maximum in a group
 195.7 2.5 Averages per group
 169.26 2.10 Standard deviation from average
 0.86 0.83 Percent std dev from average
File has 1 over files, 1 prime files
:

1-218 UniData Commands Reference

gstt

Syntax
gstt

Description
The system-level gstt command displays the status and usage of global pages of
shared memory. See the Administering UniData manual for more information on
shared memory.

Use this command at the system prompt, or use the ECL (bang) command to execute
this command from the ECL prompt.

Example
The following example illustrates a gstt command display:

% gstt
--------------------- GCTs Statistics -------------------

Total GCTs (GSMs allowed): 40
Pages/GSM................: 32 (4096K bytes)
Bytes/Page...............: 128K bytes

GCTs used (GSMs created).: 1 (3% of 40)

 Active GSMs....: 1 (32 pages in total, 4096K bytes)

 Pages Used...........: 2 (6%, 256K bytes)
 Pages Freed..........: 30 (94%, 3840K bytes)

 Inactive GSMs..: 0

 Pages Freed..........: 0 (0K bytes)

 Total Pages Used......: 2 (6%, 256K bytes)
 Total Pages Freed.....: 30 (94%, 3840K bytes)
 Total memory allocated: 4096K bytes
 ----------------- End of GCTs Statistics ----------------
 1-219

guide

Syntax
guide filename [filename...] [-b [b_filename] | -nb] [-d {1 | 2 | 3 } [{-l | -s} count]] [
[-o [o_filename] [-p page_length] | -np] [-na] [-ne] [-ns] | [-a [a_filename] |
-na] [-e [e_filename]] [-s [s_filename]] [-f [f_filename]] [-h {a | 0 | 1 }
[-m new_modulo]] [-i [i_filename]] [-r [r_filename]] [-Z num_child_processes]
[-U###] [-G]

Description
The system-level guide command analyzes hashed files, generates statistics, and
provides suggestions for optimizing file sizes and ensuring data integrity. UniData
must be running when you execute guide.

Default reports include:

Management advice (option -a)
File errors (option -e)
Detailed statistics (option -s [s_filename])
Damaged groups (option -f)

For detailed information about using guide to assess file damage and to manage file
integrity, refer to the Administering UniData manual.

You must have read and write permissions on files analyzed.

guide no longer requires exclusive access to a file, and utilizes parallel processing.

Although guide analyzes recoverable files, the output of guide is not recoverable.
Therefore, if a system or media failure occurs while you are running guide, you need
to rerun guide after recovery. For more information about the guide utility and recov-
erable files, see the Administering the Recoverable File System manual.

Because new files are created by each execution, you should review and delete
unneeded ones or you may accumulate a large number of them.
1-220 UniData Commands Reference

Tip: Once you have identified damaged groups with guide, use the UniData system-
level fixfile command to repair them.

Note: If you do not want the guide utility to report orphan blocks, set the value of the
SUPPRESS_ORPHAN_BLOCK_ERROR to a positive integer.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

filename [filename...] Specifies the file or files to analyze. Separate multiple file
names with a space. You must have read and write access to
these files.

-b [b_filename] Summarizes file analysis in b_filename. Default file name is
GUIDE_BRIEF.LIS.

-nb Default. No summary report is generated.

-d {1 | 2 | 3} Reports on file size:
1 — Summarizes file size info.
2 — Default; reports file size info.
3 — Adds information about distribution of data sizes.
Note: Cannot be used with the -ns option.

{-l | -s} count Adds to information displayed by -d. Displays, in quotation
marks, keys of smallest records. Key ends with * if
truncated. count specifies number to list. Default is 3.
-l — lists keys only
-s — sorts and lists keys
Note: Must be combined with the -d option.

guide Parameters
 1-221

-o[o_filename] Combines output in filename, rather than placing it in
separate files. If filename is not specified, sends combined
output to the standard output device. The default output
device is the display terminal.
Tip: Specify output device at the operating system level (for
example, stty in UNIX).

-p page_length When output from option -o is directed to the terminal,
specifies display page length. Default is 24 lines.
At end of page display, UniData prompts: Press RETURN
to continue... You must respond with one of the
following:
ENTER — Displays the next page.
N — Scrolls the remainder of the output with no pagination.
Q — Quits display.

-np Default. Scrolls output on terminal with no pagination.

-na No management advice is reported. This is the opposite of
the -a parameter.

-ne No detailed error reporting. This is the opposite of the -e
parameter.

-ns Default. No detailed statistical reporting. This is the
opposite of the -s parameter.

-a [a_filename] Default. Reports file management advice in a_filename.
Default file name is GUIDE_ADVICE.LIS.

-e [e_filename] Default. Reports statistical errors in e_filename. Default file
name is GUIDE_ERRORS.LIS.

-s [s_filename] Default. Reports detailed statistical information in
s_filename. Default file name is GUIDE_STATS.LIS.

-f [f_filename] Default. Reports damaged groups in f_filename. Default
f_filename is GUIDE_FIXUP.DAT.
f_filename can be used as input for ECL commands fixfile,
dumpgroup, and fixgroup.

Parameter Description

guide Parameters (continued)
1-222 UniData Commands Reference

Output Reports
Depending on the parameter you include, guide may create any or all of the following
reports. If any of these output files exist when you execute guide, UniData changes
all output file names by appending a six-digit time stamp to each file name. This way,
only the most current output files have no time stamp; and if a particular output file
is not created during this execution, no file of that name exists.

-h {a | 0 | 1} Evaluates hash algorithms of type:
? a — evaluates both types

? 0

? 1

Note: This option produces no output for dynamic files.

-m new_modulo Analyzes the effects a different modulo would have on
filename. Must be used with the -h parameter.

-i [i_filename] Analyzes all files listed in i_filename. Default file name is
GUIDE_INPUT.DAT. In i_filename, list one file name per
line. Blank lines and lines beginning with ! are ignored.

-r [r_filename] Directs output to UniData database r_filename. r_filename
must be the system-level file name. Copy the dictionary for
r_filename from udthome/sys/D_UDT_GUIDE on UNIX or
udthome\sys\D_UDTGUIDE on Windows Platforms. Later,
you can execute UniQuery commands against r_filename.

-Z num_child_processes Defines the number of concurrent processes to use when
analyzing the file. The default is 4. If the file guide is
analyzing has less than 100 groups, guide only uses one
process.

-U### Searches files for the existence of the ASCII character you
specify in the records and keys in the file.

-G Creates the GUIDE_STATS.LIS, regardless if corruption is
detected.

Parameter Description

guide Parameters (continued)
 1-223

However, if you run multiple iterations of guide from the same directory when using
the default output file names, each iteration will overwrite each other’s output files.
You must use the guide options to create unique file names, or only run one instance
of guide per directory at one time to avoid this behavior.

guide Output Files

Report Default File Name Parameter Description

File management advice GUIDE_ADVICE.LIS -a Provides advice for
improving file sizing
or cleanup.

File errors GUIDE_ERRORS.LIS -e Lists structural errors.

Detail GUIDE_STATS.LIS -s Details statistics on
filename.

Summary GUIDE_BRIEF.LIS -b Summarizes record
counts, total size,
used size, and
modulo.

Damaged groups GUIDE_FIXUP.DAT -f Lists damaged
groups. This file can
be used as input for
ECL commands
fixfile, dumpgroup,
and fixgroup.

Using the U### Option
If you use the U### option, guide searches files for the existence of the ASCII
character you specify in the records and keys in the file. For example, guide
-U0 searches files for CHAR(0).
1-224 UniData Commands Reference

If guide encounters the character you specify, it returns a message similar to the
following example:

TEST
File Integrity:

Group 0, block 1, record number 0 = “AAA” has char (0) in key
Group 0, block 1, record number 0 = “AAA” record has char (0)
in data
Group 0, block 0, long record number 1 = “BBB” record has
char (0) in data.
Group 2, block 5, long record number 0 = “AAA” record has
char (0) in data.

Files Processed: 1
Errors encountered: 4

Note: Using the -U### option may degrade the performance of guide.

Examples
The following report is generated by the -s [s_filename] parameter. By default, it is
stored in GUIDE_STATS.LIS:

INVENTORY
 Basic statistics:
 File type............................... Recoverable Dynamic
Hashing
 File size
 [dat001].............................. 20480
 [over001]............................. 9216
 File modulo............................. 19
 File minimum modulo..................... 19
 File split factor....................... 60
 File merge factor....................... 40
 File hash type.......................... 1
 File block size......................... 1024
 Group count:
 Number of level 1 overflow groups....... 8
 Primary groups in level 1 overflow...... 8
 Record count:
 Total number of records................. 175
 Average number of records per group..... 9.21
 Standard deviation from average......... 3.58
 Record length:
 Average record length................... 71.20
 Standard deviation from average......... 18.30
 1-225

This output was generated on a damaged version of the INVENTORY file:

:!guide INVENTORY -o

INVENTORY
 Basic statistics:
 File type............................... Recoverable Dynamic
Hashing
 File size
 [dat001].............................. 20480
 [over001]............................. 3072
 File modulo............................. 19
 File minimum modulo..................... 19
 File split factor....................... 60
 File merge factor....................... 40
 File hash type.......................... 0
 File block size......................... 1024
 File Integrity:
 Group 2, block 3 has incorrect group number 1633746946
 Management advice:
 This file’s integrity has been compromised,
 please repair it.

Files processed: 1
Errors encountered: 1

The following file listing shows a set of files produced over a four-day period. Notice
the following:

Only GUIDE_FIXUP.DAT has no time stamp, indicating that this is the only
file created during the last execution of guide. This was the execution in the
preceding example.
1-226 UniData Commands Reference

GUIDE_STATS.LIS_032798_A is the latest version of this file, indicating that
this file was not created during the last two executions of guide.

:ls -lt GUI*
-rw-r--r-- 1 carolw staff 15 Mar 27 15:36
GUIDE_FIXUP.DAT
-rw-r--r-- 1 carolw staff 154 Mar 27 15:34
GUIDE_ADVICE.LIS_032798_B
-rw-r--r-- 1 carolw staff 1787 Mar 27 15:34
GUIDE_ERRORS.LIS_032798_B
-rw-r--r-- 1 carolw staff 15 Mar 27 15:34
GUIDE_FIXUP.DAT_032798
-rw-r--r-- 1 carolw staff 555 Mar 27 15:34
GUIDE_STATS.LIS_032798_B
-rw-r--r-- 1 carolw staff 46 Mar 27 15:20
GUIDE_ADVICE.LIS_032798_A
-rw-r--r-- 1 carolw staff 46 Mar 27 15:20
GUIDE_ERRORS.LIS_032798_A
-rw-r--r-- 1 carolw staff 46 Mar 27 15:20
GUIDE_STATS.LIS_032798_A
-rw-r--r-- 1 carolw staff 46 Mar 27 15:16
GUIDE_ADVICE.LIS_032798
-rw-r--r-- 1 carolw staff 46 Mar 27 15:16
GUIDE_ERRORS.LIS_032798
-rw-r--r-- 1 carolw staff 46 Mar 27 15:16
GUIDE_STATS.LIS_032798
-rw-r--r-- 1 carolw staff 14 Mar 26 15:49
GUIDE_FIXUP.DAT_032698
-rw-r--r-- 1 carolw staff 46 Mar 24 11:20
GUIDE_ADVICE.LIS_032498
-rw-r--r-- 1 carolw staff 46 Mar 24 11:20
GUIDE_ERRORS.LIS_032498_B
-rw-r--r-- 1 carolw staff 1497 Mar 24 11:20
GUIDE_STATS.LIS_032498_B
-rw-r--r-- 1 carolw staff 46 Mar 24 11:19
GUIDE_ERRORS.LIS_032498_A
-rw-r--r-- 1 carolw staff 1848 Mar 24 11:19
GUIDE_STATS.LIS_032498_A
-rw-r--r-- 1 carolw staff 46 Mar 24 11:18
GUIDE_ERRORS.LIS_032498
-rw-r--r-- 1 carolw staff 1497 Mar 24 11:18
GUIDE_STATS.LIS_032498

Related Commands
dumpgroup, fixfile, fixgroup
 1-227

guide_ndx

Syntax
guide_ndx{-x |-X}{1|2 |3},{index_names, ... | ALL} [-t template |-T template]
filename

Description
As with other UniData file types, an index file could become corrupt due to hardware
failures, the interruption of a write to the index file, or an incomplete write. The
guide_ndx utility checks for physical and logical corruption of an index file.

If an index file is corrupt, UniData displays a run time error when a UniData process
tries to access the index. If the index file is associated with a recoverable file, a
message is written to the sm.log.

The guide_ndx command creates two files, the GUIDE_XERROR.LIS and the
GUIDE_STATS.LIS. GUIDE_ERROR.LIS lists any corruption found in the index
file, and GUIDE_STATS.LIS list statistics about the index. If you have a corrupt
index, you must rebuild it using the CREATE.INDEX and BUILD.INDEX
commands. For more information and creating and building indexes, see Using
UniData.

Note: We recommend deleting the index with the DELETE.INDEX ALL command.
Using the ALL option deletes all alternate key indexes and the index file itself.
1-228 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

guide_ndx Parameters

Parameter Description

-x{1 | 2 | 3} Determines the type of checking guide_ndx performs.
? 1 – Performs physical checking

? 2 – Performs logical checking

? 3 – Performs physical and logical checking

index_names The index names you want guide_ndx to check. Separate each
index name with a comma, or enter ALL to check all indexes
for the file.

-t template The template to use for output files. The default is GUIDE.

filename The name of the data file containing the index.

Example
The following example illustrates the contents of the GUIDE_XERROR.LIS file
when guide_ndx detects corruption:

%pg GUIDE_XERROR.LIS
INVENTORY
Checking index ‘INV_DATE’ physically...
Invalid key length (30569, key item 65) in node 24576.
Bytes left not matched (recorded 3157, calulated 4933) in node
24576.
Checking index ‘FEATURES’ physically...
Checking index ‘COLOR’ physically...
 1-229

The next example illustrates the GUIDE_XSTATS.LIS file:

%pg GUIDE_XSTATS.LIS
INVENTORY
Large index.......... INVENTORY/idx001
Alternate key length. 60
Node/Block size...... 6K
OV blocks............ 1
of indices......... 3
Index auto update.... Enabled, No updates pending
Index Name F-type V-type K-type Nulls Dups F-No/VF-pos (Root)
INV_DATE D S N Yes Yes 1 (24576 [1-4])
FEATURES D S T Yes Yes 4 (30720 [1-5])
COLOR D M T Yes Yes 5 (36864 [1-6])

The following table describes the column heading that display in output for the
X_STATS.LIS file.

X_STATS.LIS Display

Column
Heading Description

Index name Name of the index.

F-type Type of attribute indexed: D for data attribute, V for a virtual attribute.

V-type Value code for the attribute. S for singlevalued, M for multivalued or
multi-subvalued.

K-type Type of index: Txt for text, Num for numeric.

Nulls “Yes” indicates that empty strings are indexed. “No” indicates that
empty strings are not indexed.

Dups “Yes” indicates that duplicate keys are allowed in the alternate key
index. “No” indicates that duplicate keys are not allowed.

F-No/VF-expr The attribute location for alternate key indexes built on data attributes
(D-type) or the virtual attribute definition for alternate key indexes
built on virtual attributes (V-type).
1-230 UniData Commands Reference

HASH.TEST

Syntax
HASH.TEST filename [(B | (H | (N | (P]

Synonym
HASH-TEST

Description
The ECL HASH.TEST command manipulates certain characteristics of a UniData
data file in a test environment without changing the actual parameters of the file.
When you use this command, UniData prompts for values for modulo number, hash
type, and block size multiplier.

Note: For a block size of 512 bytes, UniData accepts either -1 or 512 at the block
size multiplier prompt. Otherwise, UniData uses the block size multiplier. For
example, 1=1024, 2=2048, and so on.

UniData calculates statistics based upon these user-supplied values and the contents
of the file, and then displays the following data:

Average number of items per group.
Average number of bytes per group.
Number of empty groups.
Standard deviation.
 1-231

Parameters
The following table describes each parameter of the syntax.

HASH.TEST Parameters

Parameter Description

filename The name of a UniData data file.

(B Suppresses the initial linefeed.

(H Generates a histogram and detailed information for every group.

(N Suppresses automatic paging.

(P Sends output to the printer.

Example
In the following example, UniData prompts for test values and then calculates
theoretical statistics for the CLIENTS demo file. The actual parameters for the data
file have not changed. The user has entered a block size multiplier of 2, indicating a
block size of 2048. Also, the (H option produces detailed information on each group
including number of bytes and items, as well as a histogram indicating relative size.

:HASH.TEST CLIENTS (H
TEST MODULO: 23
HASH TYPE: 1
BLOCK SIZE(K, -1 for 512): 2

FILE: CLIENTS MOD: 23 HASH TYPE: 1 16:11:54 Jun 09
1999
 BYTES ITEMS
 0 779 7 *>>>>>>>
 1 422 4 *>>>>
 2 661 6 *>>>>>>
 3 803 7 *>>>>>>>
 4 741 7 *>>>>>>>
 5 922 8 *>>>>>>>>
.
.
.
ITEM COUNT= 134, BYTE COUNT 14586, AVG. BYTES/ITEM= 109
AVG. ITEMS/GROUP=5.8, STD. DEVIATION=1.8, AVG. BYTES/GROUP=634.2
EMPTY GROUPS= 0

:

1-232 UniData Commands Reference

HELP

Syntax
HELP [topic] [command] [-k keyword]]

Description
The ECL HELP command displays online help for UniData commands, including
the following topics:

UniData ECL commands and keywords, including commands you enter at
the system prompt. You can enter synonyms for commands from legacy
applications.
UniBasic commands, functions, and operators.
UniQuery commands and keywords.
UniData SQL commands and keywords.

If you use this command without any options, UniData displays command syntax and
indicates valid topics.

Tip: You can access the UniData help system from within AE by using XEQ (execute
ECL command). For example, from within AE enter “XEQ HELP OPEN” to display
help on the UniBasic OPEN command.
 1-233

Parameters
The following table describes each parameter of the syntax.

HELP Parameters

Parameter Description

command Any UniBasic, UniData, UniQuery, or UniData SQL command.
If the command contains multiple words separated by a space, such as
CREATE TABLE in UniData SQL and INPUT @ in UniBasic, you must
enclose the command in quotation marks.

topic A subject. These are product names (for example, UNIDATA, UNIBASIC,
UNIQUERY, or SQL). If you enter a topic without a command, HELP lists
all the available commands for that topic. You can also enter a command
with a topic to specify which command to display if there is more than one
topic with the same command. For example, there are three SELECT
commands (UniQuery, UniData SQL, and UniBasic).

-k keyword Indicates a word to search for in the help system. This feature is not case-
sensitive.
1-234 UniData Commands Reference

HUSH

Syntax
HUSH [ON | OFF]

Description
The ECL HUSH command turns on or off system output display on the terminal.

Warning: Do not use HUSH ON before you execute a command, paragraph, or
sentence that requests user input. The process will appear to hang.

Parameters
The following table describes each parameter of the syntax.

HUSH Parameters

Parameter Description

no parameter Toggles between ON and OFF.

ON UniData does not display the colon prompt nor any output to the
terminal.

OFF Default. UniData displays the colon prompt and output to the terminal.

Examples
In the following example, the HUSH command prevents UniData from displaying
the colon prompt, command lines, and the output that follows until the HUSH OFF
command is entered. For this example, a UniQuery statement and HUSH OFF follow
HUSH ON.

:HUSH ON
:

 1-235

To verify that UniData recognized the command input after the HUSH ON command
was entered, display the command stack. In the following example, notice item
number 2. This is the command that was entered while HUSH ON was active.

:.L
...
 3 HUSH ON
 2 LIST CLIENTS WITH LNAME LIKE "P..."
 1 HUSH OFF
:

1-236 UniData Commands Reference

HUSHBASIC

Syntax
HUSHBASIC [ON | OFF]

Description
The ECL HUSHBASIC command determines whether brief or detailed UniBasic
error messages are displayed.

For more information about UniBasic, see the Developing UniBasic Applications
manual.

Parameters
The following table describes each parameter of the syntax.

HUSHBASIC Parameters

Parameter Description

no parameter Toggles between ON and OFF.

ON Displays brief UniBasic error messages.

OFF Displays detailed UniBasic error messages.
 1-237

Example
The following example compares the brief versus detailed error message displayed
when HUSHBASIC is ON and OFF using first the keywords ON and OFF, then
executing HUSHBASIC with no keyword, toggling between the two settings.

:HUSHBASIC OFF
:RUN BP TESTPROG
In at line 1 can not find object/catalog file: 'BP/_TESTPROG'.
:HUSHBASIC ON
:RUN BP TESTPROG
can not find object/catalog file: 'BP/_TESTPROG'.
:HUSHBASIC
:RUN BP TESTPROG
In at line 1 can not find object/catalog file: 'BP/_TESTPROG'.
:HUSHBASIC
:RUN BP TESTPROG
can not find object/catalog file: 'BP/_TESTPROG'.
1-238 UniData Commands Reference

ipcstat

Syntax
ipcstat [-q] [-m] [-s] [-g] [-b] [-c] [-o] [-p] [-t] [-a] [-n]

Description
The system-level ipcstat command displays the status of interprocess communication
(IPC) facilities. In addition, UniData provides the names of the UniData processes
associated with each resource.

For detailed information about this utility, see the section on managing IPC facilities
in the Administering UniData manual.

Note: Use this command at the system prompt, or use the ECL ! (bang) command to
execute this command from the colon prompt.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

no parameter Displays the status of all message queue, shared memory, and
semaphores.

-q Displays the status of message queues.

-m Displays the status of shared memory.

-s Displays the status of semaphores.

-g Displays the UniData signals. This parameter is only supported on
Windows.

-

 1-239

Tip: Use 'ipcstat -qon' on UNIX to only display message queues with any bytes in the
queue at the moment the command was run.

On large UniData installations (those with a large number of users) you can end up
with hundreds of message queues to page through in an 'ipcstat -qa' listing.

-b Displays the status of the largest size allowed in each setting: the
number of bytes on message queues, the size of the segments in shared
memory, and the number of processes attached to each memory
segment. This parameter is only supported on UNIX.

-c Displays the creator’s login name and group name. This parameter is
only supported on UNIX.

-o Displays the usage information of each of the following: the number of
bytes on message queues, and the number of semaphores in each set.
This parameter is only supported on UNIX.

-p Displays information about a process ID number: the process ID of the
last process to send or receive messages on the message queue, the
process ID of the creating process, and the final process to attach or
detach on shared memory segments. This parameter is only supported
on UNIX.

-t Displays the time information about: the time of the last control
operation which changed access permissions for all facilities, the time
of the final msgsnd and msgrcv on the message queues, the time of the
ending shmat and shmdt on shared memory, and the time of the final
semop on the semaphore sets This parameter is only supported on
UNIX.

-a Displays the -b, -c, -o, -p and -t options.

-n Displays the message queues with more than zero bytes in any currently
outstanding messages. If a queue has zero bytes, it is not listed. This
parameter only works with the -a or -o options. This parameter is only
supported on UNIX.

Parameter Description

-

1-240 UniData Commands Reference

Example
The following example shows an ipcstat display:

$ ipcstat -s
IPC status from <running system> as of Wed Sep 19 10:01:00 MDT
2007
T ID KEY MODE OWNER GROUP
Semaphores:
s 0 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 1 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 2 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 3 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 4 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 5 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 6 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 7 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 8 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 9 0 --ra-ra-ra- root other -> smm
R7.2 (latch)
s 10 0 --ra-ra-ra- root other -> smm
R7.2 (ctl)
s 11 0 --ra-ra-ra- root other -> smm
R7.2 (journal)
s 12 0 --ra-ra-ra- root other -> smm
R7.2 (smm/sm syn
c)
s 13 0 --ra-ra-ra- root other -> smm
R7.2 (super-rls)
s 65550 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65551 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65552 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65553 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65554 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65555 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65556 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65557 0 --ra-ra-ra- root other -> rm
 1-241

R7.27.2 (waiting)
s 65558 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65559 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65560 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65561 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65562 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65563 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65564 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65565 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65566 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65567 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65568 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65569 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
s 65570 0 --ra-ra-ra- root other -> rm
R7.2 (waiting)
$ 5
ksh: 5: not found
$

1-242 UniData Commands Reference

ISTAT
ISTAT is a synonym for the GROUP.STAT command. For more information, see
GROUP.STAT.

Synonyms
GROUP.STAT, GROUP-STAT
 1-243

1-244 UniData Commands Reference

kp

Syntax
kp

Description
The system-level kp command reports on current UNIX kernel parameters related to
shared memory, semaphores, and message queues. This command is supported on
UniData for UNIX only. The report is routed to the display terminal. See your UNIX
system documentation for explanations of these kernel parameters.

Note: If you are not logged on as root, some items in the report may display as -1.
This indicates that the values for that item are not available to you.

Use this command at the system prompt, or use the ECL ! (bang) command to execute
this command from the ECL prompt.

Example
The following is a sample kp report:

kp
shmmni = 200
shmseg = 120
shmmax = 67108864
shmmin = 1

msgmni = 100
msgtql = 40
msgmnb = 16384
msgmax = 8192

semmni = 64
semmnu = 100

LIMIT

Syntax
LIMIT

Description
The ECL LIMIT command displays maximum size limits for elements of UniData.
These limits are not configurable.

See Using UniQuery for more information on limits to UniQuery parameters.

Example
The following example shows UniData limits:

:LIMIT
U_MAXFNAME: Unix file name limit = 46.
U_NAMESZ: Record id(key) size = 126.
U_SELEMAX: Number of select list = 10.
U_MAXDATA: Number of DATA statement = 500.
U_HEADSZ: HEADER/FOOTER length = 2120.
U_MAXHASHTYPES: Number of hash functions = 3.
U_MAXSORT: Number of sort fields(BY...) in LIST = 20.
U_MAXWITH: WITH stack size = 120.
U_MAXWHEN: WHEN stack size = 60.
U_MAXCAL: Number of SUM+AVG+PCT+CAL in LIST = 54.
U_MAXBREAK: Number of BREAK.ON+BREAK.SUP in LIST = 15.
U_MAXLIST: Number of attribute names in LIST = 999.
U_LINESZ: Page width in printing = 272.
U_PARASIZE: Paragraph name and its parameter size = 256.
U_LPCMD: System spooler name = lp -c .
U_MAXPROMPT: Number of prompts allowed in paragraph = 60.
U_FSIZE: Dictionary field name size = 31.
U_MAXVALUE: Number of values WHEN can handle = 10240.
U_MAXBYEXPVAL: Number of values BY.EXP can handle = 10240.
U_SENTLEN: Maximum sentence length = 9247.
U_PROCBUFSZ: Proc buffer size = 8191.
U_NIDES: Maximum number of virtual fields in query= 256.
:

 1-245

LINE.ATT

Syntax
LINE.ATT line [DELAY]

Synonym
LINE-ATT

Description
The ECL LINE.ATT command attaches a communication line to the current process.
The attaching process then has exclusive use of that line until it is detached with the
LINE.DET command. A single process can attach up to five resources per UniData
session.

Warning: On some platforms, you must specify DELAY in LINE.ATT to avoid
problems with subsequent UniBasic SEND commands overlaying data.

Before you can use this command, you must execute the SETLINE command to
initialize the communications line.

Tip: Tape devices, printers, and other devices must be defined within UniData before
they can be accessed. Refer to your host operating system documentation for
information about setting up peripherals on your system. For information on defining
devices within UniData, see Administering UniData.
1-246 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

LINE.ATT Parameters

Parameter Description

line A number assigned to the (line) device you are attaching. The line number
is defined by the SETLINE command.

DELAY Your process waits for a “received” message before allowing further activity
by the process. This option does not time out, but waits indefinitely.

Example
In the following example, UniData attaches line 0 to the current process:

:LINE.ATT 0
LINE 0 ATTACHED

Related Commands

UniData

LINE.DET, LINE.STATUS, PROTOCOL, SETLINE, UNSETLINE

UniBasic
GET, SEND For information, see the UniBasic Commands Reference.
 1-247

LINE.DET

Syntax
LINE.DET line

Synonym
LINE-DET

Description
The ECL LINE.DET command releases a communication line so it is no longer
reserved for the exclusive use by the current user process.

Note: You can concurrently attach up to five lines per UniData session. Use
SETLINE to define the lines and LINE.ATT to attach them.

Tip: Tape devices, printers, and other devices must be defined within UniData before
they can be accessed. Refer to your host operating system documentation for
information about setting up peripherals on your system. for information on defining
devices within UniData, see Administering UniData.

Examples
In the following example, the LINE.DET command detaches line 0 from the current
environment:

:LINE.DET 0
LINE 0 DETACHED
1-248 UniData Commands Reference

Related Commands

UniData

LINE.ATT, LINE.STATUS, PROTOCOL, SETLINE, UNSETLINE

UniBasic

GET, SEND For information, see the UniBasic Commands Reference.
 1-249

LINE.STATUS

Syntax
LINE.STATUS

Synonym
LINE-STATUS

Description
The ECL LINE.STATUS command displays the current status of all communication
lines.

Tip: Tape devices, printers, and other devices must be defined within UniData before
they can be accessed. Refer to your host operating system documentation for
information about setting up peripherals on your system. For information on defining
devices within UniData, see Administering UniData.

Example (UniData for UNIX)
In the following example, UniData displays all communication lines:

:SETLINE 0 /dev/pty/ttyv6
:LINE.STATUS
LINE# STATUS UDT# USER-NAME DEVICE-NAME
0 Available N/A N/A /dev/pty/ttyv6
Line number(s) are attached by the current udt process:

None
:

1-250 UniData Commands Reference

Example (UniData for Windows Platforms)
In the following example, UniData displays all the lines in the system set by
SETLINE:

:SETLINE 0 COM1
:LINE.STATUS
LINE# STATUS UDT# USER-NAME DEVICE-NAME
0 Available N/A N/A COM1
Line number(s) are attached by the current udt process:
None
:

Related Commands

UniData

LINE.ATT, LINE.DET, PROTOCOL, SETLINE, UNSETLINE

UniBasic

GET, SEND For information, see the UniBasic Commands Reference.
 1-251

LIST.CONNECT

Syntax
LIST.CONNECT

Synonym
LIST-CONNECT

Description
The LIST.CONNECT command displays NFA (Network File Access) parameters for
all connections. When you enter LIST.CONNECT, UniData displays the following
information about server connections:

 UniData process number.
 USRNBR (System-level process ID assigned to a UniData session).
 UID (system-level user ID).
 User name.
 Type of user, for example client (udt/clnt) or server (udt/svr).
 Family.
 Domain.

For more information on NFA, see Developing OFS/NFA Applications.
1-252 UniData Commands Reference

LIST.CONNECT Display
The following table describes the column headings that display in the output for the
LIST.CONNECT command.

LIST.CONNECT Display

Column
Heading Description

UDTNO The UniData user number.

USRNBR System-level process ID assigned to a UniData session.

UID The system-level user ID number.

USRNAME The user name.

USRTYPE The type of process. For NFA, this is always “udt.”

FAMILY The OFS Family (for NFA, this is always UDT) described in the VOC
entry for the file being accessed.

DOMAIN Information on the domain described in the VOC entry for the file being
accessed. It is in the following syntax:
machine:voc:port
where machine is the name of the server machine, voc is the path of the
VOC file, and port is the port number being used.

Example
In the following example, UniData displays the current NFA users:

:LIST.CONNECT
UDTNO USRNBR UID USRNAME USRTYPE FAMILY DOMAIN
3 18910 1104 ubj01 udt UDT hp1:/users/ubj01:1155
8 19156 1083 peggys udt UDT hp1:/users/ubj01:1155
 1-253

LIST.EDAMAP

Syntax
LIST.EDAMAP {[XMAP] eda_schema | EDA.FILE [DICT] eda_file |
DEFAULT.MAP} [DATA.SOURCE data_source] [OBJECT.SET
[name_space.]primary_table] [FILE.NAME target_file] [XMAP | OBJECT.TREE |
DLL]

Description
The LIST.EDAMAP command displays the EDA Schema you specify.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

eda_schema Specifies the name of the EDA schema to display.

eda_file Specifies the name of the EDA file whose schema is to be
extracted and displayed. If you specify FILE.NAME target_file,
target_name replaces the UniData file name in the schema
UniData displays.

DEFAULT.MAP Specifies to only display the primary key (@ID), irrespective of
the attributes actually mapped of the schema you specify.

data_source Specifies the data source name to use when displaying the
schema.

primary_table Specifies the name of the primary table, containing only singl-
evalued attributes, to use when displaying the schema. If you
also specify name_space, UniData uses it for Name Space (DB2
Schema Name) in the display.

target_file Specifies the name of the UniData file to use when displaying
the schema.

LIST.EDAMAP Parameters
1-254 UniData Commands Reference

XMAP Specifies to display the EDA schema in XML format.

OBJECT.TREE Specifies to display the logical tree structure of the DB2 table
and view.

DDL Specifies to display the DB2 Data Definition Language (DDL)
statements used in the conversion process.

Parameter Description

LIST.EDAMAP Parameters
 1-255

LIST.ENCRYPTION.FILE

Syntax
LIST.ENCRYPTION.FILE filename

Description
Use the LIST.ENCRYPTION.FILE command to display encryption configuration
data such as the fields that are encrypted, the algorithms used, and so forth. This
command also displays the fields for which decryption is currently disabled.

Example
The following example illustrates the output from the LIST.ENCRYPTION.FILE
command:

LIST.ENCRYPTION.FILE CUSTOMER
Whole-record encryption, algorithm aes128, key test.
1-256 UniData Commands Reference

LIST.ENCRYPTION.KEY

Syntax
LIST.ENCRYPTION.KEY

Description
Use the LIST.ENCRYPTION.KEY command to list the existing keys in the key
store. You can also list records in the key store using UniQuery commands, such as
LIST, LIST.ITEM, SORT, SORT.ITEM, and so forth.

Note: The name of the key store file is _KEYSTORE_. Although you can view records
from this file using UniQuery commands, other UniData commands, such as
DELETE.FILE and CLEAR.FILE, will fail. The AE command will only display
encrypted data. Any attempt to write to a key store will faile, including a UniBasic
WRITE operation or an ECL COPY.
 1-257

Example
The following example illustrates output from the LIST.ENCRYPTION.KEY
command:

:LIST.ENCRYPTION.KEY

LIST _KEYSTORE_ CREATOR DATE TIME GRANTEES FILES FIELDS WITH TYPE=1
15:23:13 Ma
y 12 2008 1
KEYSTORE test1
CREATOR c1aireaday
DATE 04/09/2008
TIME 04:04PM
GRANTEES PUBLIC
FILES FIELDS

KEYSTORE test
CREATOR c1aireaday
DATE 05/12/2008
TIME 03:23PM
GRANTEES
FILES FIELDS

2 records listed
1-258 UniData Commands Reference

LIST.INDEX

Syntax
LIST.INDEX filename [attribute [attributeM...attributeN] | ALL] [STATISTICS |
STATS |DETAIL] [NO.PAGE] [LPTR n]

Synonym
LIST-INDEX

Description
The ECL LIST.INDEX command displays information about alternate key indexes
for a particular data file.

If LIST.INDEX completes successfully, UniData sets @SYSTEM.RETURN.CODE
to the number of indexes listed. If LIST.INDEX does not complete successfully,
UniData sets @SYSTEM.RETURN.CODE to
 -1.

For detailed information about indexes, see Using UniData.

Using Indexes Created in an Earlier Release
Keep the following in mind when upgrading or using an index that was created with
and earlier release of UniData:

 On UniData for UNIX, when upgrading from a release earlier than 3.3, you
need to rebuild indexes. UniData added a time stamp feature at Release 3.3.
 Indexes created at Release 4.1 of UniData for UNIX or Release 3.6 of
UniData for Windows NT, are not backwardly compatible. Beginning with
these releases, indexes were no longer compressed.

Tip: Use the UniBasic INDICES function to find out when an index was created.
 1-259

Parameters
The following table describes each parameter of the syntax.

LIST.INDEX Parameters

Parameter Description

filename The name of the UniData file.

attribute | ALL Indicates one or more alternate key indexes to be examined. If
you do not stipulate attribute, UniData displays all alternate key
indexes for the file.

STATISTICS | STATS Lists detailed statistical information about alternate key indexes
on filename. If you do not indicate the alternate key index name
(attribute), UniData provides statistics for all alternate key
indexes.
Note: Using this keyword on large files may adversely affect
system performance.

DETAIL Displays index entries.

NO.PAGE Prevents the report from pausing at the end of each display
page.

LPTR n Directs the report to logical printer n.

Examples
For the following example, we first created three alternate key indexes on the
ORDERS file. UniData displays information about these indexes:

:LIST.INDEX ORDERS
Alternate Key Index Details for File ORDERS Page 1
File.................. ORDERS
Alternate key length.. 20
Node/Block size....... 4K
OV blocks............. 1 (1 in use, 0 overflowed)
Indices............... 3 (1 D-type)
1-260 UniData Commands Reference

LIST.INDEX Display
The following table describes the column heading that display in output for the
LIST.INDEX command.

LIST.INDEX Display

Column
Heading Description

Index name Name of the index.

F-type Type of attribute indexed: D for data attribute, V for a virtual attribute.

K-type Type of index: Txt for text, Num for numeric.

Built “No” indicates that the index has not been built using the
BUILD.INDEX command; “Yes” indicates that the index has been
built. “Onln” indicates the index is currently being built online.

Empties “Yes” indicates that empty strings are indexed. “No” indicates that
empty strings are not indexes.

Dups “Yes” indicates that duplicate keys are allowed in the alternate key
index. “No” indicates that duplicate keys are not allowed.

In-DICT “Yes” indicates that the dictionary contains an attribute with the same
name as the index.

S/M “S” indicates that the indexed attribute is singlevalued. “M” indicates
that the indexed attribute is multivalued.

F-No/VF-expr The attribute location for alternate key indexes built on data attributes
(D-type) or the virtual attribute definition for alternate key indexes built
on virtual attributes (V_type).
 1-261

STATISTICS Display
The following table describes the column headings that display in the output for the
LIST.INDEX command when you include the STATISTICS keyword.

STATISTICS Display

Column Heading Description

Index name The index for which statistics are provided.

of Keys The total number of alternate key values in the index.

of OV Keys The total number of overflowed key values in the index.

Records per Alternate
key

The average, minimum, and maximum number of records
associated with each of the alternate key values.
1-262 UniData Commands Reference

The following example shows the STATISTICS display for a group of alternate key
indexes that we created for the ORDERS demo file. Page 2 contains the statistics.

:LIST.INDEX ORDERS STATISTICS
Alternate Key Index Details for File ORDERS Page 1
File.................. ORDERS
Alternate key length.. 20
Node/Block size....... 4K
OV blocks............. 1 (0 in use, 0 overflowed)
Indices............... 4 (1 D-type)
Index updates......... Enabled, No updates pending
Index-Name...... F-type K-type Built Empties Dups In-DICT S/M F-no/VF-
expr....
NAME V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’,
CLIENT_NO,’FNAME‘,’X’): “ “: TRANS(‘CLIENTS’,CLIENT_NO,’LNAME’,’
X’)
GRAND_TOTAL V Num Yes Yes Yes Yes S PRICE*QTY; SUM(S

OV blocks............. 1 (0 in use, 0 overflowed)
Indices............... 4 (1 D-type)
Index updates......... Enabled, No updates pending
Index-Name...... F-type K-type Built Empties Dups In-DICT S/M F-no/VF-
expr....
NAME V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’,
CLIENT_NO,’FNAME‘,’X’): “ “: TRANS(‘CLIENTS’,CLIENT_NO,’LNAME’,’X’)
GRAND_TOTAL V Num Yes Yes Yes Yes S PRICE*QTY; SUM(SUM(@1))
COUNTRY V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’,CLIENT_NO,’COUNTRY’,’X’)
PRODUCT_NO D Num Yes Yes Yes Yes M 4
Details for Index NAME in File ORDERS Page 2
Alternate Key Value # of Records for Key Overflowed
1 No
Adam Monterey 4 No
Al Elliott 1 No
Alicia Rodriguez 4 No
Andre Halligan 1 No
...
Statistics:
Records per Alternate Key
Index name # of Keys # of OV Keys Average Minimum Maximum
NAME 69 0 2.8 1 7
Details for Index GRAND_TOTAL in File ORDERS Page 6
Alternate Key Value # of Records for Key Overflowed
$0.00 1 No
$17.99 1 No
$39.95 1 No
$42.89 1 No
...
Statistics:
Records per Alternate Key
Index name # of Keys # of OV Keys Average Minimum Maximum

GRAND_TOTAL 189 0 1.0 1 2
...
 1-263

Related Commands
BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, DISABLE.INDEX,
ENABLE.INDEX,UPDATE.INDEX
1-264 UniData Commands Reference

LIST.LANGGRP

Syntax
LIST.LANGGRP

Synonym
LIST-LANGGRP

Description
The ECL LIST.LANGGRP command displays the current language group ID. For
more information about using UniData in languages other than English, see UniData
International.

Language Group ID
The following table shows the UniData language names (udtlang) and the language
group identifiers.

UniData Language Groups

Group # udtlang Name
Language Group
ID

Group 1 English (US, UK) 255/192/129

Group 2 Japanese (EUC)
French (ISO8859-1)
English_G2 (English)

159/130/129
 1-265

Example
The following example shows a LIST.LANGGRP display:

:LIST.LANGGRP
Current language group ID: 255/192/129
1-266 UniData Commands Reference

LIST.LOCKS

Syntax
LIST.LOCKS

Synonym
LIST-LOCKS

Description
The ECL LIST.LOCKS command displays all locks currently set on system
resources.

For more information on creating and clearing locks on system resources, see the
CLEAR.LOCKS and LOCK commands.

Any of the following UniData commands can issue locks that LIST.LOCKS displays.

Commands That Issue UniData Locks

Command How Lock Is Released

acctrestore UniData releases the lock when the account is restored (UniData finishes
reading the tape).

LINE.ATT ECL command. LINE.DET releases the lock.

LOCK UniBasic statement. UNLOCK releases the lock. For more information,
see the UniBasic Commands Reference.

LOCK num ECL command. BYE or a UniBasic UNLOCK statement releases the
lock.

PHL num PQN command.

T.ATT ECL command. T.DET releases the lock.
 1-267

Example (UniData for UNIX)
In the following example, UniData displays the status of all system resources that are
locked:

:LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
1 2253 1283carolw ts/1 semaphor -1 0 1 X 10:44:29 Jul 31
6 2365 1283carolw ts/6 semaphor -1 0 2 X 10:44:29 Jul 31

LIST.LOCKS Display
The following table describes the column headings that display in the output for the
LIST.LOCKS command.

LIST.LOCKS Display

Column
Heading Description

UNO Sequential number UniData assigns to the UniData session.

UNBR Process Group ID (pid) of the user setting the lock.

UID User ID of the user setting the lock.

UNAME Login name of the user setting the lock.

TTY Terminal device of the user setting the lock.

FILENAME File name in which the record is locked.

INBR I-node of the locked file.

DNBR Used in conjunction with INBR to define the file at the operating
system level.

RECORD ID Record ID of the locked record.

M Record lock mode.

TIME The time at which the lock was set.

DATE The date on which the lock was set.
1-268 UniData Commands Reference

Example (UniData for Windows Platforms)
In the following example, UniData displays the status of all system resources that are
locked:

:LIST.LOCKS
UNO UNBR UID UNAME FILE NAME RECORD ID M TIME DATE
002 122 1000 claireg semaphore 64 X 10:44:29 Jul 31
:

LIST.LOCKS Display
The following table describes the column headings of the LIST.LOCKS display.

LIST.LOCKS Display

Column
Heading Description

UNO The sequential number UniData assigns to the UniData session.

UNBR Process group ID of the user setting the lock.

UID User ID of the user setting the lock.

UNAME Login name of the user setting the lock.

FILE NAME The name of the file in which the record is locked. For resource locks,
the word “semaphore” displays.

RECORD ID Record ID of the locked record. For resource locks, the resource
number displays.

M Record lock mode.

TIME The time at which the lock was set.

DATE The date on which the lock was set.
 1-269

LIST.PAUSED

Syntax
LIST.PAUSED

Synonym
LIST-PAUSED

Description
The ECL LIST.PAUSED command lists all processes that have been paused with the
ECL PAUSE or UniBasic PAUSE command.

Example
The following example shows a typical LIST.PAUSED display. In the display, a
hyphen (-) indicates that no timeout period has been specified for the pause:

:LIST.PAUSED
Number of Paused Users
~~~~~~~~~~~~~~~~~~~~~~
5
UDTNO USRNBR UID USRNAME USRTYPE TTY LEFTTIME TOT_TIME
1 13656 1016 user1 udt pts/39 100 200
2 14430 1237 user2 udt pts/17 50 150
3 7484 1196 user3 udt pts/38 - -
1-270 UniData Commands Reference



LIST.PAUSED Display
The following table describes the column headings that display in the output for the 
LIST.PAUSED command.

LIST.PAUSED Display 

Column 
Headings Description

UNO Sequential number UniData assigns to the UniData session.

UNBR Process group ID of the paused session.

UID User ID of the user whose session is paused.

USRNAME Login name of the user whose session is paused.

USRTYPE Type of session that is paused.

TTY Terminal device of the user whose session is paused.

LEFTTIME Number of seconds left until the process resumes.

TOT_TIME Total number of seconds the process is paused.

Related Commands

UniData

LIST.PAUSED, PAUSE, WAKE

UniBasic Command
PAUSE, WAKE – For information, see the UniBasic Commands Reference.
     1-271



 

LIST.QUEUE

Syntax
LIST.QUEUE [USERNAME user_name | FILENAME filename | 
user_number][DETAIL]

Synonym
LIST-QUEUE

Description
The ECL LIST.QUEUE command lists processes that currently waiting for locks. If 
a process is waiting for a lock, LIST.QUEUE displays information about the holder 
of the lock and processes waiting for the lock. Locks are set by each udt process 
through the general lock manager (GLM) module.

UniBasic commands that check for locks, such as READU and READVU, cause 
processes to wait for locks to be released before proceeding.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

USERNAME user_name Lists all locks the user is waiting for. user_name is the 
operating system login name.

LIST.QUEUE Parameters 
1-272 UniData Commands Reference



Examples
The following example illustrates the output from the LIST.QUEUE command when 
you do not specify any parameters.

:LIST.QUEUE
FILENAME RECORD_ID M OWNER UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6031 2 pts/2 11:05:44 Aug 04
------------------------------------------------------------------
--------
FILENAME RECORD_ID M WAITING UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6130 4 ttyp1 11:05:54 Aug 04
INVENTORY 11060 X clair 6188 1 ttyp3 11:06:04 Aug 04

The next example illustrates the LIST.QUEUE output when you specify a user name:

:LIST.QUEUE USERNAME root
FILENAME RECORD_ID M OWNER UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6031 2 pts/2 11:35:46 Aug 04
------------------------------------------------------------------
--------
FILENAME RECORD_ID M WAITING UNBR UNO TTY TIME DATE
INVENTORY 11060 X root 6259 5 ttyp2 11:35:56 Aug 04
:

FILENAME filename Lists all users waiting for locks for the file name you 
specify.

user_number Lists all locks the user_number is waiting for. The user 
number can be found in the UNBR column of the 
LIST.READU and LIST.QUEUE output.

DETAIL Displays a detailed listing. 

Parameter Description

LIST.QUEUE Parameters (continued)
     1-273



 

The next example illustrates the LIST.QUEUE command output when you specify a 
file name:

:LIST.QUEUE FILENAME INVENTORY
FILENAME RECORD_ID M OWNER UNBR UNO TTY TIME DATE
INVENTORY 11060 X root 6259 5 ttyp2 11:38:16 Aug 04
------------------------------------------------------------------
--------
FILENAME RECORD_ID M WAITING UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6188 1 ttyp3 11:38:36 Aug 04

INVENTORY 11060 X clair 6031 2 pts/2 11:38:46 Aug 04
:

The final example shows the output from the LIST.QUEUE command when you 
specify a user number:

:LIST.QUEUE 6763
FILENAME RECORD_ID M OWNER UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6758 5 pts/3 14:16:26 Aug 04
------------------------------------------------------------------
--------
FILENAME RECORD_ID M WAITING UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6763 6 ttyp1 14:16:46 Aug 04
:

LIST.QUEUE Display
The LIST.QUEUE display in the previous examples use the default display. Infor-
mation about the owner of the lock is listed above the line. Information about 
processes waiting for the lock is listed below the line, sorted by the date and time the 
process requested the lock.

The following table describes the column headings that display in the output for the 
LIST.QUEUE command for the owner of the lock.

Column 
Heading Description

FILENAME The name of the file holding the lock.

RECORD_ID The record ID holding the lock.

M The type of lock held. X is an exclusive lock, S is a shared lock.

OWNER The user name of the owner of the lock.

LIST.QUEUE Owner Display 
1-274 UniData Commands Reference



The next table describes the LIST.QUEUE column headings for the processes 
waiting for locks.

LIST.QUEUE Waiting Display 

Column 
Heading Description

FILENAME The name of the file for which a lock is requested.

RECORD_ID The record ID of the record for which a lock is requested.

M The type of lock requested. X is an exclusive lock, S is a shared lock.

WAITING The user name of the process waiting for a lock.

UNBR The process ID (pid) of the user waiting for a lock.

UNO The sequential number UniData assigns to the udt process waiting for 
a lock.

TTY The terminal device of the user waiting for a lock.

TIME The time the lock was requested.

DATE The date the lock was requested.

UNBR The process group ID (pid) of the user who set the lock.

UNO The sequential number UniData assigns to the udt process for the owner 
of the lock.

TTY The Terminal device of the user owning the lock.

TIME The time the lock was set.

DATE The date the lock was set.

Column 
Heading Description

LIST.QUEUE Owner Display (continued)
     1-275



 

The following example illustrates the LIST.QUEUE display when you specify the 
DETAIL option:

:LIST.QUEUE DETAIL
FILENAME RECORD_ID M INBR DNBR OWNER UNBR UNO TTY TIME DATE
INVENTORY 10060 X 241938 1073807361 clair 13798 3 pts/0 14:48:47 
Nov 19
------------------------------------------------------------------
--------
FILENAME RECORD_ID M INBR DNBR WAITING UNBR UNO TTY TIME DATE
INVENTORY 10060 X 241938 1073807361 root 13763 1 ttyp2 14:48:57 
Nov 19

The following table describes the column headings that display in the output for the 
LIST.QUEUE command when you specify the DETAIL option.

LIST.QUEUE Detail Display 

Column 
Heading Description

FILENAME The name of the file for which a lock is held.

RECORD_ID The record ID of the record for which a lock is held.

M The type of lock held. X is an exclusive lock, S is a shared lock.

INBR The i-node of the file holding the lock.

DNBR Used in conjunction with the INBR to define the file holding the lock 
at the operating system level.

OWNER The user name of the process holding the lock.

UNBR The process ID (pid) of the user holding a lock.

UNO The sequential number UniData assigns to the udt process holding a 
lock.

TTY The terminal device of the user holding a lock.

TIME The time the lock was set.

DATE The date the lock was set.
1-276 UniData Commands Reference



The next table describes the column headings that display in the output for the 
LIST.QUEUE command when you specify the DETAIL option for processes waiting 
for locks.

LIST.QUEUE Detail Display 

Column 
Heading Description

FILENAME The name of the file for which a lock is requested.

RECORD_ID The record ID of the record for which a lock is requested.

M The type of lock held. X is an exclusive lock, S is a shared lock.

INBR The i-node of the file for which a lock is requested.

DNBR Used in conjunction with the INBR to define the file for which a lock 
is requested at the operating system level.

WAITING The user name of the process requesting a lock.

UNBR The process ID (pid) of the user requesting a lock.

UNO The sequential number UniData assigns to the udt process requesting a 
lock.

TTY The terminal device of the user requesting a lock.

TIME The time at which the lock was requested.

DATE The date on which the lock was requested.
     1-277



 

LIST.READU

Syntax
LIST.READU [user_number | ALL | FILENAME filename | USERNAME 
user_name] [DETAIL]

Synonym
LIST-READU

Description
The ECL LIST.READU command displays a list of file and record locks. You can 
display information about file and record locks by user number, user name, or file 
name, or you can display all READU locks.

Note: Use the GETUSER command to retrieve your user number. Execute LISTUSER 
to find out the user numbers for other users.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

user_number Displays all locks held by the user number you specify.

ALL Displays all currently active locks.

FILENAME filename Displays all active locks associated with the file name you 
specify. If the file name does not reside in the current account, 
nothing is displayed.

LIST.READU Parameters 
1-278 UniData Commands Reference



Examples
The following example illustrates the output from the LIST.READU command when 
you do not specify any options:

:LIST.READU
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
4 6739 0 root ttyp5 INVENTOR 24193 10738 11000 X 16:22:13 Aug 04
5 6758 1172 clair pts/3 INVENTOR 24193 10738 10060 X 16:21:53 Aug 04
:

The next example illustrates the output from the LIST.READU command when you 
specify a user number. The user number can be found in the output from the 
LIST.QUEUE and LIST.READU commands under the UNBR column.

:LIST.READU 6739
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE

4 6739 0 root ttyp5 INVENTOR 24193 10738 11000 X 16:25:44 Aug 04
:

The next example illustrates output from the LIST.READU command when you 
specify a user name:

:LIST.READU USERNAME claireg
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
5 6758 1172 clair pts/3 INVENTOR 24193 10738 11060 X 16:28:14 Aug 04
:

The final example illustrates output from the LIST.READU command when you 
specify a file name:

:LIST.READU FILENAME INVENTORY
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
4 6739 0 root ttyp5 INVENTOR 24193 10738 11000 X 16:28:24 Aug 04
5 6758 1172 clair pts/3 INVENTOR 24193 10738 11060 X 16:28:14 Aug 04
:

USERNAME user_name Displays all active locks associated with the user name you 
specify.

DETAIL Displays detailed information.

-N Scrolls display of the list without pausing at the bottom of 
each page.

Parameter Description

LIST.READU Parameters (continued)
     1-279



 

LIST.READU Column Headings
The following table describes the column headings of the LIST.READU display.

LIST.READU Column Headings 

Column 
Heading Description

UNO The sequential number UniData assigns to the udt process that set the 
lock.

UNBR The process ID of the user who set the lock.

UID The user ID of the user who set the lock.

UNAME The login name of the user who set the lock.

TTY The terminal device of the user who set the lock.

FILENAME The file name in which the record is locked.

INBR The i-node of the locked file.

DNBR Used in conjunction with INBR to define the file at the operating 
system level.

RECORD_ID The record ID of the locked record.

M The type of lock. X indicates an exclusive lock. S indicates a shared 
lock.

TIME The time at which the lock was set.

DATE The date on which the lock was set.
1-280 UniData Commands Reference



LIST.TRIGGER

Syntax
LIST.TRIGGER [DATA | DICT] filename

Synonym
LIST-TRIGGER

Description
The ECL LIST.TRIGGER command displays a list of triggers.

For more information about triggers, see Developing UniBasic Applications.

Note: UniData triggers monitor the update or deletion of records in UniData files. 
When a trigger is present and a user attempts to update or delete records in the file, 
the trigger executes a user-defined, globally cataloged, UniBasic subroutine.

Parameters
The following tables describes each parameter of the syntax.

LIST.TRIGGER Parameters 

Parameter Description

filename A UniData file name.

DATA Lists triggers associated with the data file. This is the default behavior.

DICT Lists triggers associated with the dictionary file.
     1-281



 

Example
The following example shows how UniData displays trigger information with the 
LIST.TRIGGER command:

:LIST.TRIGGER ORDERS
BEFORE UPDATE TRIGGER: DEMO_RTN
BEFORE DELETE TRIGGER: not defined
:

Related Commands
CREATE.TRIGGER, DELETE.TRIGGER
1-282 UniData Commands Reference



LIST.USERSTATS

Syntax
LIST.USERSTATS

Description
The LIST.USERSTATS command displays statistics of UniData activities. If you 
have issued the ENABLE.USERSTATS command, UniData displays statistics for 
your process only. If you have not issued the ENABLE.USERSTATS command, 
UniData displays statistics collected for your process since UniData was started.
     1-283



 

Example
The following example illustrates the output from the LIST.USERSTATS command:

:LIST.USERSTATS
File I/O Statistics
Physical File Opens........ 0
File Closes................ 0
Temp File Closes........... 0
Dynamic File Split......... 0
Dynamic File Merge......... 0
Record Reads............... 12
Record Writes.............. 0
Record Deletes............. 0
Level 1 Overflow........... 0
Level 2 Overflow........... 0
Program Control Statistics
Private Code Calls......... 0
Shared Code Calls.......... 0
Shared Code Failures....... 0
CALLC Calls................ 0
Chain Calls................ 0
Gosub Calls................ 0
Goto Calls................. 0
Execute Calls.............. 0
Pcperform Calls............ 0
Dynamic Array Statistics
DELETE..................... 0
FIND....................... 0
INSERT..................... 0
LOCATE..................... 0
MATPARSE................... 0
MATCHFIELD................. 0
COUNT...................... 0
EXTRACT.................... 0
FIELD...................... 0
REMOVE..................... 0
REPLACE.................... 0
INDEX...................... 0
Lock Statistics
Record Locks............... 0
Record Unlocks............. 0
Semaphore Locks............ 0
Semaphore Unlocks.......... 0
Shared Group Locks......... 24
Exclusive Group Locks...... 0
Shared Index Locks......... 0
Exclusive Index Locks...... 0
Lock Failures.............. 0
Index Statistics
Index Reads................ 0
Index Writes............... 0
Log Reads.................. 0
1-284 UniData Commands Reference



Log Writes................. 0
Node Merges................ 0
Node Split................. 0
Node Reuse................. 0
Overflow Reads............. 0
Overflow Writes............ 0
:

     1-285



 

LISTPEQS

Syntax
LISTPEQS

Synonym
SP-LISTQ

Description
The ECL LISTPEQS command lists the status of all requests made to the system 
printer by the requesting process. This command operates like the UNIX lpstat 
command. If the print queue for the process is empty, UniData returns to the ECL 
prompt.

For more information about lpstat, see your UNIX system documentation.

Note: LISTPEQS is supported on UniData for UNIX only.
1-286 UniData Commands Reference



LISTPTR

Syntax
LISTPTR

Description
The ECL LISTPTR command displays the printers defined for your system.

Examples
The following example displays printers defined for a UNIX system:

:LISTPTR
device for hpzone4: /dev/null
device for hpzone3: /dev/null
device for parallel: /dev/c1t0d0_l
:

The next example displays printers defined for a Windows platform:

:LISTPTR
Unit.. Printer................... 
Port.......................Status..
0 \\DENVER4\hpzone3 hpzone3 Running
1 LEGAL \\DENVER4\hpzone4 Running
:

     1-287



 

LISTUSER

Syntax
LISTUSER

listuser [-i] [-n]

Description
The ECL LISTUSER command and the system-level listuser command display the 
number of users licensed for your installation and a list of the UniData processes 
currently running.

In the event a UniData user session aborts through a power failure or other abnormal 
circumstance, UniData registers the aborted process as an active user, and it appears 
as such in the LISTUSER display. Eventually, the cleanupd daemon will detect these 
processes and remove the aborted process from the user list.

On UniData for UNIX, enter the system-level listuser command with the -i option to 
display the IP address of the UniData processes currently running.

If device licensing is enabled, use the -n option when using the system-level listuser 
command to display the total number of udt/sql users, even when device licensing is 
enabled. 

Note: Noninteractive phantom processes do not count against the number of 
UniData licenses.

Tip: To remove aborted processes that register as active users, use the system-level 
deleteuser command. For more information about deleteuser, see Administering 
UniData.
1-288 UniData Commands Reference



Example (UniData for UNIX)
The following example displays users for which UniData is licensed and number 
currently active:

:LISTUSER
Max Number of Users UDT SQL TOTAL

~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
32 3 0 3
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 27398 1210 amyc udt 13:32:18 Jul 23 1999
4 27286 1172 claireg udt pts/1 09:45:04 Jul 23 1999
5 27319 1283 carolw udt pts/2 10:12:10 Jul 23 1999
:

LISTUSER Display
The following table describes the column headings in the LISTUSER display.

LISTUSER Display

Parameter Description

UDTNO Sequential number UniData assigns to each user.

USRNBR System-level process ID (pid) assigned to a UniData session.

UID System-level ID assigned to a user.

USRNAME Login name of the user.

USRTYPE Type of process the user is running.

TTY Device ID.

TIME Time the user process started.

DATE Date the user process started.
 1-289

Example (UniData for Windows Platforms)
LISTUSER output on UniData for Windows Platforms is shown in the following
example:

:LISTUSER
Max Number of Users UDT SQL TOTAL
~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
16 4 0 4
UDTNO USRNBR UID USRNAME USRTYPE TTY IP-ADDRESS TIME DATE
1 131 1404 claireg udt pts/1 Console 14:34:02 Jul 22 1999
2 122 500 Administ udt pts/2 192.245.122.28 14:41:37 Jul 22 1999
3 98 1001 USER01 udt pts/3 192.245.122.28 15:24:17 Jul 22 1999
4 156 1404 claireg udt pts/4 Console 15:18:11 Jul 22 1999
5 154 500 Administ phantom pts/5 Console 15:30:43 Jul 22 1999
:

LISTUSER Display Attributes
The following table lists the LISTUSER command display attributes.

LISTUSER Display Attributes 

Parameter Description

UDTNO Sequential number UniData assigns to each user.

USRNBR Process ID of the UniData session.

UID Windows ID of the user.

USRNAME Login name of the user.

USRTYPE Type of process the user is running.

TTY Session identifier, formed by concatenating the string “pts/” and the 
UDTNO.

IP-ADDRESS Location where the session is logged on; either “Console” or a valid IP 
address. 

TIME The time at which the user process started.

DATE The date on which the user process started.
1-290 UniData Commands Reference



Related Command
GETUSER
     1-291



 

LO
LO is a synonym for the BYE command. For more information, see BYE.

Synonyms
BYE, QUIT
1-292 UniData Commands Reference



LOCK

Syntax
LOCK resource [NO.WAIT]

Description
The ECL LOCK command reserves a resource for exclusive use by your process.

If you do not use the NO.WAIT keyword, your process waits until the resource has 
been released.

Note: A UniData resource lock behaves like a system-level semaphore lock.

To release a lock set by your process, execute CLEAR.LOCKS or 
SUPERCLEAR.LOCKS. Resource locks are automatically released when the user 
session ends.

Parameters
The following table describes each parameter of the syntax.

LOCK Parameters 

Parameter Description

resource A number, from 0 to 63, inclusive, that identifies the resource to be 
reserved. UniData can identify 64 resources.

NO.WAIT Your process returns to ECL if the resource is locked, without waiting for 
the resource to become available.
     1-293



 

Example (UniData for UNIX)
In the following example, the LOCK command reserves resource 2. Then, 
LIST.LOCKS lists the current system resource locks:

:LOCK 2
:LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
5 27319 1283carolw ts/2 semaphor -1 0 2 X 13:54:49 Jul 2:

Example (UniData for Windows Platforms)
In the following example, the LOCK command reserves resource 2. Then, 
LIST.LOCKS lists the current system resource locks:

:LOCK 2
:LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME RECORD_ID M TIME DATE
1 251 1049668 claireg Console semaphore 1 X 19:14:44 Nov 03

Related Commands
CLEAR.LOCKS, LIST.LOCKS, SUPERCLEAR.LOCKS
1-294 UniData Commands Reference



log_install

Syntax
log_install [-l | -a | -h]

Description
The system-level log_install command initializes the Recoverable File Systems log 
files and archive files using information from the log configuration table and the 
archive configuration table. When you use this command, the UniData daemons must 
not be running. For more information about this command and recoverable files, see 
Administering the Recoverable File System.

To use this command, you must log on as root.

Tip: We recommend that you run cntl_install, which invokes log_install, rather than 
executing log_install directly.

Parameters
The following table describes each parameter of the syntax.

log_install Parameters 

Parameter Description

-l Default. Initializes log files only.

-a Initializes both archive files and log files. If you include this option when the 
archiving system is not enabled, only the log configuration table gets 
installed.
Tip: To enable archiving, set the ARCH_FLAG parameter in the UniData 
configuration file to any positive integer.

-h Displays online help for log_install.
     1-295



 

Example
The following example illustrates the log_install command with the -a option:

# log_install -a
WARNING: log_install will replace your log files, if they exist, 
without
making a backup copy. Do not run log_install unless you are 
certain you
no longer need your earlier log files for recovery.
Do you want to continue? (Y/N) [n]
y
..........
#

Related Command
cntl_install
1-296 UniData Commands Reference



LOGTO

Syntax
LOGTO account

Description
The ECL LOGTO command changes the current process to another account. 
account must exist in the directory udthome on the home file system, or you must 
provide the full path to account.The LOGOUT paragraph is not executed when you 
log to another account.

Note: Ordinarily, whenever you change to an account, UniData executes the login 
paragraph for that account unless you are logged on as root on UniData for UNIX 
or as Administrator on UniData for Windows Platforms. Set UDT.OPTIONS 20 to on 
to remove this exception. (With UDT.OPTIONS 20 on, UniData executes the login 
paragraph when a root or Administrator user switches accounts.)

Tip: On UniData for UNIX, execute UNIX ln -s in udthome to create a symbolic link. 
This enables you to distribute accounts over multiple file systems while still using 
LOGTO.

Examples
In the following example, the user executes the LOGTO command to switch to the 
UniData demo database account. The ECL WHERE command that precedes and 
follows the example displays the current account. These examples are taken from 
UniData for UNIX. On UniData for Windows Platforms, the path contains the 
backslash.

:WHERE
/home/carolw/demo
:LOGTO demo
:WHERE
/users/ud72/demo
:

     1-297



 

You can return to the original account with the LOGTO command, as shown in the 
following example:

:WHERE
/disk1/ud72/demo
:LOGTO /home/carolw/demo
:WHERE
/home/carolw/demo
:

1-298 UniData Commands Reference



LS

Syntax
LS [path]

Description
The ECL LS command displays the files that reside in the current account or in path. 
path may be a DIR-type file or a file pointer (F-type).

Examples
The following example shows an LS command display for the current account:

:LS
BP D_CLIENTS D_STATES INVENTORY _HOLD_
BP_SOURCE D_COURSES D_STUDENT MENUFILE _PH_
CATEGORIES D_CTLG D_TAPES ORDERS _REPORT_
CLIENTS D_CUSTOMER D_VOC PARAGRAPHS _SCREEN_
COURSES D_INVENTORY D__HOLD_ SAVEDLISTS __V__VIEW
CTLG D_MENUFILE D__PH_ STAFF savedlists
CUSTOMER D_ORDERS D__REPORT_ STATES vocupgrade
D_BP D_PARAGRAPHS D__SCREEN_ STUDENT
D_BP_SOURCE D_SAVEDLISTS D___V__VIEW TAPES
D_CATEGORIES D_STAFF D_savedlists VO
:

The next example shows output when LS is executed against a dynamic hashed file 
in the UniData demo database. This file is in an overflow state, and at least one index 
exists for this file:

:LS ORDERS
dat001

idx001
over001

Related Command
LSL
     1-299



 

LSL

Syntax
LSL

Description
The ECL LSL command displays a long listing of all of the files in a UniData 
account.

On UniData for UNIX, the first line of this report is the total number of files in the 
account. Subsequent lines list the files and subdirectories on the first level of the 
account. On UniData for Windows Platforms, LSL executes the MS-DOS dir 
command. LSL does not list files in subdirectories.

Example
The following example shows an LSL display on UniData for UNIX:

:LSL
total 570
drwxrwxrwx 2 root sys 24 Jul 11 16:17 BP
drwxrwxrwx 2 root sys 1024 Jul 17 10:06 BP_SOURCE
-rw-rw-rw- 1 root sys 4096 Jul 11 16:17 CATEGORIES
-rw-rw-rw- 1 root sys 21504 Jul 11 16:17 CLIENTS
-rw-rw-rw- 1 root sys 4096 Jul 11 16:17 COURSES
drwxrwxrwx 2 root sys 24 Jul 11 16:17 CTLG
-rw-rw-rw- 1 root sys 4096 Jul 11 16:17 CUSTOMER
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_BP
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_BP_SOURCE
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_CATEGORIES
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_CLIENTS
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_COURSES
...

Related Command
LS
1-300 UniData Commands Reference



lstt

Syntax
lstt [-l n |-Lpid]

Description
The system-level lstt command displays details about local control tables (LCTs) in 
shared memory. See Administering UniData for more information about shared 
memory and LCTs.

Parameters
The following table describes each parameter of the syntax.

lstt Parameters 

Parameter Description

-l n Displays additional information about a designated local control table 
identified by n, a local control table.

-L pid Displays additional information about a local control table identified by a 
pid, (a system-level process identification number of a group leader).
     1-301



 

Example
The following example shows general statistical information about all LCTs on a 
system:

% lstt
----------------------- LCTs Statistics -----------------------
Total LCTs (Process Groups allowed): 40

LCTs Used (Active Process Groups): 5 (12% of 40) Total Ps: 10
Total Global Pages Used: 12 (1536K bytes)
Total Self-created.....: 0 (0K bytes)
Total memory used......: 1536K bytes
-------------------- End of LCTs Statistics -------------------
:

Related Commands
gstt, sms
1-302 UniData Commands Reference



MAG_RESTORE

Syntax
MAG_RESTORE [-D] [-E] [-G | GB] [-GC]  
[-H[DYNAMIC0 | DYNAMIC1]]  
[-O] [-S] [-U [0-9]] [-M [0-3]] 
[-X char_list][-Kn][-A outputfile][-C filename][-B outputfile][-T directory] 
[-R ALL | filelist] [-L [0-9]] 
[acct_name]

Description
The system-level MAG_RESTORE command restores a PRIME® account that was 
saved to tape with the PRIME MAGSAV command with REV19, NO_ACL, on the 
same level as the User File Directory (UFD). For each MAGSAV, only one logical 
volume may be included. MAG_RESTORE restores accounts, with their original 
names, to the current directory. If UniData cannot read a name from the tape, it uses 
acct_name. If acct_name is the name of an account that does not exist in the current 
directory, UniData executes the newacct command to create a new one. When 
multiple accounts exist on a single save, UniData prompts for owner and group for 
each account.

PRIME ® dynamic files are restored as UniData dynamic files. Hash type 0 is 
assigned if -HDYNAMIC is not specified.

MAGSAV saves in variable-length blocks. UniData reads the tape as a single block, 
or reads the first six blocks to determine block size.

Tip: If you have saved very large data files (larger than 1 gigabyte) from PRIME ® , 
we recommend that you create the target UniData files as dynamic before you begin 
the restore. Assign a modulo to accommodate a file about 40 percent larger than the 
original PRIME file. (When converting PRIME ® files larger than 1.5 gigabytes, the 
UniData dynamic files created are approximately 40 percent larger.)

Note: Execute this command at the operating system prompt.
     1-303



 

Parameters
The following table lists the MAG_RESTORE parameters.

Parameter Description

-D Overwrites hashed files in an existing account with files from tape, 
but does not create new files. Does not restore dictionary files.

-E Clears each file on disk.

-GB MAGSAV writes data in variable-length blocks. However, when a 
tape is copied with the UNIX dd command, data is written onto the 
new tape in fixed-length blocks. -GB reads a backup tape created in 
this way.

-GC Reads PRIME 2350 (60-mb cartridge) tapes. -GC is valid for UniData 
releases after 2.2.2.

-HDYNAMIC0 Converts all restored files to dynamic with hash type 0.

-HDYNAMIC1 Converts all restored files to dynamic with hash type 1.

-O Overwrites all data in the account, including that in dictionary and 
DIR-type files, from tape. The files must already exist in the current 
directory.
Note: Execute MAG_RESTORE -C to create the files on disk before 
executing MAG_RESTORE -O to populate them.

-S Truncates file names to 12 characters in length. This parameter is not 
necessary if you run MAG_RESTORE on an operating system that 
automatically shortens file and program names.

-U [0-9] Indicates a tape unit from which to read. The tape unit must be 
described in the tapeinfo file in udthome/sys. Default is 0. UniData 
reserves unit 9 for disk image.
Tip: Use the SETTAPE command first to set the tape unit.

-M [0-3] Converts data based on one of the following options:
? 0 – Default. No conversion. Data is assumed to be ASCII.

? 1 – EBCDIC conversion.

? 2 – Invert high bit.

? 3 – Swap bytes.

MAG_RESTORE Parameters 
1-304 UniData Commands Reference



-X char_list char_list indicates characters to be considered invalid for:
? file names

? account names

? record IDs in DIR-type files

? While restoring, UniData converts these characters to underscore 
(_). If the resulting name conflicts with an existing account name, 
UniData adds a character to the end of the name to make it unique. 
For example: A&B becomes A_B. If A_B is used by another file, 
the name become A_Ba.

? Default invalid characters are the following: space * ? / & ‘.

? You cannot specify nonprinting characters as invalid.

Do not separate characters in char_list with spaces or commas. 

-K n Defines the size of the internal memory buffer (in kilobytes). Default 
size is 8000 K.
System restoration performs best when buffer size is large. Change 
the size to match the capacity of your operating system.

-A filename Creates filename, an ASCII text file, in the current directory, 
containing statistics about each file on the tape. -A does not restore 
files. See “Preparing for Restoration” following this table.

-B outputfile Adjusts the modulo or block size for outputfile. The list should 
contain a line entry for each file. To adjust these elements, format the 
entries as in this example:
file1, 1, 203
file2, 4, 101
file3, 3, -1
file4, -1, 11
Note: “-1” tells MAG_RESTORE to keep the original modulo or 
block size multiplier.

-C filename Reads the file created by a previous execution of MAG_RESTORE 
with the -A filename option. Creates, in the current directory, the files 
listed in filename, but does not restore data.

Parameter Description

MAG_RESTORE Parameters (continued)
     1-305



 

Preparing for Restoration
We recommend that you the follow this procedure to make the restoration more 
efficient. Use the -A parameter in conjunction with -C and -O to determine file status 
before files are loaded. This decreases load time, because UniData then does not have 
to resize files during restoration.

-T Separates the working directory and the target directory. Optionally 
places the working directory on RAM-DISK to improve system 
performance. RAM-DISK has a faster I/O speed but less disk space. 
Optionally places the target directory on another system through the 
Network File System (NFS) to overcome disk shortage.

-R filelist | ALL Restores both data and dictionary portions of files listed in filelist. 
You create filelist, an ASCII file containing a single-line entry for 
each file to be ignored. The syntax for each line is as follows:
PRIME_filename
Use the ALL keyword to load all of the files that are on the tape but 
are not currently in the account.

-L [0-9] Adjusts the file pointer position. -L can restore the account to any 
directory level. Each directory occupies 48 bytes.
Use the following numeric indicators to set the file pointer to the 
correct directory in the path:
? 0 – MAGSAV executed in the account’s own directory.

? 1 – Default. MAGSAV executed at a directory level higher than the 
account.

? 2 - 9 – Supports nested accounts.

Tip: Before you use MAGSAV on PRIME® accounts that you intend 
to restore with MAG_RESTORE, be certain the PRIME® accounts 
are on the same directory level with the User File Directory (UFD).

acct_name New name fro the restored account to be used if UniData cannot 
obtain a name from the account on tape.

Parameter Description

MAG_RESTORE Parameters (continued)
1-306 UniData Commands Reference



1. Execute MAG_RESTORE -A filename to generate a file containing 
statistics about the files on tape. Use these statistics to evaluate the 
suitability of the projected modulo, file type, and file separation.
filename is stored in the current directory. For each file, UniData lists the 
following on a single line separated by commas:
 The position of the file on the tape.
 The type of UniData file.
 The name of the UniData file.
 The file separation.
 The original modulo of the file on tape IBM recommends a modulo based 
on the number of records and the size of the file. This recommended modulo 
is never smaller than the original modulo.
 The proposed key length.
 The total record length for the file.
 The number of records in the UniData file.

2. Use an ASCII text editor to modify the file generated in Step 1 as desired. 
For example, you might eliminate files from the list that you do not want 
UniData to restore.

3. Execute MAG_RESTORE -C filename to create new UniData files in the 
destination directory. Remember, filename must be the name of the file 
created in Step 1. Add other parameters as desired.

4. Execute MAG_RESTORE -O filename to load the data and dictionary 
records into the files created in Step 3. Add other parameters as desired.

UniData may display any of the following messages during the restore.

Message Description

Create file modulo 
separator [---newfile]

UniData is loading the file using the modulo and block size 
multiplier found on the tape. If the file name contains invalid 
characters or is too long, UniData changes its name to “newfile.”

DUMP_MD UniData is reading an MD file.

DICT UniData is reading a dictionary file.

DATA UniData is reading a single-level hashed data file.

MAG_RESTORE Messages 
     1-307



 

Files Created by MAG_RESTORE
MAG_RESTORE creates the following output files during the restore.

MAG_RESTORE Output Files 

File Name Description

DUMP_VOC Hashed file. VOC in PRIME® systems and Pick® systems.

pgm_map Hashed file. Lists long file names changed to short file names.

dispmsg Text file. Saves screen display messages including error and dump 
messages displayed at end-of-reel. UniData saves the first 70 characters 
displayed.

resize_list Text file. Lists the names of files that need to be resized.

idx_list Text file. Saves index information on the account.

DIR UniData is reading a single-level sequential file.

LF UniData is reading a multi-level hashed data file.

LD UniData is reading a multi-level sequential file.

Loading (filename) ... UniData is loading the data into existing files rather than 
creating files. This is the default when you run 
MAG_RESTORE with the -D or -O option.

Replace to multi-level 
success

A single-level file changed to a multi-level file.

Replace to multi-level 
failure

UniData failed to change a single-level file into a multi-level 
file.

Resize (filename) to 
new modulo --- 
(modulo)

The file called filename has an inadequate modulo; UniData 
resized the file to a more efficient modulo (modulo).

Create file failure UniData failed to create the file.

Open file failure UniData failed to open the file.

Message Description

MAG_RESTORE Messages (continued)
1-308 UniData Commands Reference



MAKE.MAP.FILE

Syntax
MAKE.MAP.FILE

Synonym
MAKE-MAP-FILE

Description
The ECL MAKE.MAP.FILE command rebuilds the _MAP_ file, which contains 
information on globally cataloged UniBasic programs. _MAP_ is located in 
udthome/sys on UniData for UNIX or udthome\sys on UniData for Windows 
Platforms.

This command does the following:

Clears _MAP_
Executes SELECT CTLGTB (global catalog space) and, for each key in the 
select list, verifies that the file still exists in udthome/sys/CTLG/x on 
UniData for UNIX or udthome\sys\CTLG\x on UniData for Windows 
Platforms. If it does, UniData writes a record for it in the _MAP_ file.

Tip: Use the UniQuery LIST or ECL MAP command to view the contents of the 
_MAP_ file.

Related Command
MAP
     1-309



 

makeudapi

Syntax
makeudapi

Description
The system-level makeudapi command builds a new UniData executable 
(udapi_slave) with links to C programs so that they are accessible through InterCall, 
UniObjects, or UniObjects for Java.

Note: This command is supported on UniData for UNIX only.

The command reads the following files:

 base.mk – This is a version of the make file, and is located in 
udthome/work. UniData uses base.mk as a template for creating new.mk, 
then executes new.mk to create the new udapi_slave executable.
 cfuncdef – This function definition file is also located in udthome/work. It 
contains definitions for C functions that UniData has incorporated into the 
current release of UniData. Do not modify this file.
 cfuncdef_user – This file contains definitions for site-specific C functions 
that you want to link into InterCall, UniObjects, or UniObjects for Java.
 UniData Libraries – When you install UniData, you are prompted for the 
path where you want to locate these.

Note: It is best to log on as root to execute makeudapi. UniData may be up and 
running, and users may be logged on. However, if users are logged on, the makeudapi 
command may not allow you to overwrite the production udapi_slave, depending on 
your operating system. Some operating systems display an error message and exit, 
while others prompt you to decide whether you want to overwrite the production 
udapi_slave. If the production version is not overlaid, you must manually copy it.

Related Command
makeudt
1-310 UniData Commands Reference



makeudt

Syntax
makeudt [-n nfa]

Description
The system-level makeudt command builds a new UniData executable (udt).

Note: This command is supported on UniData for UNIX only.

The command reads the following files:

 base.mk – This is a version of the make file, and is located in 
udthome/work. UniData uses base.mk as a template for creating new.mk, 
then executes new.mk to create the new udt executable.
 cfuncdef – This function definition file is also located in udthome/work. It 
contains definitions for C functions that UniData has incorporated into the 
current release of UniData. Do not modify this file.
 cfuncdef_user – This file contains definitions for site-specific C functions 
that you want to link into UniData.
UniData Libraries –  When you install UniData, you are prompted for the 
path where you want to locate these.

For detailed information about building a UniData executable, see Administering 
UniData or Developing UniBasic Applications.

Note: It is best to log on as root to execute makeudt. UniData may be up and running, 
and users may be logged on. However, if users are logged on, the makeudt command 
may not allow you to overwrite the production udt, depending on your operating 
system. Some operating systems display an error message and exit, while others 
prompt you to decide whether you want to overwrite the production udt. If the 
production version is not overlaid, you must manually copy it.
     1-311



 

Parameters
The following table describes the parameters of the syntax.

makeudt Parameter 

Parameter Description

-n nfa Use this option only if you are not using UniData OFS/NFA. This option 
uses “dummy” libraries rather than network libraries required by NFA. 
Software development environments may or may not include the network 
libraries; if yours does not include these, and you do not use the -n nfa 
option, makeudt fails. 
1-312 UniData Commands Reference



MAP

Syntax
MAP

Description
The ECL MAP command rebuilds the _MAP_ file and displays its contents on the 
terminal screen. The _MAP_ file, located in udthome/sys on UniData for UNIX or in 
udthome\sys on UniData for Windows Platforms, contains information about 
globally cataloged UniBasic programs.

Tip: You can also use the UniQuery LIST command to view the contents of _MAP_, 
for example, LIST _MAP_ ALL.

For more information on UniBasic programs, see Developing UniBasic 
Applications.For more information on catalog space, see Administering UniData.

Example
In the following example, UniData rebuilds and displays the contents of the _MAP_ 
file to the terminal screen:

:MAP
MAP 09:15:33 Jun 23 1999 1
NAME............ TYPE ARG ORIGINATOR.......... WHO.... OBJ... DATE.... LAST 
REF
508E S 41 @UDTHOME/SYS_BP 508E root 184 05/15/99 05/15/99
COUNT.MSG S 31 @UDTHOME/DENAT_BP CO root 582 05/15/99 05/15/99
UNT.MSG
SORT_AE S 11 @UDTHOME/AE_BP SORT_ root 1650 05/15/99 05/15/99

AE
7201 S 41 @UDTHOME/SYS_BP 7201 root 180 05/15/99 05/15/99
NFA.EXECSEL.U S 31 @UDTHOME/SYS_BP NFA. root 154 05/15/99 05/15/99
EXECSEL.U
S_VALID_FILE_CHE S 61 @UDTHOME/SYS_BP S_VA root 1712 05/15/99 05/15/99
CK LID_FILE_CHECK
.
.
.

     1-313



 

MAP Display
The following table describes the column headings that display in the output for the 
MAP command.

MAP Display 

Column Heading Description

NAME Name of the cataloged program.

TYPE Type of the cataloged program:
? M – Main program

? S – Subroutine

ARG Number of parameters in the call.

ORIGINATOR Full path to the file where the program was cataloged.

WHO Login name of the user who cataloged the program.

OBJ Size of the object code in bytes.

DATE Date the program was cataloged.

LAST REF Date the program was last accessed.

Related Command
MAKE.MAP.FILE
1-314 UniData Commands Reference



MAX.USER

Syntax
MAX.USER number

Synonym
MAX-USER

Description
The ECL MAX.USER command determines the maximum number of users who can 
log on to UniData. If MAX.USER is less than the number of users currently logged 
on, UniData does not force current users to log out.

After stopping and starting UniData (stopud and startud), the number of users is 
reestablished to the number licensed. To reset to this number without stopping and 
restarting UniData, use MAX.USER with the correct number, or -1.

If you set MAX.USER to 0 (zero) and exit UniData, you will have to restart the 
daemons to start UniData again.

Note: To execute MAX.USER, you must log on as root on UniData for UNIX or as 
Administrator on UniData for Windows Platforms.

Tip: Use MAX.USER for limiting the number of users on the system during system 
maintenance.
     1-315



 

mediarec

Syntax
mediarec [-s [MM:DD:YY:]HH:MM[:SS]] [-e [MM:DD:YY:] HH:MM [:SS]]  
[-f path/filename][-T start_LSN[,end_LSN]]

Description
The mediarec command restores changes to your recoverable files by applying 
archives since the last backup.

Parameters
The following table describes the parameters for the syntax.

mediarec Parameters 

Parameter Description

[-s] Specifies the recovery start time. If you do not use the -s parameter, the 
whole archive set (from the last backup to current) is recovered.

[-e] Specifies the recovery end time. If you do not use the -e parameter, the 
whole archive set (from the last backup to current) is recovered.

[-f] Specifies a file that contains a list of files (one path and file name per line) 
to recover. If you do not use the -f parameter, mediarec recovers all file.s

[-T] Specifies the starting LSN and the ending LSN for media recovery. If you 
only specify the starting LSN, mediarec will prompt for the next 
sequential LSN.
1-316 UniData Commands Reference



Example
In the following example, the mediarec command restores a database:

Screen Example
#mediarec
Using UDTBIN=/usr/ud72/bin
For media recovery, you would be required to have space for two
temporary files, one to hold the largest archive file and another
to hold the largest CP size. Please note the following info,
read documentation about media recovery procedure and re-start
media recovery.
Max CP Size (in bytes): 54272
Max Arch File Size (in bytes): 4218880
Also, if youre planning to use the tape(s) created by archive
process, please setup restore script 
/usr/ud51/include/arch_restore properly
(tape device) and load the first archive tape.
Do you want to continue?(y/n)[n]
All output and error logs have been saved
to /usr/ud52/bin/saved_logs directory.
SMM is started.
Starting media recovery... Please wait.
For media recovery, youll be asked to upload
archive files one by one by sequence number into
the /usr/ARCH file.
de_arch: reading archive file on disk
The file TEST may have been deleted at OS level
If you choose to not re-create this file now,
the Media Recovery will be aborted to keep
the system transaction consistent.
Would you like it re-created? (y/n) [y]y
Deleting file D_TEST.
Deleting file TEST.
Create file D_TEST, modulo/1,blocksize/1024
Hash type = 0

Create dynamic file TEST, modulo/5,blocksize/1024
Hash type = 1
Added “@ID”, the default record for UniData to DICT TEST.
....
Please check /usr/ud72/FileInfo for un-recovered file level 
operations.
*****!!! Media Recovery Finished!!!*****
SM stopped successfully.
SMM stopped successfully.
Media Recovery finished.
Please use /usr/ud72/bin/startud to start the system
     1-317



 

memresize

Syntax
memresize [DICT] filename [modulo [,block.size.multiplier]] [TMPPATH 
pathname] [TYPE {0 | 1}] [MEMORY buf_size] [RESTORE] [STATIC | 
[DYNAMIC] [KEYONLY |KEYDATA][PARTTBL part_tbl]] [NOPROMPT] 
[OVERFLOW]

Description
The system-level memresize command resizes a hashed file in size, modulo, block 
size, or hashing algorithm. memresize also converts between static and dynamic 
hashed files and changes the split/merge type and the part table for dynamic files. 
memresize operates in an internal memory buffer and writes to disk only when the 
buffer becomes full or when the memresize operation completes.

Parameters
The following table describes the parameters of the syntax.

Parameter Description

DICT Resizes the dictionary portion of filename.

filename The name of the file to be resized.

modulo The new modulo number to be assigned to the file.

block.size.multiplier An integer between 0 and 16 that UniData uses to determine file 
size. See “Estimating the File Size” in the CREATE.FILE 
command for more information about sizing files.

TMPPATH pathname The path where UniData locates a working copy of the file 
during resizing. The default is /tmp on UniData for UNIX or 
\TEMP on UniData for Windows Platforms. This parameter has 
no effect if the resulting file is a dynamic file.

memresize Parameters 
1-318 UniData Commands Reference



TYPE {0 | 1} Hash type for the resized file.

MEMORY buf_size Size in kilobytes of memory buffer used for the operation. 
memresize may perform faster with a larger memory allocation. 
The minimum size is 256K. The default on most systems is 
8000K (8 MB). You can assign as much memory as is available 
on your system. For example, 12000 assigns 12 MB of memory 
to the memresize command.

RESTORE Skip over file corruption that cannot be fixed, but continue 
resizing the file. Use this parameter when a file must be restored 
regardless of corruption.

STATIC After resizing, the file is a static hashed file.

DYNAMIC After resizing, the file is a dynamic hashed file.

KEYDATA After resizing, the file is dynamic and the split/merge type is 
KEYDATA.

KEYONLY After resizing the file is dynamic and the split/merge type is 
KEYONLY (the default).

PARTTBL,part_tbl After resizing, file is a dynamic file. part_tbl is the path and file 
name of a previously established part table. memresize copies 
part_tbl into the dynamic file directory. The copy of part_tbl in 
the dynamic file directory serves as the “per-file” part table for 
the dynamic file.
Note: This option is supported on UniData for UNIX only.

NOPROMPT If you specify this parameter, memresize does not prompt you to 
free disk space if it encounters a file system full. memresize 
removes the temporary file that was under construction and 
quits, leaving the original, live file untouched. UniData displays 
messages to the screen.

OVERFLOW If specified, UniData creates a dynamic file with an overflow file 
for each dat file. For example, over001 corresponds to dat001, 
over002 corresponds to dat 002, and so forth. When the file is 
cleared, UniData maintains this overflow structure.

Parameter Description

memresize Parameters (continued)
     1-319



 

Additional Information
Notice the following points about memresize options:

 Specifying DYNAMIC, KEYONLY, KEYDATA, or PARTTBL on the 
command line causes the resized file to be dynamic.
 The DICT option is invalid if combined with any of the DYNAMIC 
options.
 You cannot convert UniData system files (for instance, a VOC file or the 
ERRMSG file) into a dynamic file. memresize reports an error and fails.
 The TMPPATH option is invalid if any DYNAMIC options are specified 
(or if the starting file is dynamic and no file type options are specified).
 If the starting file is recoverable, the resized file is recoverable. If the 
starting file is nonrecoverable, the resized file is nonrecoverable.
 If the starting file has an index, memresize uses the following logic to 
handle index related files:

 If both the starting file and the resulting file are STATIC, leave the 
index file and index log file unchanged.
 If the starting file is STATIC and the resulting file is DYNAMIC, copy 
the index file to idx001 and the index log file (if it exists) to xlog001 in 
the dynamic file directory.
 If the starting file is DYNAMIC, and the resulting file is STATIC, and 
the starting file has only one index part file (idx001) and no more than 
one index log file (xlog001), copy idx001 to X_filename and xlog001 
(if it exists) to x_filename on UniData for UNIX or L_filename on 
UniData for Windows Platforms in the account directory.
 If the starting file is DYNAMIC and the resulting file is STATIC, and 
the starting file has more than one index part file, do not process the 
index or index log files. Display a message directing the user to re-
create and rebuild the indexes.
 If both the starting file and the resulting file are DYNAMIC, simply 
copy the index file or files and the index log file (if there is one) to the 
new dynamic file resident directory.
1-320 UniData Commands Reference



Default Rules
The following table lists the default rules for memresize. Refer to this table to 
determine settings for any memresize options that are not explicitly set on the 
command line.

memresize Parameters:Default Rules 

Parameter Default

block.size.multiplier Same as starting file.

DICT Specifies the dictionary portion of the file. If not specified, 
memresize the data portion of filename.

modulo Same as the current modulo of the starting file.

PARTTBL Not applicable if starting file or resulting file is STATIC. If 
starting file and resulting file are dynamic, use the starting 
file’s per-file part table if there is one. If the starting file does 
not have a per-file part table, use the system default part 
table (current setting of PART_TBL configuration 
parameter or environment variable).
Note: This option is supported on UniData for UNIX only.

STATIC | DYNAMIC Same as the starting file.

KEYONLY | KEYDATA Same as the starting file.

TMPPATH On UniData for UNIX, /tmp by default. On UniData for 
Windows Platforms, \TEMP by default. You can specify 
another path for memresize to use as work space.

TYPE {0 | 1} Same as the starting file.
     1-321



 

Examples
The following examples were generated on UniData for UNIX in the order in which 
they appear by using a copy of the INVENTORY file from the UniData demo 
database. In the following example, FILE.STAT displays information before 
resizing:

:FILE.STAT INVENTORY
File name (Recoverable Dynamic File) = INVENTORY
Number of groups in file (modulo) = 19
Dynamic hashing, hash type = 0
Split/Merge type = KEYONLY
Block size = 1024
File has 2 groups in level one overflow.
Number of records = 175
Total number of bytes = 13505
...

In the next example, memresize converts the file to a static file, with a new modulo.

:!memresize INVENTORY 23 STATIC
Resize INVENTORY mod(,sep) = 23(,-1) type = -1 memory = 8000 (k) 
static
175 record(s) in file.
INVENTORY RESIZED from 19 to 23
Total time used =2 (sec)
:FILE.STAT INVENTORY
File name (Recoverable Static File) = INVENTORY
Number of groups in file (modulo) = 23
Static hashing, hash type = 0
Block size = 1024
File has 1 groups in level one overflow.
Number of records = 175
Total number of bytes = 13505
...

Notice that parameters that were not specified (for instance, 
block.size.multiplier,MEMORY,and TYPE) were not changed. Some of these param-
eters appear as -1 in the memresize output, indicating they are not changed.

In the next example, memresize converts the file to a KEYDATA dynamic file with 
a per-file part table on UniData for UNIX.

:!memresize INVENTORY MEMORY 12000 KEYDATA PARTTBL 
/home/terric/parttbl
1-322 UniData Commands Reference



Resize INVENTORY mod(,sep) = 0(,-1) type = -1 memory = 12000 (k) dynamic

KEYDATA PARTTBL=/home/terric/parttbl
RESIZE file INVENTORY to 23.
175 record(s) in file.
INVENTORY RESIZED from 23 to 23
Total time used =1 (sec)
:FILE.STAT INVENTORY
File name (Recoverable Dynamic File) = INVENTORY
Number of groups in file (modulo) = 23
Dynamic hashing, hash type = 0
Split/Merge type = KEYDATA
Block size = 1024
File has 2 groups in level one overflow.
Number of records = 175
Total number of bytes = 13505
...
:!ls -l INVENTORY
total 6
lrwxrwxrwx 1 terric unisrc 41 Jun 16 15:06 dat001 -> /usr/uni-data/
partfiles/ABINVENTORY/dat001
lrwxrwxrwx 1 terric unisrc 42 Jun 16 15:06 over001 -> /usr/uni-data/
partfiles/ABINVENTORY/over001
-rw-rw-rw- 1 terric unisrc 72 Jun 16 15:06 parttbl

Notice that after memresize is executed, INVENTORY is a dynamic file even though 
the DYNAMIC keyword was not specified. Because KEYDATA and PARTTBL are 
applicable only to dynamic files, using these keywords produces a dynamic file. The 
dynamic file directory contains links to dat001 and over001 and the per-file part table 
(parttbl).

Note: The per-file part table is a valid option on UniData for UNIX only.

Related Command
RESIZE
     1-323



 

MENUS

Syntax
MENUS

Description
The ECL MENUS command invokes the MENUS utility, through which you can 
modify, display, and print VOC records.

For more information about using the UniData MENUS utility, see Using UniData.

Example
When you execute the MENUS command, UniData displays the main menu:

:MENUS
MENU Maintenance 15:10:53 Jul 31 1999
1= Enter/Modify a MENU
2= Enter/Modify a formatted MENU
3= Display a summary of all MENUs on a MENU file
4= Display the contents of a MENU
5= Enter/Modify a VOC MENU selector
6= Enter/Modify a VOC stored sentence item
7= Display all MENU selector item on the VOC file
8= Display all stored sentence items on the VOC file
9= Display the dictionary of a file
10= Print a summary of all MENUs on a MENU file
11= Print the contentes of a MENU
12= Print the dictionary of a file
13= Enter/Modify a VOC stored paragraph item
which would you like? (1 - 13)=
1-324 UniData Commands Reference



MESSAGE

Syntax

UniData for UNIX

MESSAGE [!port][user][*]string

UniData for Windows Platforms

MESSAGE [user][!tty][*]string

Description (UniData for UNIX)
The ECL MESSAGE command sends text to one or more user terminals.

You must have write permission on the target terminal to send a message to that 
device.

You can use the UNIX mesg command to set permissions that control access to your 
terminal. Add this command to your .login or .profile file to set this for each work 
session. See your operating system documentation for more instructions on the mesg 
command and setting permissions.

Note: Use the WHO command to determine user login names and port numbers.
     1-325



 

Parameters
The following table describes each parameter of the syntax.

MESSAGE Parameters 

Parameter Description

!port The terminal assigned to a user on the same computer.
Tip: Execute any of the following to get !port (login name):
? MYSELF

? !who am i

? !tty

? LISTUSER

user The ID (login name) of the user to receive the message.

* Directs the message to all user terminals.

string The message to be sent.

Examples
In the following example, sends a message to all users:

:MESSAGE * The system will shut down in three minutes.

The preceding message displays as follows on all user terminals:

From carolw /dev/pts/6 : The system will shut down in three 
minutes.

Description (UniData for Windows Platforms)
The ECL MESSAGE command directs UniData to send text to a designated user, to 
a designated session, or to all users.

Note: On UniData for Windows Platforms, UDT.OPTIONS 90 (U_MESSAGE_RAW) 
enables users to suppress the display of sender information in MESSAGE output.
1-326 UniData Commands Reference



Parameters
The following table describes each parameter of the syntax.

Message Parameters 

Parameter Description

user The login name of the user who is to receive the message.

!tty Sends a message to the terminal whose “tty” you specify. 
Note: Displays the tty with the ECL LISTUSER command.

* Sends a message to all users.

string The message to be sent to users.

Examples
The following example shows MESSAGE output with and without UDT.OPTIONS 
90 turned on. For the example, sender and receiver are the same process:

:UDT.OPTIONS 90 OFF
:MESSAGE USER01 “Accounts Payable update is complete.”
From USER01 127.0.0.1: “Accounts Payable update is complete.”
:UDT.OPTIONS 90 ON
:MESSAGE USER01 “Accounts Payable update is complete.”
“Accounts Payable update is complete.”
:

Notice that only the message string itself displays if UDT.OPTIONS 90 is on.
     1-327



 

The next two examples illustrate the !tty option. The following example records a 
session where two messages were sent, one with and one without UDT.OPTIONS 90:

:LISTUSER
Max Number of Users UDT SQL TOTAL
~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
16 3 0 3
UDTNO USRNBR UID USRNAME USRTYPE TTY IP-ADDRESS TIME DATE
1 68 1404 claire udt pts/1 Console 15:35:41 Jul 21 1999
2 140 1001 USER01 udt pts/2 192.245.122.28 17:21:19 Jul 21 1999
3 132 500 Administ udt pts/3 192.245.122.28 17:22:05 Jul 21 1999
:myself
Administrator pts/3 17:22:05 Jul 21 1998 (192.245.122.28)
:MESSAGE !pts/2 “The General Ledger update is complete.”
:UDT.OPTIONS 90 ON
:MESSAGE !pts/2 “The meeting was canceled.”
:

The following message records a session at the terminal where the two messages
were received:

:MYSELF
USER01 pts/2 17:21:19 Jul 21 1999 (192.245.122.28)
:From Administrator 192.245.122.28: “The General Ledger update is
complete.”
“The meeting was canceled.”
:

1-328 UniData Commands Reference

MIN.MEMORY

Syntax
MIN.MEMORY TEMP n

Synonym
MIN-MEMORY TEMP

Description

The ECL MIN.MEMORY TEMP command overrides the UniData configuration
parameter MIN_MEMORY_TEMP, which defines the number of local pages
reserved in memory for a UniData session. The default configuration parameter
setting is 64.

Example
The following example sets MIN_MEMORY_TEMP to 128:

:MIN.MEMORY TEMP 128
 1-329

mvpart

Syntax
mvpart filename/part_name destination

Description
The system-level mvpart command moves one or more part files of a dynamic file.
mvpart sets or resets symbolic links if needed and creates or updates a prefix table
(.fil_prefix_tbl) at the destination location if needed. Using mvpart ensures that the
links, file locations, and prefix tables remain synchronized.

Note: mvpart is supported on UniData for UNIX only.

mvpart is an offline tool. If you execute mvpart while the UniData daemons are
running, an error message displays and the command fails.

Parameters
The following table describes each parameter of the syntax.

mvpart Parameters

Parameter Description

filename UNIX path and file name of the dynamic file directory. Cannot be a
synonym or SETFILE pointer.

part_name Name of the part file you wish to move (for instance, dat00x, over00x,
idx00x).

destination Location to place the part file being moved. Must be either “.” or a fully
qualified UNIX path. Must be an entry in the part table for filename. Use
“.” to move a part file back to its original dynamic file directory.
1-330 UniData Commands Reference

Examples
The following examples were generated from a copy of the INVENTORY file from
the UniData demo account. The first example shows how the file was created and
populated:

:CREATE.FILE PRODUCTS 19 DYNAMIC PARTTBL /home/terric/parttbl
Create file D_PRODUCTS, modulo/1,blocksize/1024
Hash type = 0
Create dynamic file PRODUCTS, modulo/19,blocksize/1024
Hash type = 0
Split/Merge type = KEYONLY
Added “@ID”, the default record for UniData to DICT PRODUCTS.
:COPY FROM DICT INVENTORY TO DICT PRODUCTS ALL
@ID exists in PRODUCTS, cannot overwrite
15 records copied
:COPY FROM INVENTORY TO PRODUCTS ALL
175 records copied
:!ls -l PRODUCTS
total 6
lrwxrwxrwx 1 terric unisrc 32 Jun 3 09:35 dat001 -> /tmp/part-files/
ACPRODUCTS/dat001
lrwxrwxrwx 1 terric unisrc 33 Jun 3 09:35 over001 -> /tmp/part-files/
ACPRODUCTS/over001
-rw-rw-rw- 1 terric unisrc 35 Jun 3 09:35 parttbl

Notice that the per-file part table (parttbl) is in the dynamic file directory. The dat001
and over001 are physically located on a different file system. The location of dat001
and over001 is determined by the part table, shown in the next example:

:!more ./PRODUCTS/parttbl
. 10000000
/tmp/partfiles 10000

The following example shows how to move the dat001 back to the dynamic file
directory. Notice that it is not necessary to set your current working directory to the
UniData account:

pwd
/usr/ud61
$UDTBIN/mvpart $UDTHOME/demo/PRODUCTS/dat001 .
ls -l $UDTHOME/demo/PRODUCTS
total 44
-rw-rw-rw- 1 root sys 20480 Jun 3 09:46 dat001
lrwxrwxrwx 1 claireg unisrc 33 Jun 3 09:35 over001 -> /tmp/part-
files/
ACPRODUCTS/over001
-rw-rw-rw- 1 claireg unisrc 35 Jun 3 09:35 parttbl

Notice these points about the preceding example:

 You must be logged on as root to execute mvpart.
 1-331

 You can execute mvpart from any directory as long as you specify the full
path and file name for the dynamic file directory. If it is located in your
current directory, you can specify its relative path.
 When you specify . in the command line, the part file is moved to its
original dynamic file directory, not to your current directory.

The following example shows what happens if a user executes the mvpart command
while the UniData daemons are running:

:!mvpart
mvpart has detected that the UniData daemons are running.
The system administrator must stop the daemons (with stopud)
before mvpart can execute.

Warning: If you want to relocate part files, shut down UniData and use mvpart. Do
not use the UNIX cp or mv command, or your file may be damaged and UniData may
crash. Also, the cp and mv commands do not update symbolic links or the
.fil_prefix_tbl.
1-332 UniData Commands Reference

MYSELF

Syntax
MYSELF

Description
The ECL MYSELF command displays the following session information for the
user logged on to the terminal where the command is executed:

 The login name.
 On UniData for UNIX, the terminal identification number (tty).
 On UniData for Windows Platforms, the tty number is a session identifier
constructed by appending the udtno (displayed in the output from
LISTUSER) to the string pts/.
 The date and time the user logged on to UniData.
 On UniData for Windows Platforms, the terminal identification (Console or
IP address).

Example
The following example shows a MYSELF command display on UniData for UNIX:

:MYSELF
carolw pts/6 Jul 31 10:41
:

 1-333

newacct

Syntax
newacct [account.owner][group]

Description
The system-level newacct command creates a UniData account in the current
directory.

If you do not specify an account owner or group, newacct lists the available owners
and groups and prompts for them. A maximum of 4096 login names are displayed.
You can limit the login names or groups by specifying account owner and group in
the command line.

For more information about creating new UniData accounts, see Administering
UniData.

Note: Unless you log on as root on UniData for UNIX or Administrator on UniData
for Windows Platforms, UniData uses your current login and group ID and ignores
your responses to the prompt.
1-334 UniData Commands Reference

Example
The following example creates a new UniData account:

$UDTBIN/newacct
The UDTHOME for this account is /disk1/ud72/.
Do you want to continue(y/n)? y
Current directory is ‘/home/carolw’
......................... List of Users
abuls croweb jeffa linq pamm spooler ukm01
adm daemon jeffreyk lisac pasche srcman uks01
...

carolw
...
Please enter account owners login name: carolw
......................... List of Groups
acctg consulting lp nuucp root tty
adm daemon lp other sbusers ukusers
adm daemon mail other sys unisrc
bin dw mail remusers sys users
bin guests nogroup root techserv users
Please enter the account group name: users
Initializing the account ...
#

 1-335

newhome

Syntax
newhome path

Description
The system-level newhome command creates an alternate global catalog space for
globally cataloged UniBasic programs.

newhome creates or overlays the directory indicated by path, and then copies all files
from udtbin/sys to path/sys on UniData for UNIX or to udtbin\sys to path\sys on
UniData for Windows Platforms. After setting up the new home account, you must
reset the environment variable udthome to point to the new home account. Also, you
must recatalog UniBasic programs or copy their object code to the new catalog space
to make them available to the new account.

newhome does not create the entire directory structure that exists in the default
udthome, and it does not copy UniBasic executables developed at your site.

Note: To execute the newhome command, you must be root on UniData for UNIX or
Administrator on UniData for Windows Platforms.

See Administering UniData for more information on creating an alternate global
space and for managing cataloged UniBasic programs.
1-336 UniData Commands Reference

Files and Directories Created by newhome
UniData creates or overlays the directory indicated by path. This directory will
contain only the subdirectory sys, which contains the following files and directories:

ls
@README CTLGTB D_HELP.FILE LANGGRP

@README-IMPORTANT DENAT_BP D_JAPANESE.MSG MULTIBYTE.CONFI
@VERSIONS DICT.DICT D_MSG.DEFAULTS SAVEDLISTS
AE_BP D_AE_BP D_SAVEDLISTS SYS_BP
AE_COMS D_AE_COMS D_SYS_BP UDTSPOOL.CONFIG
AE_COMS_DEMO D_AE_DOC D_UDT_GUIDE VOC
AE_DOC D_BP D_VOC X_HELP.FILE
AE_SECURITY D_COLLATIONS D__MAP_ _MAP_
AE_SYSTOOLS D_CTLG D__PH_ _PH_
AE_UPCHARS D_CTLGTB ENGLISH.MSG makefile
AE_XCOMS D_DENAT_BP ENGLISH_G2.MSG set_sys.sh
BP D_ENGLISH.MSG FRENCH.MSG uniapi.msg
COLLATIONS D_ENGLISH_G2.MSG HELP.FILE vocupgrade
CTLG D_FRENCH.MSG JAPANESE.MSG

The following files and directories make up the program catalog spaces:

 D_CTLGTB
 CTLGTB
 D_CTLG
 CTLG, including subdirectories a through z and X for storing globally
cataloged programs.

Creating an Alternate Catalog Space on UniData for
Windows Platforms
Complete the following steps to create an alternate global catalog space on UniData
for Windows Platforms:

1. Log on to Your System
Log on to your system as an Administrator.

2. Create the Folder
Use the MS-DOS mkdir command to create the folder (or create it through
Windows Explorer or My Computer). Then use the Security tab on the fold-
ers Properties sheet to give Administrators Full Control permissions to
Administrators.
 1-337

3. Set UDTHOME Environment Variable
To execute the newhome command, you must set the environment variable
UDTHOME to point to the directory you just created. The following exam-
ple shows how to create the directory and set UDTHOME from the MS-
DOS command prompts.
Note: Do not change the value of UDTHOME for any other users until you
have completed all the steps for the new alternate global catalog space.
1-338 UniData Commands Reference

4. Execute newhome
The system-level newhome command copies relevant files from the default
udthome into the directory you specified with the UDTHOME environment
variable.
The following screen illustrates typical output from the newhome
command:

The next screens show the results of the newhome command. The first
screen shows the udthome directory. Notice that the command has created
and populated the sys and include directories.

Notice that the newhome command created and populated two
subdirectories: sys and include. newhome does not create the entire direc-
tory structure that exists in the default udthome.
The newhome command also copies all globally cataloged programs
released with UniData into the alternate global catalog. newhome does not
copy UniBasic programs that you developed at your site. .
 1-339

5. Activate the Alternate Global Catalog
Complete the following steps to begin using the alternate global catalog
space. Remember that the value for the UDTHOME environment variable
determines which global catalog space a user accesses when cataloging a
program or executing a globally cataloged program. The VOC pointer for
CTLGTB determines which global catalog table the user accesses.

Modify VOC Pointer – Decide which UniData accounts should access
the new global catalog space. For each such account, modify the VOC
entry for the global catalog table to point to the new location. Users can
still compile and catalog if this VOC pointer and the UDTHOME
environment variable are not consistent, but they may encounter
puzzling results, since CTLGTB and CTLG will not necessarily match.

You can make the VOC entry a soft pointer, so that the current setting for
the UDTHOME environment variable determines the location of both the
global catalog and the global catalog table. The following screen shows an
example of a soft VOC pointer:

Modify UDTHOME Environment Variable for Users – You need to
reset the UDTHOME environment variable for each user who should
access the alternate global catalog space. The value of UDTHOME this
is defined during a particular UniData session determines which global
catalog space a user accesses. Users with access to the Control Panel or
the MS-DOS prompt can reset UDTHOME.
Move Application Programs Into the New Space – Enter UniData in an
account where your application programs reside, and globally catalog
all the programs that should be accessed from the new space. Since you
have reset UDTHOME, cataloging the programs globally locates them
in the new catalog space.
1-340 UniData Commands Reference

Creating an Alternate Catalog Space on UniData for
UNIX
Follow the steps below to create an alternate global catalog space:

1. Make New Directory
At the system prompt, create the directory for the new global catalog space,
then change to the new directory, as shown in the following example:
% mkdir claireg
% cd claireg
% pwd
/disk1/claireg

2. Execute newhome
Execute the newhome command, indicating the path to the location for the
new account. In this case, a new UNIX directory, testenv, will be created
under /disk1/claireg:
% newhome testenv
Creating new UniData home /disk1/claireg/testenv ...
UniData has created the new home account. This account contains only the
sys directory with UniData’s cataloged programs. To access your new home
account, you must reset the UDTHOME environment variable.

3. Set UDTHOME Environment Variable
To access the new home account, reset the UDTHOME environment
variable.
From the Bourne or Korn shell:

UDTHOME=/disk1/claireg/testenv;export UDTHOME
From the C shell:

% setenv UDTHOME /disk1/claireg/testenv
 1-341

4. Make UniBasic Programs Available
Make available to the new account any globally cataloged UniBasic pro-
grams. You can do this by setting a VOC pointer to the old catalog space, or
by copying the cataloged programs into the new account:

VOC pointer – You can associate CTLGTB with udthome by setting up
a VOC pointer in each account. The pointer looks like this:
F
@UDTHOME/sys/CTLGTB
@UDTHOME/sys/D_CTLGTB/
Copy object code records – To copy all globally cataloged programs,
enter the following series of UNIX commands, replacing
original_udthome and new_udthome with the paths to your program
files:
%cd original_udthome/sys/CTLG
find * -type f -print | cpio -pm new_udthome/sys/CTLG
1-342 UniData Commands Reference

NEWPCODE

Syntax
NEWPCODE path

Description
The ECL NEWPCODE (new pseudo-code) command activates the latest version of
a program. path is the full path to the new object code for the program. The
NEWPCODE command is effective only in the udt session from which it is executed.

If a UniBasic program CALLs or EXECUTEs another program or subroutine,
UniData executes the version that was cataloged when the calling program began
executing unless you do one of the following:

Stop and restart the executing program.
Execute NEWPCODE to activate another version

You do not need to execute NEWPCODE if you globally catalog a program because
global cataloging notifies the shared memory server that a new version is available.
However, if you catalog the program locally or directly, you do need to execute
NEWPCODE to remove the object code from local memory.

Tip: Use NEWPCODE in a UniBasic program to modify, recompile, recatalog, and
retest it without exiting to ECL. An example is provided in the following section.

For more information about writing programs in UniBasic, see Developing UniBasic
Applications.
 1-343

Example
In the following UniBasic program, notice that, until NEWPCODE is executed,
UniData executes the version of the program in shared memory. The line that
contains the NEWPCODE command is shown in bold.

EXECUTE “DELETE.CATALOG test”; * START CLEAN
OPEN ‘BP’ TO BP ELSE STOP
* create simple BASIC program to print HELLO
REC = ‘PRINT “HELLO”’
WRITE REC ON BP, “test”
*compile, catalog, and run the program
EXECUTE “BASIC BP test”
EXECUTE “CATALOG BP test”
EXECUTE “test”
*Change TEST program to print HELLO THERE, recompile and run
again.
BPREC = ‘PRINT “HELLO THERE”’
WRITE BPREC ON BP, “test”
EXECUTE “BASIC BP test”
PCPERFORM “cp BP/_testc /disk1/ud72/sys/CTLG/t/testc”
* instead of using
*EXECUTE “CATALOG BP test FORCE”
EXECUTE “testc”
* HELLO is still printed on the screen.
* Note: /usr/ud is the path to the UniData home directory.
EXECUTE “NEWPCODE /disk1/ud72/sys/CTLG/t/testc”
EXECUTE “testc”
* HELLO THERE is printed on the screen
END

The preceding program displays the following output:

:BASIC BP TEST_NEWP
Compiling Unibasic: BP/testc in mode ‘u’.
compilation finished
HELLO
Compiling Unibasic: BP/testc in mode ‘u’.
compilation finished

HELLO
HELLO THERE

Related Command
newversion
1-344 UniData Commands Reference

newversion

Syntax
newversion path_program user[,userM...,userN]

Description
The system-level newversion command replaces the UniBasic executable in shared
memory with a newly cataloged version. Programs and subroutines are replaced only
when the calling and called programs are in use.

newversion differs from NEWPCODE in that newversion requires that you specify a
user or users to obtain the new version, and all other users obtain the previous
version. NEWPCODE, on the other hand, changes the version of a program in shared
memory for all users.

Use this command at the system prompt, or use the ECL ! (bang) command to execute
it from the ECL (colon) prompt.
 1-345

You can define the users who have permission to execute the newversion command
by modifying the udtconfig file. To define the users, create an entry in udtconfig for
NEWVERSION_USERS, followed by the user numbers allowed to execute
newversion. Separate each user number with a comma. If you want all users to be
able to execute newversion, set the user number to ALL, as shown in the following
example:

cd /usr/ud72/include
vi udtconfig
“udtconfig” 140 lines, 2486 characters
Unidata Configuration Parameters
#
Section 1 Neutral parameters
These parameters are required by all Unidata installations.
1.1 System dependent parameters, they should not be changed.
LOCKFIFO=1
SYS_PV=3

1.2 Changable parameters
NFILES=60
NUSERS=20
WRITE_TO_CONSOLE=0
TMP=/tmp/
NVLMARK=
FCNTL_ON=0
TOGGLE_NAP_TIME=161
NULL_FLAG=0
N_FILESYS=200
N_GLM_GLOBAL_BUCKET=101
N_GLM_SELF_BUCKET=23
GLM_MEM_ALLOC=10
GLM_MEM_SEGSZ=4194304
NEWVERSION_USERS=ALL
.
.
.

If you do not modify the udtconfig file, you must log on as root on UniData for UNIX
or as Administrator on UniData for Windows Platforms to execute the newversion
command.

For more information about cataloging UniBasic programs, see the CATALOG
command or Administering UniData.

Tip: Use the LISTUSER command to obtain a list of process IDs (USRNBR).
1-346 UniData Commands Reference

Parameters
The following table describes each parameter of the syntax.

newversion Parameters

Parameter Description

path_program The full path to the new version of a compiled program.

user Process ID the administrator assigns to a UniData session. If you specify
more than one user, separate user numbers with spaces.

Related Commands
CATALOG, NEWPCODE
 1-347

NODIRCONVERT

Syntax
NODIRCONVERT [ON | OFF]

Description
The NODIRCONVERT command provides the ability to read and write items in a
DIR-type file without translating any characters.

Parameters
The following table describes each parameter of the syntax:

NODIRECONVERT Parameters

Parameter Description

ON Newlines are not converted to field marks when read from a DIR-type file.

OFF READ statements convert newlines to field marks. The WRITE statement
converts them back to newlines. This is the default setting.
1-348 UniData Commands Reference

ON.ABORT

Syntax
ON.ABORT command

Synonym
ON-ABORT

Description
The ECL ON.ABORT command identifies a command that UniData executes when
a UniBasic program aborts. command may be an ECL command, a paragraph, or a
directly or globally cataloged UniBasic program. This setting remains in effect until
you clear it with the CLEAR.ONABORT command.

Note: UDT.OPTIONS 105, U_EXECUTE_ONABORT, determines whether to allow
ON.ABORT to take effect from a PERFORM or EXECUTE statement in UniBasic.
For more information about this option, see the UDT.OPTIONS Commands
Reference.

Examples
The following is a VOC entry for a paragraph called APOLOGY. This paragraph
displays “This program has terminated. We are sorry for the inconvenience.”

VOC RECORD ID==>APOLOGY
0 @ID=APOLOGY
1 F1=PA
2 F2=DISPLAYThis program has terminated. We are sorry for the
inconvenience.
 1-349

Here is a UniBasic program that always aborts because it contains the ABORT
command:

DISPLAY “This example shows what happens when a program aborts if
you set ON.ABORT in UniData.”
DISPLAY “For more information about the ON.ABORT command, refer to
the following material:”
ABORT
DISPLAY “UniData Commands Reference”

This example sets ON.ABORT to the paragraph APOLOGY, then runs TEST_PROG,
which aborts when it reaches the ABORT command. Then APOLOGY executes,
displaying its message.

Finally, the cursor returns to the UniData colon prompt.

:ON.ABORT APOLOGY
:RUN BP TEST_PROG
This example shows what happens when a program aborts if you set
ON.ABORT in UniData.
For more information about the ON.ABORT command, refer to the
following material:
This program has terminated. We are sorry for the inconvenience.
:

Related Command
CLEAR.ONABORT
1-350 UniData Commands Reference

ON.BREAK

Syntax
ON.BREAK command

Synonym
ON-BREAK

Description
The ON.BREAK command executes command, a VOC paragraph, or a sentence
when the user presses the interrupt key during execution of UniQuery statement in
the current UniData session. By default, the cursor returns to the environment from
which the ON.BREAK command was executed.

Tip: Use ON.BREAK to allow users to break out of report display, but then offer a
menu rather than allowing them access to the ECL prompt.

For more information on creating VOC sentences and paragraphs, see Using
UniData.

The interrupt key must first be enabled by setting PTERM -BREAK ON. See your
operating system documentation for instructions on setting the interrupt key.

After the user presses the break key, UniData displays the default break message:

BREAK: Enter Q<return> to Quit. Any other character to continue

ON.BREAK does not change or remove this prompt. command executes after the
user enters Q and presses ENTER.

Examples
The following example displays the VOC sentence BREAK.KEY:

001: S
002: DISPLAY You have pressed the BREAK key.
 1-351

The following example demonstrates the effect of setting ON.BREAK to execute the
preceding sentence. First ON.BREAK is set to execute BREAK.KEY. Then the user
executes LIST CLIENTS LNAME.

:ON.BREAK BREAK.KEY
:LIST CLIENTS LNAME
LIST CLIENTS LNAME 11:27:54 Jun 06 1999 1
CLIENTS... Last Name......
9999 Castiglione
10034 Anderson
9980 Ostrovich
10015 di Grigorio
...
Enter <New line> to continue...

At this point, the user presses the BREAK key. The default prompt displays, to which
the user responds by entering Q and pressing ENTER. Notice that the header for the
report displays again.

BREAK: Enter Q<return> to Quit. Any other character to continueQ
LIST CLIENTS LNAME 11:30:45 Jun 06 1999 2
CLIENTS... Last Name......

Finally, the sentence BREAK.KEY executes, and the cursor returns to the ECL
prompt:

You have pressed the BREAK key.
:

Related Commands
CLEAR.ONBREAK, PTERM
1-352 UniData Commands Reference

PAGE

Syntax
PAGE filename record

Description
The ECL PAGE command displays the contents of a record to the screen.The display
pauses at the bottom of each page and continues after the user presses ENTER.

Parameters
The following table describes each parameter of the syntax.

PAGE Parameters

Parameter Description

filename A UniData file name.

record A record in filename. You can list only one record ID on the command line.
 1-353

Example
The following example displays a record from the INVENTORY demo file. Notice
that a UniData delimiter is displayed as ‘ y.’ Your system may display a different
character.

:PAGE CLIENTS 9999
Paul
Castiglione
Chez Paul
45, reu de Rivoli
Paris
75008
France
3342425544y3342664857
WorkyFax
(EOF)Enter h for help, <CR> for next page
1-354 UniData Commands Reference

PATHSUB

Syntax
PATHSUB

Description
The ECL PATHSUB command changes paths and subpaths globally in all catalog
entries and file pointers in the VOC. You do not have to provide the full path, just the
part that you want to change. PATHSUB first selects all local catalog entries and for
each item, replaces the old path with the new path. Then PATHSUB selects all DIR
and F-type pointers and substitutes the new path for the old.

Tip: Use PATHSUB to change the VOC pointers after moving an account.

Check your entry carefully, because PATHSUB replaces the Original sub-path with
the path you enter with no verification that the path is valid.
 1-355

Example
The following example shows output from PATHSUB on UniData for UNIX. In this
example, the user is changing an account directory subpath name from /disk1 to /usr
(the full paths are/disk1/ud72 and /usr/ud72) on UniData for UNIX. Notice that
UniData prompts for the old and new paths, then echoes them back for confirmation
before continuing. The subsequent messages follow processing as UniData looks for
the old path in VOC records that point to locally cataloged programs (finding none),
then in VOC records that contain file pointers (finding 9).

:PATHSUB
This program allows you to globally substitute paths or sub-paths
in the voc. For example, if you move your accounts from /usr/ud to
/usr2 you could update all voc entries to reflect this path with
this program.

Original sub-path : /disk1
New sub-path : /usr
Old path: /disk1
New path: /usr
Is this acceptable? (y/n) : y
Updating local catalog entries in voc...

4 records selected to list 0.

Updated 0 local catalog entries in voc.

Updating file pointers in voc...

48 records selected to list 0.

Updated 9 file pointers in voc.

Voc has been updated.
1-356 UniData Commands Reference

PAUSE

Syntax
PAUSE [wait_time]

Description
The ECL PAUSE command suspends the UniData process that issues the command
for the amount of time specified by wait_time. Notice the following points when
executing PAUSE:

PAUSE has no effect if wait_time is a negative number, or if another
UniData process has previously issued a command for this process.
To pause a process indefinitely, omit wait_time, or specify a wait_time of 2.
PAUSE must be executed by the process to be paused.

Examples
The following series of screen displays demonstrate execution of the ECL PAUSE
command. First, a UniData session is paused. Following this, a separate screen
display shows the paused session listed as output of the LIST.PAUSED command,
which was executed from a different UniData session. The final screen display
demonstrates waking the paused session with the WAKE command.

:PAUSE
:LIST.PAUSED
Number of Paused Users
~~~~~~~~~~~~~~~~~~~~~~

1
UDTNO USRNBR UID USRNAME USRTYPE TTY LEFTTIME TOT_TIME
1 1052 1283 carolw udt pts/0 - -:
Screen Example
:WAKE 1052
:

     1-357



 

Related Commands

UniData

LIST.PAUSED, WAKE

UniBasic Commands

PAUSE, WAKE — For information, see the UniBasic Commands Reference.
1-358 UniData Commands Reference



PHANTOM

Syntax
PHANTOM process

Description
The ECL PHANTOM command executes process in the background. process can be 
an ECL command, a paragraph, or a globally cataloged program.

UniData stores the output from the background process in the _PH_ file under a 
record name made up of the users login name concatenated with the internal system 
time and the process ID.

Since the task is running in the background, any processes that require input should 
have an associated DATA statement, or have data in the DATA queue. If a request for 
input that would normally be directed to the display terminal is made to a background 
process, the process aborts.

If a login paragraph exists in the VOC file of the account from which you issue the 
PHANTOM command, UniData executes the login paragraph before executing the 
background process. You may want to test @USER.TYPE in your login paragraph 
and not execute any processing that should be executed only in an interactive 
UniData session.

Warning: Background processes you create are independent of your process. They 
will survive as phantom processes even if you terminate your process (by logging out 
of the system for instance). Since UniData stores the output from phantom processes 
in _PH_, this can create a large _PH_ file.

@USER.TYPE returns the type of process currently running. There are three types 
of processes:

Normal terminal processes (@USER.TYPE = 0).
Background (PHANTOM) processes (@USER.TYPE = 1).
Redirected standard input (@USER.TYPE = 2).
     1-359



 

Starting PHANTOM Processes from the Operating 
System
You can invoke UniData from the operating system, including a PHANTOM 
command on the same command line using the following syntax:

udt PHANTOM process

On UniData for UNIX, the shell functions pipe ( | ) and I/O redirection ( > ) also work 
with udt:

% echo “LIST CLIENTS ALL” | udt > out &

Tip: Such udt processes do not work within all C shell environments, but function 
properly under the UNIX Bourne shell.

PHANTOM Command Exit Codes
When phantom processes are running, you may see an error message like the 
following, where code is an exit code number:

Phantom run basic error exit code

The following table lists the exit codes generated by phantom processes.

PHANTOM Exit Codes 

Code Description

1 Runtime error.

3 User abort statement.

4 Phantom process requested input data.

5 Phantom process was interrupted.

6 Message queue error.
1-360 UniData Commands Reference



Examples
The following example executes the paragraph CUST.PROCESS as a phantom. Note 
that this is a simple representation. It is not unusual for other things to occur before 
the completion message appears.

:PHANTOM CUST.PROCESS
:PHANTOM process 5370 started.
COMO file is _PH_/ud61151599_5370/
PHANTOM process 5370 has completed.

In the next example, UniData processes a UniQuery statement in the background and 
stores the output in the _PH_ file:

:PHANTOM LIST CLIENTS
:PHANTOM process 13495 started.
COMO file is ‘_PH_/peggys61432_13495’.

The LIST command confirms the existence of the output file peggys61432_13495:

:LIST _PH_
LIST _PH_ 17:04:48 Jun 06 1999 1
_PH_......
O_TEST_SES
SION
peggys6143
2_13495
2 records listed
     1-361



 

The SPOOL command in the next example displays the output of the above process 
to the terminal:

:SPOOL _PH_ peggys61432_13495 -T
_PH_:
peggys61432_13495
LIST CLIENTS NAME COMPANY ADDRESS CITY STATE ZIP COUNTRY PHONE 
PHONE_TYPE
17:03:53 Jun 06 1999 1
CLIENTS 9999
Name Paul Castiglione
Company Name Chez Paul
Address 45, reu de Rivoli
City Paris
State/Territory
Postal Code 75008
Country France
Phone Number (33) (4) 24-25-54-4
(33) (4) 26-64-85-7
Phone Category Work
Fax
CLIENTS 10034
Name Fredrick Anderson
Company Name Otis Concrete
Address 854, reu de Rivoli

City Paris
Enter <New line> to continue...
1-362 UniData Commands Reference



PORT.STATUS

Syntax
PORT.STATUS [USER username |PIDpid |PORTdevice | LPTR | FILEMAP | 
CALL.STACK ]

Description
PORT.STATUS displays information about resource usage for a udt process that is 
running.

Parameters
The following table describes each parameter of the syntax.

PORT.STATUS Parameters 

Parameter Description

USER username Lists information only for the username you specify.

PID pid Lists information only for the pid you specify.

PORT device Lists information only for the device you specify.

LPTR Sends output to the printer.

FILEMAP Lists the files open in UniBasic for the pid you specify. You must 
use this option with this PID pid option.

CALL.STACK Lists the current ECL stack for the pid you specify. If the process 
is running a UniBasic program, UniData also displays the 
UniBasic call stack.
     1-363



 

Examples
The following example illustrates the output from the PORT.STATUS command 
when you use the USER option:

:PORT.STATUS USER claireg

Licensed/Effective # of Users Udt Sql Total
32 /32 1 0 1

Udtno Pid User Port Last command processed
1 26345claireg pts/t1 PORT.STATUS USER claireg

:PORT.STATUS USER claireg
Licensed/Effective # of Users Udt Sql Total

32 /32 2 0 2
Udtno Pid User  Port  Last command processed
1 26345 claireg pts/t1 PORT.STATUS USER claireg
2 26433 claireg pts/0  AE

The next example shows the output from PORT.STATUS when you use the PID 
option:

:PORT.STATUS PID 26433
Licensed/Effective # of Users Udt Sql Total

32 /32 2 0 2
Udtno Pid  User Port  Last command processed
2 26433 claireg pts/0 AE

The next example illustrates the FILEMAP option of the PORT.STATUS command:

:PORT.STATUS PID 26433 FILEMAP
Licensed/Effective # of Users Udt Sql Total

32 /32 2 0 2
Udtno Pid  User Port  Last command processed
2 26433 claireg pts/0 AE

S File names
O /home/claireg/VOC
O /home/claireg/AE_COMS
O /liz1/ud72/sys/AE_DOC
O /home/claireg/VOC
1-364 UniData Commands Reference



The final example shows the output from the PORT.STATUS command with the 
CALL.STACK option:

:PORT.STATUS PID 26433 CALL.STACK
Licensed/Effective # of Users Udt Sql Total

32 /32 2 0 2
Udtno Pid User Port  Last command processed
2 26433 claireg pts/0 SELECT CUSTOMER WITH STATE = “CO”

Session is not in BASIC.
ECL session stack
AE
LIST CUSTOMER
SELECT CUSTOMER WITH STATE = “CO”
SELECT CUSTOMER WITH STATE = “CO”
     1-365



 

PRIMENUMBER

Syntax
PRIMENUMBER number

Description
The ECL PRIMENUMBER command displays the first prime number that is equal 
to or greater than number.

Example
In the following example, UniData returns the prime number 449, which is the first 
prime number greater than or equal to 444.

:PRIMENUMBER 444
PRIME number is 449
1-366 UniData Commands Reference



PRINT.ORDER

Syntax
PRINT.ORDER [0 | 1]

Synonym
PRINT-ORDER

Description
The ECL PRINT.ORDER command determines the order in which UniData 
completes print jobs and sends them to the printer. This setting is meaningful only 
when more than one print job at a time is active in a UniBasic program. Printer units 
do not close in any specific order by default.

For more information on directing printing in UniData, see Administering UniData.

Parameters
The following table describes each parameter of the syntax.

PRINT.ORDER Parameters 

Parameter Description

no parameter UniData displays the current order.

0 Default. No specific order is used.

1 UniData closes the most recently used printer first.
     1-367



 

Related Commands

UniData

SP.ASSIGN

UniBasic

PRINT ON – For information, see the UniBasic Commands Reference.
1-368 UniData Commands Reference



PROTOCOL

Syntax
PROTOCOL line [“options”]

Description
The ECL PROTOCOL command sets data line transmission characteristics and 
protocols for a line. The line must already be attached.

Tip: Use the SETLINE command to define a tty device. Use the LINE.ATT command 
to attach a communication line to that device to your process.

Parameters (UniData for UNIX)
The following table describes each parameter of the syntax:

PROTOCOL Parameters 

Paramete
r Description

line A tty device defined by the SETLINE command.

options A group of tty attributes. The options for this command are the same as the 
UNIX stty and termio commands. options must be enclosed in double 
quotation marks. If you do not indicate any options, UniData displays the 
current settings.

For more information on the stty command, see your host operating system 
documentation.

Example (UniData for UNIX)
The following example sets line 0 on a UNIX operating system with 

Baud rate of 9600.
     1-369



 

 No echo on input.
 Canonical process turned off (for input).

:LINE.ATT 0
:PROTOCOL 0 “9600 -echo -icanon”

Parameters (UniData for Windows Platforms)
The following table describes each parameter of the syntax.

PROTOCOL Parameters 

Parameter Description

line The line number assigned to the device with the SETLINE 
command.

BAUD = b The baud rate for the communication device. May be a baud rate 
or a baud rate index.

DATA = d The number of bits in the bytes transmitted and received. Can be 
from 4 to 8.

STOP = s The number of stop bits; may be 1, 1.5, or 2.

Parity = p The method of marking boundaries of characters. May be none, 
even, odd, mark, or space.

to = on | off Controls behavior of transmission if input buffer approaches full. 
If to = off, transmission stops; if to = on (recommended) trans-
mission does not stop.

xon = on | off Select/clear Xon/Xoff flow control. If xon = on, Xon/Xoff is 
selected.

odsr = on | off DSR handshaking.

octs = on | off CTS handshaking.

dtr = on | off | hs DTR circuit.

rts = on | off | hs |tg RTS circuit.

idsr = on | off DSR sensitivity.
1-370 UniData Commands Reference



Include the options, separated by spaces, in a string enclosed with quotation marks, 
as follows:

PROTOCOL 0 “Baud = 9600 xon = on”

Example (UniData for Windows Platforms)
In the following example, PROTOCOL displays the current settings for a COM port:

:LINE.STATUS
LINE# STATUS PID USER-NAME DEVICE-NAME
0 Available N/A N/A COM1

Line number(s) are attached by the current udt process:
None

:LINE.ATT 0
LINE 0 ATTACHED
:PROTOCOL 0
Settings for line 0:
Baud Rate = 1200Parity = EvenData Bits = 7Stop Bits = 1.

Related Commands

UniData

LINE.ATT,LINE.DET, LINE.STATUS, SETLINE, UNSETLINE

UniBasic
GET, SEND — For information, see the UniBasic Commands Reference.
     1-371



 

PTERM

Syntax
PTERM [-BREAK {OFF | ON}] [-DISPLAY] [-ERASE “char”] [-FULL] [-HALF 
{LF | NOLF}] [-KILL “char”] [-NOXOFF] [-XOFF]

Description
The ECL PTERM command establishes terminal settings. These settings remain in 
effect until the UniData session ends or until the process executes another PTERM 
command.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

-BREAK {OFF | ON} Toggles the interrupt character off and on.
? OFF – Disables the interrupt key.

? ON – Default. Enables the interrupt key.

-DISPLAY Displays the current tty setting for your terminal.

-ERASE “char” Establishes the value (char) of the erase character. You cannot 
set char to its current value. char is a single ASCII character.

-FULL Establishes full-duplex mode for your terminal. Under full-
duplex, all characters typed in echo to the screen. Full-duplex 
is the default value.

PTERM Parameters 
1-372 UniData Commands Reference



Examples
In the following example, UniData changes some terminal settings:

 Disables the interrupt key.
 Changes the erase character to ^B (UniData does not display the control 
character on the command line when you enter it).
 Disables the XON/XOFF feature.

:PTERM -BREAK OFF -ERASE ““ -NOXOFF
:

In the next example, UniData displays the current values of PTERM:

:PTERM -DISPLAY
Erase =^B = 02 octal
Kill = ^U = 025 octal
FULL duplex.
XOFF disabled(have to physically turn off XON/XOFF on smart 
terminals).
BREAK OFF
:

-HALF {LF | NOLF} Establishes half-duplex mode for your terminal. Under half-
duplex, characters you enter at your terminal do not echo to the 
screen.
? LF – UniData does not echo a carriage return with a line 

feed. This is the default.

? UniData echoes a carriage return with a line feed.

-KILL “char” Establishes char as the kill character. char is a single ASCII 
character.

-NOXOFF Disables support for XON/XOFF. The default value is 
XON/XOFF enabled.

-XOFF Establishes XON/XOFF support for your terminal. When you 
enable the XON/XOFF feature, CTRL-S stops output to the 
screen. CTRL-Q resumes output.

Parameter Description

PTERM Parameters (continued)
     1-373



 

PTRDISABLE

Syntax
PTRDISABLE printer [-c |-w]

Synonym
STOPPTR

Description
The ECL PTRDISABLE command prevents UniData from printing jobs that are 
associated with a queue named printer.

On UniData for Windows Platforms, only users with Full Control permissions on a 
printer can control the printer with PTRDISABLE and PTRENABLE. Check 
Permissions on the Security tab of the printers Properties sheet to determine who 
has permissions.

Tip: To resume printing, use the PTRENABLE command.

Parameters
The following table describes each parameter of the syntax.

PTRDISABLE Parameters 

Parameter Description

printer Name assigned to a print queue with the SETPTR command and the DEST 
option.

-c Cancels the current print job before disabling the print queue.
Note: This option works with UNIX System V releases only. 

-w Allows the current print job to complete before disabling the print queue.
Note: This option works only with UNIX System V releases.
1-374 UniData Commands Reference



Examples
In the following example, taken from UniData for UNIX, UniData disables a print 
queue called hpzone3:

:PTRDISABLE hpzone3
printer “hpzone3” now disabled
:

The next example, taken from UniData for Windows, disables a local printer called 
LETTER:

PTRDISABLE LETTER

:LISTPTR
Unit.. Printer................... 
Port.......................Status..
0 LETTER \\DENVER4\hpzone3 Paused
1 \\DENVER4\hpzone3 hpzone3 Running
2 LEGAL \\DENVER4\hpzone3 Running
3 \\DENVER4\hpzone2 hpzone2 Running

Tip: You can use this command in conjunction with the SETPTR options FORM and 
DEST to turn off print queues associated with different forms and to load new forms 
into the printer and clear paper jams.

Related Commands
PTRENABLE, SETPTR
     1-375



 

PTRENABLE

Syntax
PTRENABLE printer

Synonym
STARTPTR

Description
The ECL PTRENABLE command resumes printing jobs that are associated with 
printer. printer is the name of a print queue that was disabled by a PTRDISABLE 
command.

On UniData for Windows Platforms, PTRENABLE resumes printing after you pause 
the printer through Start > Setting > Printers. Only users with Full Control permis-
sions on a printer can control the printer with PTRDISABLE and PTRENABLE. 
Check Permissions on the Security tab of the printers Properties sheet to determine 
who has permissions.

Tip: Use the SETPTR command to assign a name to printer.

Use the PTRENABLE command to load new forms into the printer and clear paper 
jams.

Examples
In the following example, taken from UniData for UNIX, UniData enables printer 
queue hpzone3, which allows all print jobs destined for this queue to print:

:PTRENABLE hpzone3
printer “hpzone3” now enabled
:

1-376 UniData Commands Reference



In the next example, taken from UniData for Windows NT, UniData enables a local 
printer called LETTER, which allows all print jobs sent to this printer to print:

:PTRENABLE LETTER
:LISTPTR
Unit.. Printer................... 
Port.......................Status..
0 LETTER \\DENVER4\hpzone3 Running
1 \\DENVER4\hpzone3 hpzone3 Running
2 LEGAL \\DENVER4\hpzone3 Running
3 \\DENVER4\hpzone2 hpzone2 Running
:

Related Commands
PTRDISABLE, SETPTR
     1-377



1-378 UniData Commands Reference

 

QUIT
QUIT is a synonym for the BYE command. For more information, see BYE.

Synonyms
BYE, LO



READDICT.DICT

Syntax
READDICT.DICT

Synonym
READDICT-DICT

Description
The ECL READDICT.DICT command reloads DICT.DICT into virtual memory. 
Execute READDICT.DICT to apply changes to DICT.DICT made during the current 
UniData session.

Note: UniData loads DICT.DICT into memory once at the beginning of each 
UniData session to improve performance by eliminating the need to repeatedly open 
and read this frequently used file.

READDICT.DICT first looks for a pointer in the VOC to a local DICT.DICT file. If 
it exists, UniData reloads that version. If not, UniData reloads the global version, 
located in udthome/sys/DICT.DICT on UniData for UNIX or 
udthome\sys\DICT.DICT on UniData for Windows Platforms.

READDICT.DICT displays no messages — it just returns you to the ECL prompt 
after completion.

For more information about the DICT.DICT dictionary, see Using UniData.
     1-379



 

REBUILD.FILE

Syntax
REBUILD.FILE filename

Synonym
REBUILD-FILE

Description
The ECL REBUILD.FILE command rebuilds a dynamic hashed file, splitting or 
merging groups as needed, based on the split and merge thresholds. REBUILD.FILE 
checks every group in the file for a split load and then for a merge.

This command is useful when many processes access the same dynamic file and 
some restriction prevents splitting or merging. The command is also useful after 
executing CONFIGURE.FILE to redistribute the keys and data in accordance with a 
new modulo, split load, merge load, or split/merge type. REBUILD.FILE works only 
on dynamic hashed and dynamic hashed multilevel subfiles.

For more information on dynamic files, see Using UniData.

Warning: Do not rebuild files when users are accessing them. File corruption could 
result.
1-380 UniData Commands Reference



Examples
For the following example memresize changed the modulo of a copy of the 
INVENTORY demo database file from 19 to 3. The guide utility suggests rebuilding 
the file, and REBUILD.FILE rebuilds the file:

:!guide INVENTORY -o
INVENTORY
Basic statistics:
File type............................... Recoverable Dynamic 
Hashing
File size
[dat001].............................. 4096
[over001]............................. 14336
File modulo............................. 3
File minimum modulo..................... 3
.
.
.
Group count:
Number of level 1 overflow groups....... 13
Primary groups in level 1 overflow...... 3
Primary groups over split factor........ 3
.
.
.
Management advice:
Running REBUILD.FILE may improve performance
for access to the file. This conclusion was reached
for the following reasons:
- File has 3 groups over split load.

:REBUILD.FILE INVENTORY

:!guide INVENTORY -O
INVENTORY
Basic statistics:
File type............................... Recoverable Dynamic 
Hashing
File size
[dat001].............................. 12288
[over001]............................. 18432
File modulo............................. 11
File minimum modulo..................... 3
File split factor....................... 60
File merge factor....................... 40
...
Group count:
Number of level 1 overflow groups....... 12

Primary groups in level 1 overflow...... 6
...
Predicted optimal size:
     1-381



 

Records per block....................... 10
Percentage of near term growth.......... 10
Scalar applied to calculation........... 0.00
Block size.............................. 1024
Modulo.................................. 11
...

Notice that executing REBUILD.FILE changed the current modulo from 3 to 11 and 
guide no longer recommends rebuilding the file.

Related Command
CONFIGURE.FILE
1-382 UniData Commands Reference



RECORD

Syntax
RECORD filename record

Description
The ECL RECORD command displays the group to which a particular record is 
hashed. If record does not exist, UniData displays the group to which the record 
would hash if it was added.

UniData indicates whether the record exists, and, if more than one record is in the 
group, displays the ID and length for each record.

Note: UniData hashes records to groups based on the file modulo. UniData group 
numbering starts with 0 (zero), rather than 1.

Tip: Use RECORD to locate and correct record IDs that appear to be duplicates 
because one contains nonprinting characters. First, LIST @IDs for a file (without 
sorting). Review the list, locating duplicate keys, then execute RECORD on adjacent 
records. Depending on the modulo of the file, you may find the real key and the 
duplicate in different groups. Then write a UniBasic program to open the file and 
delete the offending record (ECL DELETE will not let you specify a key containing a 
nonprinting character).

Parameters
The following table describes each parameter of the syntax.

RECORD Parameters 

Parameter Description

filename A UniData hashed file.

record A record ID in filename.
     1-383



 

Examples
The following example checks record ID 10086 against the CLIENTS demo database 
file and finds that it is hashed to group 14. UniData also displays all record IDs and 
the length of each record in the group.

:RECORD CLIENTS 10086
10086 hashed to group 14 and was found
# length @ID
0 100 9994
1 105 10029
2 97 10010
3 101 9975
4 104 10067
5 117 10048
6 112 10086
:

In the following example, as indicated, record 80 does not exist in the CLIENTS file.

:RECORD CLIENTS 80
80 hashed to group 0 and was not found

# length @ID
0 96 9999
1 102 10034
2 110 9980
3 115 10015
4 102 10072
5 110 10053
6 108 10091
:

Here we add record 80 and execute RECORD again.

:COPY FROM CLIENTS 9999, 80
1 records copied
:RECORD CLIENTS 80
80 hashed to group 0 and was found
# length @ID
0 96 9999
1 102 10034
2 110 9980
3 115 10015
4 102 10072
5 110 10053
6 108 10091
7 9680
:

1-384 UniData Commands Reference



RELEASE

Syntax
RELEASE filename [record]

Description
The ECL RELEASE command clears locks placed on a file or record by UniData or 
UniBasic commands that set locks. For more information on UniData locks, see 
Developing UniBasic Applications and Administering UniData.

Parameters
The following table describes each parameter of the syntax.

RELEASE Parameters 

Parameter Description

filename UniData file name.

record A locked record in filename.
     1-385



 

RELEASE.ITEMS

Syntax
RELEASE.ITEMS

Synonym
RELEASE-ITEMS

Description
The ECL RELEASE.ITEMS command clears all record locks set by your process.

For more information on UniBasic and UniData locks, see Developing UniBasic 
Applications and Administering UniData.

Note: This command does not release locks set by other processes even when 
executed by someone logged on as root on UniData for UNIX or as Administrator on 
UniData for Windows platforms. Root or Administrator can execute the ECL 
SUPERRELEASE command to clear other users locks.

List active locks with LIST.READU. GETUSER displays your user number.
1-386 UniData Commands Reference



Examples
The following UniBasic program locks a record with the RECORDLOCKU 
command and releases the lock by executing RELEASE.ITEMS:

* TESTING LOCKING/RELEASE COMMANDS *
OPEN “ORDERS” TO A ELSE STOP “CANNOT OPEN”
LID = “801”
RECORDLOCKU A, LID ON ERROR STOP
PRINT “RECORD LOCKED WITH RECORDLOCKU”
EXECUTE “LIST.READU”
SLEEP 3
EXECUTE “RELEASE.ITEMS”
PRINT “EXECUTING RELEASE.ITEMS COMMAND”
PRINT “LISTING LOCKS AGAIN”
EXECUTE “LIST.READU”
SLEEP 3
END

The next example locks and unlocks the record by running the preceding program:

:RUN BP TEST_1
RECORD LOCKED WITH RECORDLOCKU
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
2 7093 1283carolw ts/1 ORDERS 219261 107380 801 X 14:17:27 Jun 08
EXECUTING RELEASE.ITEMS COMMAND
LISTING LOCKS AGAIN
:

     1-387



 

RESIZE

Syntax
RESIZE [DICT] filename [modulo [,block.size.multiplier | -]] [TYPE [{0 | 1}] 
[STATIC | DYNAMIC [KEYONLY | KEYDATA] [OVERFLOW]  
[PARTTBL part_tbl]]] [CONCURRENT [CONTINUE | RESTORE]]

Description
The ECL RESIZE command changes the size of a static or dynamic data file. If you 
do not specify a new modulo, UniData resizes the file based on its original modulo 
and overflow status.

Note: The RESIZE command does not require exclusive access to the file being 
resized if you use the CONCURRENT option, so you can resize a file while users are 
accessing it. If you do not need to have users accessing the file during a resize 
operation, we recommend using the memresize command, which requires exclusive 
access to the file. 

For more information on selecting an optimum file modulo number, see Using 
UniData.

Parameters
The following table describes each parameter of the syntax:.

Parameter Description

DICT Resizes the dictionary portion of filename.

filename The name of the file to be resized.

modulo The new modulo number to be assigned to the file.

block.size.multiplier An integer between 0 and 16 that UniData uses to determine file 
size. 

RESIZE Parameters 
1-388 UniData Commands Reference



Recovering from a Concurrent Resize Error
If the concurrent resizing process encounters an error, or the system crashes during 
the resize operation, complete the following steps to restore the file:

- Resizes the file according to its actual size, thus correcting 
overflows.

TYPE {0 | 1} Hash type for the resized file.

STATIC After resizing, the file is a static hashed file.

DYNAMIC After resizing, the file is a dynamic hashed file.

KEYDATA After resizing, the file is dynamic and the split/merge type is 
KEYDATA.

KEYONLY After resizing the file is dynamic and the split/merge type is 
KEYONLY (the default).

OVERFLOW If specified, UniData creates a dynamic file with an overflow file 
for each dat file. For example, over001 corresponds to dat001, 
over002 corresponds to dat 002, and so forth. When the file is 
cleared, UniData maintains this overflow structure.

PARTTBL,part_tbl After resizing, file is a dynamic file. part_tbl is the path and file 
name of a previously established part table. RESIZE copies 
part_tbl into the dynamic file directory. The copy of part_tbl in 
the dynamic file directory serves as the “per-file” part table for 
the dynamic file.
Note: This option is supported on UniData for UNIX only.

CONCURRENT Resize the file allowing concurrent access from other users.

CONTINUE If the system crashes or RESIZE CONCURRENT encounters an 
error, continue the resize operation to completion.

RESTORE If the system crashes or RESIZE CONCURRENT encounters an 
error, delete the temportary copy of the resized file and restore 
the original file before any resize operation took place.

Parameter Description

RESIZE Parameters (continued)
     1-389



 

1. Check and repair the physical integrity of the file, if necessary. For nonre-
coverable files, use the guide utility to check if the file needs to be repaired. 
If so, use the fixfile command to repair the file. 
If the file is a recoverable file, restarting UniData after the system crash 
should automatically fix both the original file and the temporary copy of the 
file as it was being resized.

2. Execute the RESIZE CONCURRENT CONTINUE command against the 
file if you want the resize operation to continue to completion. Execute the 
RESIZE CONCURRENT RESTORE command against the file if you want 
to delete the temporary copy of the file and restore the original file before 
any resize operation took place. If you do not execute either of these options, 
the RESIZE CONCURRENT operation will fail and display an error 
message describing the reason for the failure. 

At this release, the guide utility has  been enhanced to display a message indicating 
that the file is currently being resized. The message includes the number of groups 
that have been resized:

Log Files
UniData now creates a log file, located in $UDTBIN/resize.log, for the RESIZE and 
memresize commands that includes the following information:

Time/Date
Started or Completed status
User name, with TTY if available
File name
Full path to file
The characteristics of the file before resize, including modulo, block size, 
hash type, file type (static or dynamic, keyonly or keydata)
The characteristics of the file after resize, including modulo, block size, 
hash type, file type (static or dynamic, keyonly or keydata)
1-390 UniData Commands Reference



The resize_cleanup.info Log File

The resize_cleanup.info log file contains information pertaining to the original 
dynamic file before the concurrent resize operation started. The cleanupd daemon 
uses the information in this file to delete unneeded files when users no long have the 
file open. Users should have write permissions to this file.

Examples

In the following example, the CLIENTS demo database static file has a modulo of 19 
and size of 21,504 bytes. Notice that the 21 blocks of the file consist of one header 
block, 19 data blocks (the maximum allowed by the modulo), and one data overflow 
block. This is confirmed by the message on line 5 that one group is in level-one 
overflow.

:FILE.STAT CLIENTS
File name = CLIENTS
Number of groups in file (modulo) = 19
Static hashing, hash type = 0
Block size = 1024
File has 1 groups in level one overflow.
Number of records = 130
Total number of bytes = 14452
Average number of records per group = 6.8
Standard deviation from average = 0.5
Average number of bytes per group = 760.6
Standard deviation from average = 61.3
Average number of bytes in a record = 111.2
Average number of bytes in record ID = 5.7
Standard deviation from average = 8.7
Minimum number of bytes in a record = 93
Maximum number of bytes in a record = 140
Minimum number of fields in a record = 10
Maximum number of fields in a record = 10
Average number of fields per record = 10.0
Standard deviation from average = 0.0
The actual file size in bytes = 21504.
:

     1-391



 

The next example, resizes the file using a modulo of 23. Notice the changed statistics 
and correction of the overflow.

:RESIZE CLIENTS 23
CLIENTS RESIZED from 19 to 23
:
:FILE.STAT CLIENTS
File name = CLIENTS
Number of groups in file (modulo) = 23

Static hashing, hash type = 0
Block size = 1024
Number of records = 130
Total number of bytes = 14452
Average number of records per group = 5.7
Standard deviation from average = 0.7
Average number of bytes per group = 628.3
Standard deviation from average = 75.3
Average number of bytes in a record = 111.2
Average number of bytes in record ID = 5.7
Standard deviation from average = 8.7
Minimum number of bytes in a record = 93
Maximum number of bytes in a record = 140
Minimum number of fields in a record = 10
Maximum number of fields in a record = 10
Average number of fields per record = 10.0
Standard deviation from average = 0.0
The actual file size in bytes = 24576.
:

In the next example, records are added to a file called EMPLOYEES, which was 
created for this example. FILE.STAT displays the following statistics for 
EMPLOYEES:

 Number of groups in file this is the modulo number
 Number of groups in level two overflow and the “Please resize.” message
1-392 UniData Commands Reference



 Suggested resize modulo on the last line of the display
:COPY FROM ORDERS TO EMPLOYEES ALL
192 records copied
:FILE.STAT EMPLOYEES
File name = EMPLOYEES
Number of groups in file (modulo) = 2
Static hashing, hash type = 0
Block size = 1024
File has 4 groups in level two overflow. Please resize.

Number of records = 323
Total number of bytes = 28347
Average number of records per group = 161.5
Standard deviation from average = 0.7
Average number of bytes per group = 14173.5
Standard deviation from average = 46.0
Average number of bytes in a record = 87.8
Average number of bytes in record ID = 4.7
Standard deviation from average = 35.0
Minimum number of bytes in a record = 38
Maximum number of bytes in a record = 271
Minimum number of fields in a record = 7
Maximum number of fields in a record = 10
Average number of fields per record = 8.2
Standard deviation from average = 1.5
The actual file size in bytes = 35840.
Suggested resize modulo = 37.
:

The next example resizes EMPLOYEES because of inclusion of the - option. The 
modulo is changed to 31.

:RESIZE EMPLOYEES -RESIZE
file EMPLOYEES to 31.
EMPLOYEES RESIZED from 2 to 31
     1-393



 

Now, look at the file statistics again to see the other changes made:

:FILE.STAT EMPLOYEES
File name = EMPLOYEES
Number of groups in file (modulo) = 31
Static hashing, hash type = 0
Block size = 1024
File has 19 groups in level one overflow.
Number of records = 323
Total number of bytes = 28347
Average number of records per group = 10.4
Standard deviation from average = 0.8
Average number of bytes per group = 914.4
Standard deviation from average = 146.0
Average number of bytes in a record = 87.8
Average number of bytes in record ID = 4.7
Standard deviation from average = 35.0
Minimum number of bytes in a record = 38
Maximum number of bytes in a record = 271
Minimum number of fields in a record = 7
Maximum number of fields in a record = 10
Average number of fields per record = 8.2
Standard deviation from average = 1.5
The actual file size in bytes = 52224.
:

Related Command
memresize
1-394 UniData Commands Reference



REUSE.ROW

Syntax
REUSE.ROW [0 | 1]

Synonym
REUSE-ROW

Description
The ECL REUSE.ROW command determines whether a linefeed is executed when 
the UniBasic PRINT @ function references column only, for instance, PRINT @(10) 
rather than PRINT @(3,10).

For more information about programming in UniBasic, see Developing UniBasic 
Applications.

Parameters
The following table describes each parameter of the syntax.

REUSE.ROW Options 

Paramete
r Description

0 Default. A line feed is applied before the cursor moves to the specified 
column.

1 The cursor moves to the specified column on the same row.
     1-395



 

REVOKE.ENCRYPTION.KEY

Syntax
REVOKE.ENCRYPTION.KEY key.id [password] {PUBLIC | grantee 
{,grantee...}

Description
Use the REVOKE.ENCRYPTION.KEY command to revoke access to the 
encryption key from other users. When a key is created, only the owner of the key 
has access. The owner of the key can revoke access from other users.

Parameters
The following table describes each parameter of the syntax.

REVOKE.ENCRYPTION.KEY Parameters 

Parameter Description

key.id The encryption key.

password The password for the encryption key.

PUBLIC Revokes access to the encryption key from all users on the system.

grantee Revokes access to the encryption key from the grantee you specify. 
grantee can be a user name, or a group name. If you specify a group 
name, prefix the name with an asterisk (“*”). On Windows platforms, 
you can qualify a group name with a domain name, such as 
mydomain\users. When you specify a group name, UniData revokes 
access to all users belonging to the group.
Grantees cannot revoke access to the encryption key to other users.
1-396 UniData Commands Reference



Example
The following example illustrates revoking encryption privileges from PUBLIC for 
the “test” encryption key:

:REVOKE.ENCRYPTION.KEY test myunidata PUBLIC
REVOKE.ENCRYPTION.KEY to PUBLIC successful.
     1-397



 

RUN

Syntax
RUN directory.file program [[-N | (N | (N)] | -G | -D | -E | -F]

Description
The ECL RUN command executes a compiled UniBasic program.

For more information about programming in UniBasic, see Developing UniBasic 
Applications.

Parameters
The following table describes each parameter of the syntax:

RUN Parameters 

Parameter Description

directory.file A UniData DIR file that contains a compiled UniBasic program. You 
must have a pointer to this file in your VOC.

program A compiled UniBasic program.

-N | (N | (N) The screen display scrolls without stopping. Without this option, 
scrolling stops at the bottom of each page, prompting the user to press 
return to continue.

-G Executes a cross-reference report (program profile).

-D Invokes the UniBasic debugger immediately.

-E Invokes the UniBasic debugger when a runtime error occurs.

-F Invokes the UniBasic debugger when a fatal error occurs.
1-398 UniData Commands Reference



Example
The following example shows the output of the RUN command with the -D 
parameter for a program called PSTLCODE_FMT in the BP_SOURCE file of the 
demo database. Notice that UniData invokes the UniBasic debugger due to a problem 
at line 7 of the program.

:RUN BP_SOURCE PSTLCODE_FMT -D
***DEBUGGER called at line 7 of program BP_SOURCE/_PSTLCODE_FMT
!

Tip: To escape from the UniBasic debugger and return to the ECL colon prompt, 
enter END.
     1-399



 

SAVE.EDAMAP

Syntax
SAVE.EDAMAP {[XMAP] eda_schema | EDA.FILE [DICT] eda_file | 
DEFAULT.MAP} [DATA.SOURCE data_source] [OBJECT.SET 
[name_space.]primary_table] [FILE.NAME target_file] TO [XMAP] 
<schema_name>

Description
The SAVE.EDAMAP command saves the EDA schema in a schema file in either the 
EDAMAP or EDAXMAP format.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

eda_schema Specifies the name of the EDA schema to save.

eda_file Specifies the name of the EDA file whose schema is to be saved. If you 
specify FILE.NAME target_file, target_name replaces the UniData file 
name in the schema UniData displays.

DEFAULT.MAP Specifies to only save the primary key (@ID) mapping, irrespective of 
the attributes actually mapped of the schema you specify.

data_source Specifies the data source name to use when saving the schema.

primary_table Specifies the name of the primary table, containing only singlevalued 
attributes to use when saving the schema. If you also specify 
name_space, UniData uses it for Name Space (DB2 Schema Name).

SAVE.EDAMAP Parameters 
1-400 UniData Commands Reference



target_file Specifies the name of the UniData file to use when saving the schema.

TO Defines where to store the Map Schema, and the format in which to 
save it. If you specify XMAP, UniData saves the Map Schema in the 
EDAXMAP format. If you do not specify this parameter, UniData 
saves the map schema in the EDAMAP format.

schema_name The record ID of the EDA Schema.

Parameter Description

SAVE.EDAMAP Parameters (continued)
     1-401



 

sbcsprogs

Syntax
sbcsprogs

Description
The system-level sbcsprogs command reports the number of users sharing globally 
cataloged UniBasic programs.

Note: Use this command at the operating system prompt, or use the ECL ! (bang) 
command to execute it from the ECL (colon) prompt.

Example
The following example shows sbcsprogs output. Reference Count indicates the 
number of users currently using the corresponding program.

% sbcsprogs
Program Name Reference Count
/disk1/ud72/sys/CTLG/s/SCHEMA_FILE_CHECK 1
/disk1/ud72/sys/CTLG/s/SCHEMA_SQLNAME_ATTRIBUTES 1
/disk1/ud72/sys/CTLG/s/S_FILE_EXIST_PRIVILEGE 1
/disk1/ud72/sys/CTLG/s/S_VALID_SCHEMA_CHECK 1
/disk1/ud72/sys/CTLG/s/SCHEMA_FILE_LIST 1
/disk1/ud72/sys/CTLG/s/SCHEMA_DEPENDENT_VIEWS 1
/disk1/ud72/sys/CTLG/s/SCHEMA_CRT_READ_MAP 1
/disk1/ud72/sys/CTLG/s/SCHEMA_LIST_USERS 1
/disk1/ud72/sys/CTLG/s/S_GET_FILE_OWNER 1
/disk1/ud72/sys/CTLG/s/SCHEMA_FILE_ATTRIBUTES 1
/disk1/ud72/sys/CTLG/s/SCHEMA_UNIQUE_NAME 1

/disk1/ud72/sys/CTLG/s/S_VALID_NAME_CHECK 1
/disk1/ud72/sys/CTLG/s/S_OPEN_SCHEMA_TABLES 1
/disk1/ud72/sys/CTLG/s/SCHEMA_VIEW_TYPE 1
/disk1/ud72/sys/CTLG/s/S_UPD_SCHEMA_TABLES 1
/disk1/ud72/sys/CTLG/s/S_DB_TYPE_CONV 1
/disk1/ud72/sys/CTLG/s/SCHEMA_SUBTABLE_ATTRIBUTES 1
...
1-402 UniData Commands Reference



SET.DEC
Syntax

SET.DEC [char]

Synonym
SET-DEC

Description
The ECL SET.DEC command changes the character used to display the decimal 
point. Any ASCII character is acceptable for char. The default character is period (.). 
The setting is effective for the current udt session only.

Tip: Use this command to set the decimal representation for displaying money. For 
more information on localizing UniData for use with your language and monetary 
system, see UniData International.

Examples
In the following example, the period is displayed for the decimal point:

:LIST INVENTORY PRICE
LIST INVENTORY PRICE 17:27:51 Jun 22 1999 1
INVENTORY. Price.....
53050 $369.95
56060 $98.99

57030 $2,995.95
...

The next example changes the decimal character to a comma (,):

:SET.DEC ,
:

     1-403



 

The LIST command demonstrates use of the new decimal character:

:LIST INVENTORY PRICE
LIST INVENTORY PRICE 17:32:00 Jun 22 1999 1
INVENTORY. Price.....
53050 $369,95
56060 $98,99
57030 $2,995,95
...
1-404 UniData Commands Reference



SET.LANG

Syntax
SET.LANG [language | CURRENT | AVAILABLE]

Synonym
SET-LANG

Description
The ECL SET.LANG command changes the language within the current language 
group. You can specify the language you want by spelling it out in uppercase letters, 
or by typing the UniData language number. Type AVAILABLE after SET.LANG to 
display a list of languages to choose from, or type CURRENT to display the current 
language setting. If you enter SET.LANG without parameters, UniData displays a 
usage statement.

For more information on localizing UniData for use with your language and 
monetary system, see UniData International.

Parameters
The following table describes each parameter of the syntax.

SET.LANG Parameters 

Parameter Description

language UniData language name. You must enter the language name in uppercase.

CURRENT Display the settings for the current language.

AVAILABLE Display the available languages in the current language group.
     1-405



 

Examples
The following example displays the settings for the current language:

:SET.LANG CURRENT
udtlang name: ENGLISH
Date format: 0
Decimal point: .
Thousand delimiter: ,
Money sign: $
:

This example displays the languages available within the current group, which is 
ENGLISH:

:SET.LANG AVAILABLE
ENGLISH
ENGLISH_UK
:

Next, we change the language to ENGLISH_UK, and execute SET.LANG 
CURRENT to display the changed language:

:SET.LANG ENGLISH_UK
Language ‘ENGLISH_UK’ assigned!
:SET.LANG CURRENT
udtlang name: ENGLISH_UK
Date format: 0
Decimal point: .
Thousand delimiter: ,
Money sign: $
:

Tip: If UniData displays an error message, it could mean the message defaults file 
for the language does not exist. (Message defaults files reside in udthome/sys on 
UniData for UNIX or udthome\sys on UniData for Windows Platforms.) See UniData 
International for information on the language-specific message files.
1-406 UniData Commands Reference



SET.MONEY

Syntax
SET.MONEY sign [POST | PRE]

Synonym
SET-MONEY

Description
The ECL SET.MONEY command changes the UniData delimiter that represents a 
currency sign. Use this command when you need to change the currency sign from 
the default set for your language. When SET.MONEY is used without an argument, 
the command returns a usage message.

The currency sign follows the number in some regions, and UniData honors this 
convention when the POST option is used. If POST is not set, the currency sign 
precedes the amount.

For more information about this command and other commands related to using non-
English language versions of UniData and the message defaults file, see UniData 
International.

Tip: To insert a space between the currency sign and the amount, use an extra space 
after the SET.MONEY command.
     1-407



 

Parameters
The following table describes each parameter of the syntax.

SET.MONEY Parameters 

Parameter Description

sign Character that represents currency.

POST Currency sign follows the amount.

PRE Currency sign precedes the amount. This is the default position.

Example
In the following example, the SET.MONEY command sets the currency denomi-
nation to the number sign (#).

:SET.MONEY #
:

Now, when you display data that uses a currency sign, UniData uses the symbol you 
assigned with the SET.MONEY command:

:LIST ORDERS PRICE
LIST ORDERS PRICE 14:24:30 Jun 08 1999 1
ORDERS.... Price.....
813 #99.96
#199.87
#69.94
928 #159.95
859 #200.00
974 #99.95
905 #59.95
790 #159.94
#159.94
...
1-408 UniData Commands Reference



SET.THOUS

Syntax
SET.THOUS char

Synonym
SET-THOUS

Description
The ECL SET.THOUS command changes the character that indicates a break for 
thousands. A comma (,) is the default character.

This command has the following restrictions:

The decimal point and thousand delimiter cannot be the same character. For 
instance, when SET.DEC is set as a comma (,), the period symbol (.) loses 
its functionality as a decimal point except in the constants in UniBasic 
programs and dictionary items.
Decimal and thousand delimiters cannot be changed in the middle of the 
execution of a UniBasic program.

Examples
The following example lists some totals from the ORDERS demo file. Notice that 
UniData uses a comma for the thousands break character:

:LIST ORDERS GRAND_TOTAL
LIST ORDERS GRAND_TOTAL 14:37:42 Jun 08 1999 1
ORDERS.... Grand Total...
912 $779.70
801 $1,799.00
941 $13,999.90

805 $47,555.29
...
     1-409



 

In the following example, UniData sets the one thousand break character to a period 
(.).

:SET.THOUS .
:

The next example shows the display of totals after the thousands character has 
changed to a period (.):

:LIST ORDERS GRAND_TOTAL
912 $779.70
801 $1.799.00
941 $13.999.90
805 $47.555.29
...
1-410 UniData Commands Reference



SET.TIME

Syntax
SET.TIME hh:mm[:ss]

Synonyms
SET-TIME, SETTIME

Description
The ECL SET.TIME command sets the time for the entire system.You enter the time 
in a 24-hour format (military time) where hh represents hours, mm minutes, and ss 
seconds. The seconds portion of the time is optional.

Note: To execute the SET.TIME command, you must log on as root on UniData for 
UNIX or as Administrator on UniData for Windows platforms.

Warning: Do not change the system time while the Recoverable File System (RFS) is 
running. If you do, you will corrupt the time stamps for RFS.

Example
In the following example, the SET.TIME command sets the system time to 3 minutes 
and 4 seconds past 1:00 pm:

:SET.TIME 13:03:04
     1-411



 

SET.WIDEZERO

Syntax
SET.WIDEZERO [float.number]

Synonym
SET-WIDEZERO

Description
The ECL SET.WIDEZERO command sets a range used for comparing very small 
numbers. When two floating point numbers differ by less than that range, UniData 
considers them to be equal. The SET.WIDEZERO setting is active for the current 
UniData session only.

If you do not include float.number, UniData displays the current setting. You must 
enclose scientific notation, such as 1.0E-10 in quotation marks.

The default value is 0.0 to be backwardly compatible with previous versions of 
UniBasic.

Examples
This example displays the current wide zero setting:

:SET.WIDEZERO
Wide Zero: 0.00E+00
:

In the following example, the SET.WIDEZERO command sets the range at 0.001. In 
UniBasic, if A=5.9915 and B=5.991, then A=B is true because the difference 
between the two numbers, 0.0005 is less than the wide zero value 0.001.

:SET.WIDEZERO 0.001
1-412 UniData Commands Reference



SETDEBUGLINE

Syntax
SETDEBUGLINE port

Description
The ECL SETDEBUGLINE command makes a terminal port number (port) 
attachable for dual-terminal debugging with the UniBasic debugger.

For more information on UniBasic and the UniBasic debugger, see Developing 
UniBasic Applications.

Example
In the following example, UniData makes a port attachable:

:SETDEBUGLINE ttyv0
:

Related Commands
DEBUGLINE.ATT, DEBUGLINE.DET, UNSETDEBUGLINE
     1-413



 

SETFILE

Syntax
SETFILE [[path][pointer] [OVERWRITING]]

Description
The ECL SETFILE command creates a file pointer in the VOC for a UniData file. 
SETFILE does not work on dictionaries, multilevel subfiles, or subdirectories. 
SETFILE assigns the correct file type to the file pointer.

You can set a pointer in a UniData VOC file to a data file in another UniData account. 
This feature allows users working in different UniData accounts to share data files. 
There are two points to remember about setting a VOC pointer:

A VOC pointer is internal to UniData. On UniData for UNIX, it is not the 
same thing as a UNIX link. Because of this, even backup utilities that follow 
symbolic links do not automatically follow VOC pointers.
Setting a VOC pointer does not alter the physical location of the data file. 
Although you can access the file from the directory where the pointer 
resides, the physical location of the file and its indexes remains unchanged.

Note: When UDT.OPTIONS 87 is on and you delete a synonym for a file in another 
account with DELETE.FILE, UniData deletes both the file pointer in the current 
directory and the file in the remote account.
1-414 UniData Commands Reference



Parameters
The following table describes each parameter of the syntax.

SETFILE Parameters 

Parameter Description

no parameter UniData prompts for all required information.

path The full or relative path to the file. If you do not indicate path, 
UniData prompts for a “treename.” You can specify a relative 
path, but you may not include variables, such as @UDTHOME.

pointer The name of the VOC entry that will be the file pointer. If you 
do not indicate a pointer name, UniData prompts for a 
“filename.”

OVERWRITING Overwrites the VOC entry for an existing file pointer of the same 
name.
Warning: UniData does not prompt for confirmation before 
overwriting the VOC entry.

Examples
Start from the directory that contains the VOC file where you wish UniData to create 
the entry for the file pointer. For the following series of examples, taken from 
UniData on UNIX, that directory is /home/claireg/demo. In the next example, the 
UNIX pwd command confirms the location:

:!pwd
/home/claireg/demo
:

     1-415



 

Creating a New File Pointer

In the following example, UniData creates a file pointer named ACCOUNTS to the 
UniData file CLIENTS, which resides in another account (/usr/ud61/demo). Before 
establishing the pointer, UniData lists the parameters for the pointer and asks for 
confirmation.

:SETFILE /disk1/ud72/demo/INVENTORY stock.file
Establish the file pointer
Tree name /disk1/ud72/demo/INVENTORY
Voc name stock.file
Dictionary name /disk1/ud72/demo/D_INVENTORY
Ok to establish pointer(Y/N) = y
SETFILE completed.
:

Use the CT command to display the VOC entry for the new file pointer:

:CT VOC stock.file
VOC:
stock.file:
F
/disk1/ud72/demo/INVENTORY
/disk1/ud72/demo/D_INVENTORY
:

After creating the VOC entry in your own account, you can execute the ECL LIST 
command to list the INVENTORY file from that account. Here, the UNIX pwd 
command confirms the current location, and ECL LIST command lists the stock.file 
file:

:!pwd
/home/claireg/demo
:LIST stock.file PROD_NAME
LIST stock.file PROD_NAME 14:57:02 Jun 08 1999 1
Product
INVENTORY. Name......
53050 Photocopie
r
56060 Trackball
57030 Scanner
31000 CD System
2
10140 Camera
11001 Computer
10150 Camera
...
1-416 UniData Commands Reference



Changing an Existing File Pointer

The OVERWRITING keyword changes the VOC entry pointer. The following 
example shows the VOC entry for the CLIENTS demo file in /home/claireg/demo:

:CT VOC CLIENTS
VOC:
CLIENTS:
F
CLIENTS
D_CLIENTS
:

The next example changes the file pointer to the CLIENTS file in another account:

:SETFILE /disk1/ud72/demo/CLIENTS CLIENTS OVERWRITING
Establish the file pointer
Tree name /disk1/ud72/demo/CLIENTS

Voc name CLIENTS
Dictionary name /disk1/ud72/demo/D_CLIENTS
SETFILE completed.

To compare the new file pointer to the original one, use the CT command. Notice that 
UniData points to a new location for the CLIENTS file.

Warning: OVERWRITING does not prompt for confirmation before removing the 
VOC pointer. Also, without the VOC pointer, some users may be unable to access a 
file in another account.

:CT VOC CLIENTS
:CT VOC CLIENTS
VOC:
CLIENTS:
F
/disk1/ud72/demo/CLIENTS
/disk1/ud72/demo/D_CLIENTS
     1-417



 

Executing SETFILE with No Parameters

In the following example, UniData prompts for required information:

:SETFILE
Enter treename = /home/claireg/demo
Enter filename = CLIENTS
Establish the file pointer
Tree name /home/claireg/demo
Voc name CLIENTS
Ok to establish pointer(Y/N) = Y

Pointer CLIENTS already exists, do you want to overwrite(Y/N) = Y
SETFILE completed.

Here is the VOC entry for the new file pointer:

:CT VOC CLIENTS
VOC:

CLIENTS:
DIR
:

Creating File Name Synonyms

You can create a synonym file name by creating a second file pointer to an existing 
file. You can then use the original or synonym file name to access the file.

Note: Delete the VOC entry that creates a synonym by executing: 

DELETE.FILE synonym name
1-418 UniData Commands Reference



Re-creating a Deleted File Pointer

To demonstrate recreating a deleted file pointer, we first delete the VOC pointer to 
the CLIENTS demo file. The CT command reveals that the VOC pointer no longer 
exists, and an attempt to display the records in CLIENTS generates a message that 
CLIENTS is not a file name.

:DELETE VOC CLIENTS
‘CLIENTS’ deleted.
:CT VOC CLIENTS
VOC:
CLIENTS is not a record in VOC.
:LIST CLIENTS

Not a filename :
CLIENTS
:

Next, we reestablish the VOC pointer by using SETFILE and pointing to the demo 
directory, then confirm with CT that the pointer again exists. Finally, LIST displays 
the records in the file:

:SETFILE /disk1/ud72/demo/CLIENTS
Enter filename = CLIENTS
Establish the file pointer
Tree name /disk1/ud72/demo/CLIENTS
Voc name CLIENTS
Dictionary name /disk1/ud72/demo/D_CLIENTS
Ok to establish pointer(Y/N) = Y
SETFILE completed.
:CT VOC CLIENTS
VOC:
CLIENTS:
F
/disk1/ud72/demo/CLIENTS
/disk1/ud72/demo/D_CLIENTS

:LIST CLIENTS
LIST CLIENTS NAME COMPANY ADDRESS CITY STATE ZIP COUNTRY PHONE 
PHONE_TYPE
15:24:05 Jun 08 1999 1
CLIENTS 9999
Name Paul Castiglione
Company Name Chez Paul
Address 45, reu de Rivoli
City Paris
State/Territory
Postal Code 75008
Country France
...
     1-419



 

SETLINE

Syntax
SETLINE [line [path]]

Description
The ECL SETLINE command initializes a communication line for use during the 
current UniData session. If you do not specify a parameter, UniData displays the 
current setting.

SETLINE creates an editable ASCII file. On UniData for UNIX, this file is located 
in udthome/sys/lineinfo. On UniData for Windows Platforms, this file is located in 
udthome\sys\lineinfo.

Note: To initialize a line, you must log on as root on UniData for UNIX or as 
Administrator on UniData for Windows Platforms. However, any user can use the 
SETLINE command to get line information.

Parameters
The following table describes each parameter of the syntax.

SETLINE Parameters 

Parameter Description

line Line unit number from 0 to 499 of a device to be initialized. If you do not 
indicate a line number, UniData returns all line information. If you indicate 
the line number without specifying path or devname, UniData returns infor-
mation about line.

path On UniData for UNIX, path and name for the physical device, for instance, 
/dev/tty01. On UniData for Windows platforms, identifier for serial device, 
for instance, COM1.
1-420 UniData Commands Reference



Example
In the following example, UniData displays the path and name for the device to 
which line 0 is currently attached:

:SETLINE 0
LINE#......: 0
DEVICE-NAME: /dev/pty/ttyv6
:

Related Commands

UniData

LINE.ATT, LINE.DET, LINE.STATUS, PROTOCOL, UNSETLINE

UniBasic

GET, SEND For information, see the UniBasic Commands Reference.
     1-421



 

SETOSPRINTER

Syntax
SETOSPRINTER [“UNIX_spooler_command [options]”]

Description
The ECL SETOSPRINTER command executes a UNIX spooler command. You 
must enclose the spooler command and options in quotation marks. To reset the 
printer command to the default, issue SETOSPRINTER with no parameters.

Note: This command is supported in UniData for UNIX only.

The command you set with SETOSPRINTER must be listed in the configuration file 
UDTSPOOL.CONFIG in udthome/sys. You can edit this file, but write access may be 
restricted. For more information about editing the UDTSPOOL.CONFIG file, see 
Administering UniData.

Parameters
The following table describes each parameter of the syntax.

SETOSPRINTER Parameters 

Parameter Description

UNIX_spooler_command A UNIX spooler command. Must be enclosed in quotation 
marks. Must be defined in 
/udthome/sys/UDTSPOOL.CONFIG.

options UNIX spooler command options. Must be enclosed in 
quotation marks.

You can display the setting for the system spooler with the ECL LIMIT command, 
which lists maximums for all UniData environment variables:

:LIMIT
...
U_LPCMD: System spooler name = lp -c.
...
1-422 UniData Commands Reference



In the following example, SETOSPRINTER changes the setting for the UNIX 
spooler command:

:SETOSPRINTER “lp”
:LIMIT
...
U_LPCMD: System spooler name = lp -c .
...
     1-423



 

SETPTR

Syntax
SETPTR unit[,width,length,topmargin,bottommargin] [,mode] 
[“spooler_options”[,options]]

Description (UniData for UNIX)
The ECL SETPTR command directs the print spooler for printer unit for the current 
UniData session.

The SETPTR option defaults are set internally in UDTSPOOL.CONFIG in 
udthome/sys; you can change them only for the current UniData session.

You can configure as many as 31 printer units in a UniData session, including the 
default printer (defined as 0). You can configure as many as 255 printer units per 
UniData installation (units 0 through 254). UniData uses the UNIX print spooler 
command usually lp or lpr.

Tip: To make work sessions consistent among users, place SETPTR commands in the 
LOGIN paragraph for each UniData account.

Note: If UDT.OPTIONS 84 is on, and the printer set to a _HOLD_ file, UniData 
displays the hold entry name each time a new hold file is created. With 
UDT.OPTIONS 84 OFF, UniData displays the _HOLD_ entry name only when 
SETPTR or SP.ASSIGN is executed.
1-424 UniData Commands Reference



Parameters (UniData for UNIX)
The following table describes each parameter of the syntax.

SETPTR Parameters 

Parameter Description

unit Number assigned to a given printer through UNIX: 0–255. (The 
default is 0). If you do not indicate a printer unit number, UniData 
displays the current printer settings for Unit 0.

width Number of characters per line: 0–1,024 characters. If you do not 
want to change this setting, enter a comma as a placeholder.

length Number of lines per page: 1 to 32,767 lines. If you do not want to 
change this setting, enter a comma as a placeholder.

topmargin Number of lines to leave blank at the top of each page: 0–25. If you 
do not want to change this setting, enter a comma as a placeholder.

bottommargin Number of lines to leave blank at the bottom of each page: 0–25. If 
you do not wish to change this setting, enter a comma as a 
placeholder.

mode Several modes work in conjunction with the SETPTR command. See 
“SETPTR Modes (UniData for UNIX)” in this section. If you do not 
want to change this setting, enter a comma as a placeholder.

“spooler_options” UNIX lp or lpr spooler option. Any parameter that you use with your 
spooler, you can use with SETPTR. Enclose each option in quotation 
marks. For example: “-o noeject”.

options Report formatting and printer control options. See “SETPTR 
Options (UniData for UNIX)” in this section.
     1-425



 

SETPTR Modes (UniData for UNIX)

The following table lists the SETPTR modes:

SETPTR Modes 

Mode Description

1 Sends output to the line printer.

2 Directs output to the serial device indicated by the DEVICE option.

3 Sends output to the _HOLD_ file.

6 Sends output to the _HOLD_ file and to the line printer.
Tip: To print records from the _HOLD_ file, use the ECL “SPOOL” 
command. 
Use in conjunction with BANNER or BANNER UNIQUE to store the 
output in a record you name.

9 Sends output to the line printer and suppresses terminal display of the 
_HOLD_ entry name.
1-426 UniData Commands Reference



SETPTR Options (UniData for UNIX)

The following table lists the SETPTR options.

Option Description

BANNER [string] By default, SETPTR adds a banner page that shows the owner’s 
user ID. You can override the default display with the 
BANNER option where string is a message for the banner page. 
If you redirect the output to the _HOLD_ file, the print record 
identifier in the _HOLD_ file becomes P_string_n. (The default 
record identifier in the _HOLD_ file is P_unit_n.)
string can be as long as 96 characters, but cannot contain 
spaces. It must be followed by a comma, if options follow.
Reserved characters on your operating system cannot be used in 
the text of the banner.

BANNER UNIQUE 
(string)

Places string in the record identifier. By default, the record 
identifier is P_unit_n, where unit is the printer unit number, and 
n is a 4-digit number that increments automatically. If you 
indicate string, the identifier becomes P_string_n. 
Note: This counter is stored in DICT _HOLD_NEXT.HOLD 
(Attribute 1). The counter automatically rolls back to 1 after 
incrementing to 9999. Users must have write permissions to 
DICT _HOLD_ to use this option.
string can be as long as 96 characters, but cannot contain 
spaces. It must be followed by a comma, if options follows.

BRIEF Suppresses the verification prompt.

COPIES n Prints n copies.

DEFER [time] Delays printing until the specified time by passing the job to the 
UNIX at command. Make sure you know what time zone your 
machine uses — it may differ from your local time. 
This option requires that you be logged on as root.
Tip: For the syntax for time, see your UNIX documentation or 
the man pages for information on the “at” command. 

SETPTR Options 
     1-427



 

Tip: Some of the SETPTR options are configurable in the UDTSPOOL.CONFIG file 
located in udthome/sys. For more information about editing this ASCII text file, see 
Administering UniData.

[DEST | AT] unit Directs the print job to print queue unit, rather than to a device 
number. For example, if you have multiple printers set up to run 
only checks, you can use this option to have checks print on the 
first available check printer. In this case, your spooler must 
support classes.

DEVICE filename Directs output to the UNIX device indicated by filename. Used 
only with mode 2.

EJECT Ejects a blank page at the end of the print job.

NOEJECT Suppresses the form feed at the end of the print job.

FORM form Assigns a previously defined form to the spooler. DEST and 
FORM are concatenated to designate the print queue name.

LNUM Prints line numbers in the left margin.

NFMT | NOFMT Suspends all UniData print formatting. Use this if you intend to 
control print formatting with an application.

NHEAD | NOHEAD Suppresses the banner.

NOMESSAGE Suppresses messages from the UNIX lp spooler.

OPEN Sends output to a file until an SP.CLOSE statement executes for 
this print unit. This allows you to save multiple reports in one 
file.

Option Description

SETPTR Options (continued)
1-428 UniData Commands Reference



Examples (UniData for UNIX)
To find out the current SETPTR settings for unit 0, enter the SETPTR command 
without any options. In the example that follows, notice the Spooler & options setting 
which is set for the lp UNIX spooler command and the -c spooler option.

:SETPTR
Unit 0
Width 132
Length 60
Top margin 3
Bot margin 3
Mode 1
Options are:
Spooler & options: lp -c
:

In the following example UniData assigns the following printer parameters:

Column width of 45 characters
Page length of 10 lines
Top margin of 15 lines
Leave the bottom margin undefined (notice the extra comma, which acts as 
a placeholder)
Use mode 3, which directs output to the _HOLD_ file
Use the BANNER option to name the _HOLD_ file record Summary
Suspend system formatting

:SETPTR 0,45,10,15,,3,BANNER Summary,NOFMT
Unit 0
Width 45
Length 10
Top margin 15
Mode 3
Options are:
Banner Summary
Nfmt
OK to set parameters as displayed?(enter Y/N) y
Hold Entry _HOLD_/SummaryUnit 0
:

     1-429



 

Printing Multiple Reports in a Single Print Job

The next example uses the OPEN option with SETPTR to print multiple reports, 
which UniData recognizes as a single print job, to a printer or the _HOLD_ file. Once 
all the print statements have been issued, you must use the ECL SP.CLOSE command 
to spool the print the job.

This sample SETPTR command sequence accomplishes the following:

1. Controls settings for report formatting and printing, including:
 Leaves settings for page width, length, top margin, and bottom margin 
unchanged (the commas act as placeholders for these parameters)
Sends output to the _HOLD_ file by using mode 3
Labels the _HOLD_ file record Multiples by using the BANNER 
option
Opens a print statement input session by using the OPEN option, thus 
allowing the user to enter multiple print statements

2. Uses LIST commands to generate multiple reports (including the LPTR 
keyword after each statement to direct the statements to the printer spooler)

3. Uses the SP.CLOSE command to close the print statement input session and 
prints the job to the _HOLD_ file

:SETPTR 0,,,,,3,BANNER Multiples,OPEN
Unit 0
Mode 3
Options are:
Banner Multiples
OPEN
OK to set parameters as displayed?(enter Y/N) Y
Hold Entry _HOLD_/Multiples
:LIST CLIENTS LNAME LPTR
:LIST INVENTORY PROD_NAME LPTR
:LIST ORDERS GRAND_TOTAL LPTR
:SP.CLOSE
:

Now, if you look at the contents of the _HOLD_ file you will see that it contains the 
job called Multiples.

:LS _HOLD_
Multiples
:

Tip: To see the contents of a record in the _HOLD_ file, use your system text editor 
or the SP.EDIT command.
1-430 UniData Commands Reference



SETPTR (UniData for Windows Platforms)
On UniData for Windows platforms, the SETPTR command maps printers defined in 
Windows systems (either local printers or network print devices) to logical unit 
numbers.

With SETPTR, you can define up to 31 logical printer units in a single UniData 
session. Throughout UniData, you can define up to 255, but only 31 can be defined 
in a single user session.

The default print unit in UniData is unit 0. You can map this default unit to a 
particular device with SETPTR. If you do not map it explicitly, unit 0 is automatically 
mapped to one of two printers:

The default printer for your Windows system. Check Settings > Printers to 
determine which printer is the default.
A printer identified by the system environment variable 
UDT_DEFAULT_PRINTER. This definition overrides the default printer 
for the Windows NT system. Use the MS-DOS SET command or select 
Settings > Control Panel > System > Environment to display or modify 
UDT_DEFAULT_PRINTER.

Parameters (UniData for Windows Platforms)
The following table describes each parameter of the syntax.

Parameter Description

unit Logical printer unit number; internal to UniData; you can map this 
to a Windows printer with the DEST option. Valid values range from 
0 through 254. The default is 0.

[width] The number of characters per line: must be from 0 to 256. The 
default is 132.

[length] The number of lines per page. Valid values range from 1 to 32,767 
lines. The default is 60.

[topmargin] The number of lines to leave blank at the top of each page. Valid 
values range from 0 to 25. The default is 3.

SETPTR Parameters 
     1-431



 

Note: Users familiar with Pick® conventions should be aware that printer unit 
numbers set with SETPTR are not the same as Pick® printer numbers. SETPTR 
enables you to define logical printer units, which may be, but are not necessarily, 
linked to specific printers. UniData printer unit numbers are used with the PRINT 
ON statement in UniBasic to allow multiple concurrent jobs. Use the DEST option of 
SP.ASSIGN to specify Pick® printers and forms.

The following table describes modes for SETPTR.

SETPTR Modes 

Mode Description

1 Directs output to a printer only. Default mode.

2 Must be used with DEVICE option. Directs output to the serial device 
specified by the DEVICE option.

3 Directs output to a _HOLD_ file only.

6 Directs output to both a _HOLD_ file and a printer.

9 Directs output to a printer. Suppresses display of the _HOLD_ entry name.

[bottommargin] The number of lines to leave blank at the bottom of each page; must 
be from 0 to 25. The default is 3.

[mode] The output direction. The default is 1. See separate table.

[“spooler_options”] Options that are valid with the Windows spooler. See separate table 
for list of supported options. Enclose these options in quotation 
marks.

[options] Report formatting and printer control options. See “SETPTR 
Options” in this section.

Parameter Description

SETPTR Parameters (continued)
1-432 UniData Commands Reference



The next table describes options for the SETPTR command.

SETPTR Options 

Option Description

BANNER [string] Modifies the default banner line (which is the Windows user 
id). Depends on MODE setting; also modifies _HOLD_ entry 
name.
Reserved characters on your operating system cannot be used in 
the text of the banner.

BANNER UNIQUE 
(string)

Modifies the default banner line and automatically uses 
attribute 1 (NEXT.HOLD) in the dictionary for the _HOLD_ 
file to create unique entry names for jobs sent to _HOLD_.

BRIEF Suppresses the verification prompt.

COPIES n Prints n copies. Does not work with mode 3. Default is 1.

DEFER [time] Delays printing until the specified time. Specify the time in 
HH:MM format. Does not work with mode 3.

[DEST | AT] unit Directs output to a specific printer or queue. The unit may be 
either a local printer or a network printer.

DEVICE name Used with mode 2 only. Directs output to the Windows device 
(for instance, a COM port) identified by name.

EJECT Ejects a blank page at the end of the print job.

NOEJECT Suppresses the form feed at the end of the print job.

LNUM Prints line numbers in the left margin.

NFMT | NOFMT Suspends all UniData print formatting. 

NHEAD | NOHEAD Suppresses the banner.

OPEN Opens a print file, and directs output to this file until the file is 
closed by the SP.CLOSE command.
     1-433



 

The next table describes spooler options you can specify in a quoted string.

Option Description

Orientation The paper orientation. Must be PORTRAIT or LANDSCAPE. 
Defaults to the setting in the Default Document Properties 
sheet for the printer.

PaperSource The default paper source; must match an available paper 
source listed on the Device Settings tab of the printer’s 
Properties Sheet.

Duplex Must be NONE, HORIZONTAL, or VERTICAL; default is 
NONE.
Note: If the print device does not support duplex printing, this 
option is ignored. Jobs print singlesided and no error message 
displays.

Form The form to use (for instance, Letter). Must match an available 
paper size listed on the Device Settings tab of the printer’s 
Properties Sheet.

Mode RAW or WINDOW. Default is RAW, meaning that printer-
specific escape sequences are required for all formatting.
Note: Specifying formatting options (Form, Font, FontSize, 
Orientation, FontStyle, DefaultSource, or Duplex) in a quoted 
string automatically switches Mode to WINDOW.

Prefix The printer-specific escape sequence, specified as the literal 
ASCII characters. Valid in RAW mode only.

Font The font name, for instance, “Courier New.”
Note: The UniData spooler creates a “logical font” using the 
values you provide for Font, FontSize, and FontStyle. 
Windows platforms attempt to find an appropriate font to use 
from the ones installed on your computer.

FontSize The font size in points (for instance, 8, 9, 10, 11).
Note: The UniData spooler creates a “logical font” using the 
values you provide for Font, FontSize, and FontStyle. 
Windows platforms attempt to find an appropriate font to use 
from the ones installed on your computer.

SETPTR Spooler Options 
1-434 UniData Commands Reference



Examples (UniData for Windows Platforms)
To display information about printers on your Windows system, from the Start menu, 
click Printers and Faxes. In the following example, there are two local printers and 
three network print devices defined. The local printers may point to the same physical 
print device or to different physical print devices.

FontStyle Must be Regular, Italic, Bold, Underline, or StrikeOut. Default 
is Regular.
Note: The UniData spooler creates a “logical font” using the 
values you provide for Font, FontSize, and FontStyle. 
Windows platforms attempt to find an appropriate font to use 
from the ones installed on your computer.

LeftMargin The left margin of the page, in inches.

RightMargin The right margin of the page, in inches.

TopMargin The top margin of the page, in inches.
Note: TopMargin is measured beginning at the value of the 
SETPTR topmargin option (default is 3 lines). If topmargin is 
3 lines (the default) and TopMargin = 1, the first printed line is 
one inch below the third line of the page.

BottomMargin Bottom margin of the page, in inches.
Note: BottomMargin is measured beginning at the value of the 
SETPTR bottommargin option (default is 3 lines). If bottom-
margin is 3 lines (the default) and BottomMargin = 1, the first 
printed line is one inch above the third line from the end of the 
page.

Priority Must be from 1 to 99, where 1 is minimum priority and 99 is 
maximum priority.

JobState The only valid value is PAUSE, which stops all jobs to the print 
unit. There is no way to reverse this action.

Option Description

SETPTR Spooler Options (continued)
     1-435



 

Tip: You can print from UniData to any network print device available to you. A print 
device does not need to be visible in the Printers dialog box.
1-436 UniData Commands Reference



You can define local or network printers to UniData by using the SETPTR command, 
as shown in the following examples.

:SETPTR 0,,,,,1,AT 
LETTER,”TopMargin=1,BottomMargin=1,Font=Courier,FontSize=12” 
Unit 0 
Mode 1 
Options are: 
Destination LETTER 
Lp options : TopMargin=1,BottomMargin=1,Font=Courier,FontSize=12 
OK to set parameters as displayed?(enter y/n) y

:SETPTR 0
Unit 0
Width 105
Length 31
Top margin 3
Bot margin 3
Mode 1
Options are:
Destination LETTER
Lp options : TopMargin=1,BottomMargin=1,Font=Courier,FontSize=12

:SETPTR 1,,,0,0,1,AT \\DENVER4\hpzone3,”Priority=99”
Unit 1
Top margin 0
Bot margin 0
Mode 1
Options are:
Destination \\DENVER4\hpzone3
Lp options : Priority=99
OK to set parameters as displayed?(enter y/n) y

:SETPTR 2,,,,,1,AT LEGAL
Unit 2
Mode 1
Options are:
Destination LEGAL
OK to set parameters as displayed?(enter y/n) Y

:SETPTR 3,,,,,1,AT \\DENVER4\hpzone2,”Form=A4”
Unit 3
Mode 1
Options are:
Destination \\DENVER4\hpzone2
Lp options : Form=A4
OK to set parameters as displayed?(enter y/n) y
:

Notice the following points:
     1-437



 

The default print device (printer unit 0) is now mapped to the local printer 
LETTER. If you use the PRINT command or LPTR with no print unit 
specified, your print job is directed to LETTER.
Use SETPTR unit to display the current settings for a print unit.
When you specify spooler options (TopMargin, BottomMargin), UniData 
automatically recalculates the width and length, taking these into account. 
Also, when you specify formatting options in a quoted string, UniData 
implicitly changes the spooler Mode from RAW (the default) to WINDOW.
You can specify spooler options in a quoted string either before or after 
SETPTR options like AT, DEFER.
You can map a printer unit to a network print device even if that device is 
not displayed in your Printers dialog.

After you have defined printers with SETPTR, you can display a list with the 
LISTPTR command, as shown below:

:LISTPTR
Unit.. Printer................... Port.......................Status..
0 LETTER  \\DENVER4\hpzone3 ‘Running
1 \\DENVER4\hpzone3  hpzone3   Running
2 LEGAL  \\DENVER4\hpzone3  Running
3 \\DENVER4\hpzone2  hpzone2  Running

Notice that, in the previous example, the two local printers point to the same network 
print device.

Use PTRDISABLE and PTRENABLE (STOPPTR and STARTPTR) to control the 
local printers:

:PTRDISABLE LETTER
:LISTPTR
Unit.. Printer................... Port.......................Status..
0 LETTER  \\DENVER4\hpzone3 Paused
1 \\DENVER4\hpzone3  hpzone3 Running
2 LEGAL  \\DENVER4\hpzone3 Running
3 \\DENVER4\hpzone2  hpzone2 Running
:PTRENABLE LETTER
:LISTPTR
Unit.. Printer................... Port.......................Status..
0 LETTER  \\DENVER4\hpzone3 Running
1 \\DENVER4\hpzone3  hpzone3 Running
2 LEGAL  \\DENVER4\hpzone3 Running
3 \\DENVER4\hpzone2  hpzone2 Running
:

Only users with Full Control permissions on a printer can control the printer with 
PTRDISABLE and PTRENABLE. Check Permissions on the Security tab of the 
printers Properties sheet to determine who has permissions.
1-438 UniData Commands Reference



Notice that the argument for PTRDISABLE and PTRENABLE is the name of the 
local printer (as specified with DEST or AT in SETPTR).

Tip: In the examples in this chapter, the local printers point to a network print device. 
PTRDISABLE and PTRENABLE pause or resume the local printer only. They do not 
affect the underlying network print device, and they do not affect other local printers 
that point to the print device.

You can use the ECL SP.STATUS command to display information about printers 
defined with SETPTR and print jobs started from your UniData session.

The following example shows SP.STATUS output:

:SP.STATUS
Device for LETTER: \\DENVER4\hpzone3
LETTER is Running.
Device for \\DENVER4\hpzone3: hpzone3
\\DENVER4\hpzone3 is Running.
Device for LEGAL: \\DENVER4\hpzone3
LEGAL is Running.
Device for \\DENVER4\hpzone2: hpzone2
\\DENVER4\hpzone2 is Running.

JobId.... User............ Size.... Status... Unit.. 
Printer..................
241 terric 543 Defered 3 \\DENVER4\hpzone2 \
:

The status of all the printers is Running, and the network print device has a deferred 
job.

Depending on how a print device was configured, users in console sessions may see 
printer notification messages when a job completes. 

Note: The Printing Notification displays only if you are logged on to a console 
session. If you are logged on to UniData through TELNET, you will not see the 
notification.

Redefining the Default UniData Print Unit
To keep UniBasic applications general, developers typically use (or assume) printer 
unit 0, which is the default. You can redefine unit 0 to direct output from different 
parts of an application to different physical printers or queues or to change formatting 
options with the SETPTR command.
     1-439



 

The following example is a very simple paragraph that redefines the default print unit 
for different reports:

:CT VOC OUTPUT
VOC:
OUTPUT:
PA
SETPTR 0,80,78,3,3,1,AT LEGAL
RUN BP REPORT_PRINT
SETPTR 0,80,60,3,3,1,AT LETTER
RUN BP LETTER_PRINT
:

Submitting Concurrent Print Jobs
With SETPTR, you can define up to 31 logical printer units per UniData session. You 
can use this functionality to submit concurrent print jobs from a UniBasic appli-
cation. One common implementation follows:

Define two logical printer units (for instance, 0 and 1) that point to different 
physical print devices.
Direct all lines of a report to one printer with the UniBasic PRINT ON 
command (for instance, PRINT ON 0 PRINT.LINE).
Direct summary (break) lines to the second printer (PRINT ON 0 
PRINT.LINE followed by PRINT ON 1 PRINT.LINE).

In this way, you can print a summary report and a detail report at the same time.
1-440 UniData Commands Reference



SETTAPE

Syntax
SETTAPE unit [no_rewind_driver][rewind_driver][block]

Description
The ECL SETTAPE command initializes a pointer to a tape unit for use by the 
current process. You must initialize a tape unit with the SETTAPE command before 
you can access it. If you include unit without any other parameters, UniData displays 
the current settings for that tape unit.

On UniData for Windows platforms, the SETTAPE command establishes a link 
between a UniData internal tape unit number and an NTFS tape device. You can use 
SETTAPE to relate unit number to tape devices, or to NTFS or FAT disk files.

Note: If you are using an NTFS tape drive on a Windows platform, you must identify 
the tape drive with its name in UNC format. If you are using a disk file, you may 
identify it by its path and file name. The disk file must already exist.

SETTAPE creates an editable ASCII file located in udthome/sys/tapeinfo on UniData 
for UNIX and udthome\sys\tapeinfo on UniData for Windows platforms. If you 
attach a tape and change the block size from that specified in tapeinfo, UniData 
creates another file in the same directory, tapeatt, which takes precedence over 
tapeinfo.

Note: To initialize or update a pointer to a tape unit, you must log on as root on 
UniData for UNIX or as Administrator on UniData for Windows platforms.
     1-441



 

Parameters
The following table describes each parameter of the syntax.

SETTAPE Parameters 

Parameter Description

unit Number, 0–9, indicating the tape unit to be initialized. unit 
without any other parameters displays the current settings for 
unit.

no_rewind_driver Path and device name of the “no rewind” device driver for unit. 
On UniData for Windows Platforms, the driver must be 
specified in the UNC format if the device is a tape drive.

rewind_driver Path and name of the “rewind” device driver for unit.
On UniData for Windows Platforms, the driver must be 
specified in the UNC format if the device is a tape drive.

block Block size in bytes. Must be a multiple of 512. If you do not 
stipulate a block size, UniData uses 4096.

Example (UniData for UNIX)
The following example displays the settings for tape unit 1:

:SETTAPE 1
unit # = 1.
non rewind device:/dev/rmt/0mn
rewind device :/dev/rmt/0m
block size =4096
:

The next example initializes a pointer to UNIX disk file:

:SETTAPE 4 /tmp/diskfile1 /tmp/diskfile1 16384
unit # = 4.
non rewind device:/tmp/diskfile1
rewind device :/tmp/diskfile1
block size =16384
:

1-442 UniData Commands Reference



Example (UniData for Windows Platforms)
In the following example, UniData displays the settings for tape unit 1:

:SETTAPE 1
unit # = 1.
non rewind device:\\.\tape0
rewind device :r\\.\tape0
block size =4096
:

In the next example, UniData establishes a tape unit that is actually a NTFS disk file:

:SETTAPE 0 \\.\tape0 R\\.\tape0 4096
:

Related Commands
T.ATT, T.DET
     1-443



 

SG.LIST

Syntax
SG.LIST [item] [FROM [list.number]]

Description
The SG.LIST command executes the SAVE.LIST command immediately followed 
by a GET.LIST command.

Parameters
The following table describes each parameter of the syntax.

SG.LIST Parameters 

Parameter Description

item The name of the savedlist you want to create.

FROM list.number An active list number between 0 and 9. If you do not specify 
list.number, UniData assumes 0.
1-444 UniData Commands Reference



shmconf

Syntax
shmconf

Description
The system-level shmconf command runs the interactive shmconf (shared memory 
configuration) utility, which sets UniData shared memory configuration parameters. 
shmconf is supported on UniData for UNIX only.

For detailed information about shared memory configuration, see Administering 
UniData.

Note: Use this command at the operating system prompt, or use the ECL ! (bang) 
command to execute it from the ECL (colon) prompt.

Tip: Use the udtconf command to set all UniData configuration parameters.

Example
The following example shows the shmconf display:

% shmconf
AutoConf ChecKConf SaVeConf CaLcCTL SysParam Exit

Users Licensed: 32 Platform: 0000479670 OS: AIX 2 3
NUSERS.....: 64 SHM_LPINENTS....: 10 MIN_MEMORY_TEMP.: 256
SHM_GNTBLS.: 16 SHM_LMINENTS....: 8 COMPACTOR_POLICY: 1
SHM_GNPAGES: 32 SHM_LCINENTS....: 100 VARMEM_PCT......: 50
SHM_GPAGESZ: 1024 SHM_LPAGESZ.....: 8
SHM_FREEPCT: 25 AVG_TUPLE_LEN...: 4
SHM_NFREES.: 1 EXPBLKSIZE......: 64
SHMMAX......: 268435456 SHM_ATT_ADD.: 1073741824
SHMMIN......: 1 SHM_LBA.....: 268435456
PressCtrl +{A |K |V |L |P |E}toperform a command.
Press PF1 to get help information about a field.
     1-445



 

showconf

Syntax
showconf [-o | -O] filename][-h|-H]

Description
The system-level command showconf displays current settings for UniData config-
uration parameters. These values may differ from the settings listed in utdconfig, for 
example, if a value specified in udtconfig is inadequate, UniData recalculates it.

Note: showconf is supported on UniData for UNIX only.

Execute this command at the system prompt, or use the ECL ! (bang) command to 
execute it from the ECL (colon) prompt.

Parameters
The following table describes each parameter of the syntax.

showconf Parameters 

Parameter Description

[-o | -O] filename Directs output to filename.

-h | -H Displays the command usage. If you use this with the other 
options, UniData recognizes only the -h option.

Example
The following sample output illustrates the three lists of parameters:

Section 1 Neutral parameters
Section 2 Non-RFS related parameters
1-446 UniData Commands Reference



Section 3 RFS related parameters
:!showconf
## Unidata Configuration Parameters
#
# Section 1 Neutral parameters
# These parameters are required by all Unidata installations.
#
# 1.1 System dependent parameters, they should not be changed.
LOCKFIFO=1
SYS_PV=3
# 1.2 Changable parameters
NFILES=60
NUSERS=20
WRITE_TO_CONSOLE=0
TMP=/tmp/
NVLMARK=
FCNTL_ON=0
TOGGLE_NAP_TIME=161
NULL_FLAG=0
N_FILESYS=200
N_GLM_GLOBAL_BUCKET=101
N_GLM_SELF_BUCKET=23
GLM_MEM_ALLOC=10
GLM_MEM_SEGSZ=4194304
# 1.3 I18N related parameter
UDT_LANGGRP=255/192/129
#
# Section 2 Non-RFS related parameters

#
# 2.1 Shared memory related parameters
SBCS_SHM_SIZE=1048576
SHM_MAX_SIZE=67108864
SHM_ATT_ADD=0
SHM_LBA=4096
SHM_MIN_NATT=4
SHM_GNTBLS=40
SHM_GNPAGES=32
SHM_GPAGESZ=256
SHM_LPINENTS=10
SHM_LMINENTS=32
SHM_LCINENTS=100
SHM_LPAGESZ=8
SHM_FREEPCT=25
SHM_NFREES=1
# 2.2 Size limitation parameters
AVG_TUPLE_LEN=4
EXPBLKSIZE=16
MAX_OBJ_SIZE=307200
MIN_MEMORY_TEMP=64
# 2.3 Dynamic file related parameters
GRP_FREE_BLK=5
SHM_FIL_CNT=2048
SPLIT_LOAD=60
     1-447



 

MERGE_LOAD=40
KEYDATA_SPLIT_LOAD=95
KEYDATA_MERGE_LOAD=40
MAX_FLENGTH=1073741824
PART_TBL=/disk1/ud72/parttbl
# 2.4 NFA server related parameter
EFS_LCKTIME=0
# 2.5 Journal related parameters
JRNL_MAX_PROCS=1
JRNL_MAX_FILES=400
# 2.6 UniBasic file related parameters
MAX_OPEN_FILE=500
MAX_OPEN_SEQF=150
MAX_OPEN_OSF=100

MAX_DSFILES=1000
#2.7 UniBasic related parameters
MAX_CAPT_LEVEL=2
MAX_RETN_LEVEL=2
COMPACTOR_POLICY=1
VARMEM_PCT=50
# 2.8 Number of semaphores per semaphore set
NSEM_PSET=8
# 2.9 Index related parameters
SETINDEX_BUFFER_KEYS=0
SETINDEX_VALIDATE_KEY=0
# 2.10 UPL/MGLM parameter
MGLM_BUCKET_SIZE=50
#
# Section 3 RFS related parameters
# These parameters are only used for RFS which is turned by
# setting SB_FLAG to a positive value.
#
# 3.1 RFS flag
SB_FLAG=1
# 3.2 File related parameters
BPF_NFILES=80
N_PARTFILE=500
# 3.3 AFT related parameters
N_AFT=200
N_AFT_SECTION=1
N_AFT_BUCKET=101
N_AFT_MLF_BUCKET=23
N_TMAFT_BUCKET=19
# 3.4 Archive related parameters
ARCH_FLAG=1
N_ARCH=2
ARCHIVE_TO_TAPE=0
ARCH_WRITE_SZ=0
# 3.5 System buffer parameters

N_BIG=233
N_PUT=8192
# 3.6 TM message queue related parameters
1-448 UniData Commands Reference



N_PGQ=10
N_TMQ=10
# 3.7 After/before image related parameters
N_AIMG=2
N_BIMG=2
AIMG_BUFSZ=102400
BIMG_BUFSZ=102400
AIMG_MIN_BLKS=10
BIMG_MIN_BLKS=10
AIMG_FLUSH_BLKS=2
BIMG_FLUSH_BLKS=2
# 3.8 Flushing interval related parameters
CHKPNT_TIME=300
GRPCMT_TIME=5
# 3.9 Sync Daemon related parameters
N_SYNC=0
SYNC_TIME=0
#
# Section 6 Century Pivot Date
#
CENTURY_PIVOT=1930
LOG_OVRFLO=/liz1/ud72/log/log_overflow_dir
     1-449



 

showud

Syntax
showud

Description
The system-level showud command lists all active UniData daemons.

Note: showud is supported on UniData for UNIX only.

For more information about showud and recoverable files, see Administering the 
Recoverable File System.

Note: Use this command at the system prompt, or use the ECL ! (bang) command to 
execute it from the ECL (colon) prompt.

Examples
The following displays UniData background processes (daemons) that are running 
for a UniData installation with RFS disabled (udtconfig parameter SB_FLAG = 0):

# $UDTBIN/showud
UID PID TIME COMMAND
root 3527 0:00 /disk1/ud72/bin/cleanupd -m 10 -t 20
root 3525 0:00 /disk1/ud72/bin/sbcs -r
root 3520 0:00 /disk1/ud72/bin/smm -t 60
1-450 UniData Commands Reference



smmtest

Syntax
smmtest

Description
The system-level smmtest command tests the UNIX and UniData configuration 
values. This process takes 10 to 20 seconds to complete.

Note: smmtest is supported on UniData for UNIX only.

Use this command at the system prompt, or use the ECL ! (bang) command to execute 
it from the ECL (colon) prompt.

Example
The following example shows a smmtest display:

:!smmtest
Testing udt configuration values ...
End of parameter checking!
*** NUSERS (40)*3 mustbe<=SEMMNU (100)
End of IPC checking!
==> Please do the following:
(a) Adjust your Unix kernel parameters and reconfigure the kernel

(b) Modify your ‘/usr/ud72/include/udtconfig’ file if necessary
#

     1-451



 

If you are not logged on as root when you execute this command, you may get 
messages related to permissions, as in the next example:

% smmtest
Open /dev/kmem error: Permission denied
Testing udt configuration values ...
End of parameter checking!
Open /dev/kmem error: Permission denied
*** SHM_LNTBLS (50) * 3 must be <= SEMMNU (0)
End of IPC checking!
==> Please do the following:
(a) Adjust your Unix kernel parameters and reconfigure the kernel
(b) Modify your ‘/usr/ud72/include/udtconfig’ file if necessary
:

1-452 UniData Commands Reference



smmtrace

Syntax
smmtrace [-d | -e]

Description
The system-level smmtrace command enables or disables tracing of shared memory 
management. If tracing is enabled (-e parameter), and the system is running 
smoothly, UniData writes messages to the smm.errlog file at the shared memory 
managers (smm) checking intervals. When tracing is disabled (-d parameter), 
UniData sends messages to smm.errlog only when a shared memory problems arises. 
If you do not include an option, UniData displays usage.

The smm checking interval is platform-dependent.

Note: To execute the smmtrace command, you must log on as root on UniData for 
UNIX or as Administrator on UniData for Windows Platforms.

Use this command at the system prompt, or use the ECL ! (bang) command to execute 
it from the ECL (colon) prompt.

Parameters
The following table describes each parameter of the syntax.

smmtrace Parameters 

Parameter Description

-d Disables tracing of shared memory management.

-e Enables tracing of shared memory management.
     1-453



 

Example
When you execute this command, UniData does not display a response. The 
following example displays the contents of smm.errlog by changing to the udtbin 
directory and executing the UNIX more command.

% cd $UDTBIN
% more smm.errlog
SMM trace: Checking IDs of the IPC facilities...
SMM trace: Checking process groups...
SMM trace: Fixing GCTs...
SMM trace: Checking memory utilization...
SMM trace: Receiving messages...
SMM trace: Interrupted.
...
1-454 UniData Commands Reference



sms

Syntax
sms [-h | -g [gct]|-G[shmid]|-l[lct]|-L[pid]|-Sshmid |-d] [-f]

Description
The system-level sms command displays the contents of shared memory segments or 
of global or local control tables.

For information about local control tables, global control tables, and managing 
shared memory, see Administering UniData.

Note: Use this command at the system prompt, or use the ECL ! (bang) command to 
execute it from the ECL prompt.
     1-455



 

Parameters
The following table describes each parameter of the syntax.

Parameter Description

-h Displays configuration values for global and local control tables and 
shared memory segments. On UniData for UNIX, UniData retrieves the 
values from the /usr/71/include/udtconfig file. On UniData for Windows 
Platforms, UniData retrieves the information from the 
udthome\include\udtconfig file. UniData also displays the interprocess 
communication facility identifiers when smm starts.

-g [gct] Default. Displays global control table use. Each global control table 
controls a shared memory segment. Each shared memory segment is 
divided into equally-sized global pages. UniData displays the number of 
global control tables in use and marks them with a shared memory 
identifier. It also displays free global control tables and marks these with 
-l. If you indicate a global control table number (gct). UniData displays 
the contents of the global control table.

-G [shmid] Displays global control table use. If you stipulate a shared memory 
identifier (shmid) with this parameter, UniData displays page information 
for a specific global control table.

-l [lct] Default. Displays local control table use or the contents of a local control 
table. Each local control table controls a shared memory segment, and 
each shared memory segment is divided into equal-sized local pages. 
UniData displays the number of local control tables in use and marks them 
with a shared memory identifier. It also displays free local control tables 
and marks these with -l. If you indicate a local control table number (lct), 
UniData displays the contents of the local control table.

sms Parameters 
1-456 UniData Commands Reference



-L [pid] Displays local control table use. If you stipulate a process ID (pid) with 
this parameter, UniData displays additional information for a specific 
table in the following subtables:
? Process Info

? Counter

? Memory Info

? Control Info

Tip: To learn the process ID, enter sms -l. The process ID is the first 
number in the leftmost column of the display.
Note: UniData does not display unused entries under Memory Info and 
Control Info.

-S shmid Displays local control table use of a shared memory identifier created by 
a user (shmid). UniData displays additional information for a specific 
table in the following subtables:
? Process Info

? Counter

? Memory Info

? Control Info

Tip: To display the shared memory identifiers, use the ipcstat command.
Note: UniData does not display unused entries under Memory Info and 
Control Info.

-d Displays values for open UniData dynamic files systemwide, including:
? Device number

? I-node number

? Flag – a scan flag. If set to 1, splitting and merging is blocked.

? Modulo – current modulo

? Counter – users who have the file open

-f Displays if a file system is NFS.

Parameter Description

sms Parameters (continued)
     1-457



 

Example
The following example shows an sms display that results from the -h parameter:

% sms -h
Shmid of CTL: 22202
-------------------------------- IDs -----------------------------
----
smm_pid smm_trace PtoM_msgqid MtoP_msgqid ct_semid (values)
232 1 6900 6701 5696 (1,1,1)
-------------------- GENERAL INFO ---------------------

SHM_GNTBLS = 40 (max 40 global segments / system)
SHM_GNPAGES = 32 (32 global pages / global segment)
SHM_GPAGESZ = 256 (128K bytes / global page)
NUSERS = 40 (max 40 process groups / system)
SHM_LPINENTS = 10 (max 10 processes / group)
SHM_LMINENTS = 32 (max 32 global pages / group)
SHM_LCINENTS = 100 (max 100 control entries / group)
SHM_LPAGESZ = 8 (4K bytes / local page)
SHM_FREEPCT = 25
SHM_NFREES = 1
SHM_FIL_CNT = 2048
JRNL_BUFSZ = 53248
N_FILESYS = 200
%

1-458 UniData Commands Reference



SORT

Syntax
SORT(var)

Description
The SORT function enables users to sort a dynamic array. var is the name of the 
dynamic array.

The elements in the dynamic array are sorted in ascending order, left-justified. The 
dynamic array is sorted by the highest system delimiter in the array.

If the dynamic array contains any attribute marks, the sort is by attribute,. 
Values and sub-values remain with the original attribute.
If the dynamic array contains value marks and no attribute marks, the sort is 
by value. Subvalues are unaffected and remain with the original value.
If the dynamic array contains subvalue marks and neither attribute marks 
nor value marks, the sort is by subvalue.
     1-459



 

SORT.TYPE

Syntax
SORT.TYPE [option]

Synonym
SORT-TYPE

Description
The ECL SORT.TYPE command sets the sort type used throughout UniData for the 
current session.

Parameters
The following table describes each parameter of the syntax.

SORT.TYPE Parameters 

Paramete
r Description

0 Default. Attributes specified as right-justified in the dictionary are sorted in 
numeric order. Nonnumeric data is sorted as 0.

1 Sort order is determined by ASCII value.

2 Numeric characters are sorted before nonnumeric characters. Nonnumeric 
characters and symbols are sorted by ASCII value.

Examples
Note: Before executing the following examples, the demo database file ORDERS was 
modified by the addition of data in the CLIENT_NO attribute to better illustrate the 
various sort types.
1-460 UniData Commands Reference



The following example demonstrates SORT.TYPE 0 sort type 0 sorts characters and 
symbols as if they were 0. Notice that default sort type, 0, is displayed when the user 
enters the command without an option.

:SORT.TYPE
SORT.TYPE 0
:SORT ORDERS CLIENT_NO BY CLIENT_NO
SORT ORDERS CLIENT_NO BY CLIENT_NO 09:52:47 Jun 15 1999 1
Client
ORDERS.... Number....
ABC -10
000 000
100000 !
817 A
820 [
823 #
825 a
831 r
836 K
855 {
888 K
889 :
901 <
954 &
BC BC
CDE CDE
001 001
002 003
003 003
...

822 10026
826 10043
816 10045
824 10060
202 records listed
     1-461



 

The following example demonstrates SORT.TYPE 1, which sorts all data by ASCII 
value:

:SORT.TYPE 1
:SORT ORDERS CLIENT_NO BY CLIENT_NO
SORT ORDERS CLIENT_NO BY CLIENT_NO 09:53:00 Jun 15 1999 1
Client
ORDERS.... Number....
100000 !
823 #
954 &
ABC -10
000 000
001 001
002 003
003 003
862 9965
844 9966
...
824 10060
889 :
901 <
817 A
BC BC
CDE CDE
836 K
888 K
820 [
825 a
831 r
855 {
202 records listed
1-462 UniData Commands Reference



This example demonstrates SORT.TYPE 2, which sorts numbers before characters 
and symbols; numbers and symbols are then sorted by ASCII value.

:SORT.TYPE 2
:SORT ORDERS CLIENT_NO BY CLIENT_NO
SORT ORDERS CLIENT_NO BY CLIENT_NO 09:53:17 Jun 15 1999 1
Client
ORDERS.... Number....
ABC -10
000 000
001 001
002 003
003 003
862 9965
844 9966
...
816 10045
824 10060
100000 !
823 #
954 &
889 :
901 <
817 A
BC BC
CDE CDE
836 K
888 K
820 [
825 a
831 r
855 {
202 records listed
     1-463



 

SP.ASSIGN

Syntax
SP.ASSIGN [B] [Cn][F[unit | form]|[Runit]] [H] [HS] [O] [Iprint_job]

Synonym
SP-ASSIGN

Description
The ECL SP.ASSIGN command assigns print job output. This command provides 
Pick ® -like syntax to achieve SETPTR operations. If you enter this command 
without any options, UniData does not print a verification prompt upon execution 
(equivalent to SETPTR 0,,,,,BRIEF).

Parameters
The following table describes each parameter of the syntax.

Parameter Description

B Equivalent to SETPTR,,,,,BRIEF

Cn Print n (number of) copies.

F[unit | form] Equivalent to SETPTR,,,,,[UNIT | FORM]

Runit Resets the options. Equivalent to SETPTR unit,,,,,
unit–Printer unit number, from 0 through 255. (The default is zero).

H Sends the output to the _HOLD_ file and the printer. Equivalent to 
SETPTR,,,,,6

SP.ASSIGN Parameters 
1-464 UniData Commands Reference



Examples
In the following example, taken from UniData for Windows Platforms, SP.ASSIGN 
maps the default print unit to a network print device:

:SP.ASSIGN F\\DENVER4\hpzone3
:SETPTR 0
Unit 0
Width 132
Length 60
Top margin 3
Bot margin 3
Mode 1
Options are:
Destination \\DENVER4\hpzone3
:

In the next example, SP.ASSIGN opens a print file:

:SP.ASSIGN O
:SETPTR 0
Unit 0
Width 132
Length 60
Top margin 3
Bot margin 3
Mode 3
Options are:
Destination \\DENVER4\hpzone3
OPEN
:

HS Sends output to the _HOLD_ file. Equivalent to SETPTR,,,,,3

O Opens a print file and sends printer output to it until SP.CLOSE is 
executed. Equivalent to SETPTR,,,,,OPEN.

Iprint_job Disregards the queueing order and size of the job and moves it to the 
head of the print queue. print_job is the identifier associated with a print 
job. You must have adequate permissions to use this option.

Parameter Description

SP.ASSIGN Parameters (continued)
     1-465



 

In the following example, SP.ASSIGN resets all SETPTR options to their default 
values:

:SP.ASSIGN R
:SETPTR 0
Unit 0
Width 132
Length 60
Top margin 3
Bot margin 3
Mode 1
Options are:
:

Notice that in each example SETPTR 0 displayed the current settings.
1-466 UniData Commands Reference



SP.CLOSE

Syntax
SP.CLOSE [unit]

Synonym
SP-CLOSE

Description
The ECL SP.CLOSE command closes an open print process for unit.

This command executes the final step to complete a single print process that results 
from one or more print commands. The process begins with SETPTR...OPEN, 
continues with print commands, and finishes with a SP.CLOSE command.

Example
The following example opens a print process that prints records from the CLIENTS, 
INVENTORY, and ORDERS demo files to a _HOLD_ file and then closes the print 
process. The NOHEAD option suppresses the printing of a header.

:SETPTR 0,,,,,3,OPEN
Unit 0
Mode 3
Options are:
OPEN
OK to set parameters as displayed?(enter Y/N) y
:LIST CLIENTS LNAME WITH LNAME LIKE “P...” LPTR
:LIST INVENTORY PROD_NAME WITH COLOR = “Gold” LPTR
:LIST ORDERS GRAND_TOTAL WITH GRAND_TOTAL > 10000 LPTR

:SP.CLOSE
:

     1-467



 

Use the LS command to check the contents of the _HOLD_ file. Then, use the 
SPOOL command to display the output of the print job to the terminal, as in the next 
example:

:LS _HOLD_
P_0000
:SPOOL _HOLD_ P_0000 -T
...
#### ## ##### #### # # #
######### ##
# # ## ## ## # #
# ###### ##### # # # # ## #
######### ####
#### # # # # #### ###### # #
Fri Jun 8 17:08:01 MDT 1999
...
LIST CLIENTS LNAME WITH LNAME LIKE “P...” LPTR 17:08:38 Jun 08 
1999 1
CLIENTS... Last Name......
10035 Primm
10016 Pooley
9965 Phillips
10039 Primm
10005 Pappas
10084 Pilano
10047 Parker
7 records listed
...
LIST INVENTORY PROD_NAME WITH COLOR = “Gold” LPTR 17:09:12 Jun 08 
1999 1
Product
INVENTORY. Name......
No records listed.
...
LIST ORDERS GRAND_TOTAL WITH GRAND_TOTAL > 10000 LPTR 17:09:25 Jun 
08 1999 1
ORDERS.... Grand Total...
941 $13,999.90
805 $47,555.29
834 $825,159.96
802 $16,983.24
833 $69,057.73
...

35 records listed
...
1-468 UniData Commands Reference



SP.EDIT

Syntax
SP.EDIT [record]

Synonym
SP-EDIT

Description
The ECL SP.EDIT command starts a system editor from which you can display, edit, 
or print a record in the _HOLD_ file. If you do not enter a record name, UniData 
prompts for it.

After you enter SP.EDIT and a record ID, UniData prompts for an action code. After 
each action except quit, UniData returns to the action code prompt (?). If you do not 
indicate filename, UniData prompts for each file in the _HOLD_ file in sequence, 
starting with the earliest entry first.

Action Codes
The following table lists the SP.EDIT action codes.

Code Name Description

T | t terminal Displays file on terminal.

F | f find Prompts for a search string. After you enter the string, 
UniData displays the file, beginning with the line 
containing the string, and then returns to the ? prompt.
Note: Do not enclose the string in quotation marks.

SP.EDIT Action Codes 
     1-469



 

Example
In the following example, UniData opens a record in the _HOLD_ file and then 
prompts for an action code. The user responds by entering t for terminal display, and 
UniData displays the first page of the record:

:SP.EDIT P_0000
Hold item P_0000 - (t) terminal (f) find (s) spool (d) delete or 
(Q) quit ?
t
...
#### ## ##### #### # # #
######### ##
# # ## ## ## # #
# ###### ##### # # # # ## #
######### ####
#### # # # # #### ###### # #
Fri Jun 8 17:08:01 MDT 1999
...
LIST CLIENTS LNAME WITH LNAME LIKE “P...” LPTR 17:08:38 Jun 08 
1999 1
CLIENTS... Last Name......
10035 Primm
10016 Pooley
Enter h for help, <CR> for next page

S | s spool Spools the file to the printer.

D | d delete Deletes the file

Q | q quit Returns to the ECL colon prompt (:).

Code Name Description

SP.EDIT Action Codes (continued)
1-470 UniData Commands Reference



SP.KILL

Syntax
SP.KILL job

Synonym
SP-KILL

Description
The ECL SP.KILL command stops a UniData print job. When you use the LPTR 
keyword to print a job from within UniData, the job number displays on your 
terminal.

If your operating system directs print jobs to printers linked to another machine, this 
command may not cancel the print job.
     1-471



 

Example
In the following example, taken from UniData for Windows Platforms, SETPTR 
displays the characteristics of the default print unit. A query is spooled to the default 
printer, then SP.KILL removes the print job:

:SETPTR
Unit 0
Width 80
Length 56
Top margin 3
Bot margin 3
Mode 1
Options are:
Defer 19:00
Destination \\DENVER4\hpzone3
Lp options : Form=LETTER

:LIST VOC LPTR
request id is 225
:SP.KILL 225
SP-KILL of Job ‘225’ succeeded.
:

1-472 UniData Commands Reference



SP-LISTQ
SP-LISTQ is a synonym for the LISTPEQS command. For more information, see 
LISTPEQS.

Synonym
LISTPEQS
     1-473



 

SP.STATUS

Syntax
SP.STATUS

Synonym
SP-STATUS

Description
The ECL SP.STATUS command displays the current status of all printers.

Example
The following example shows an SP.STATUS display on UniData for UNIX:

:SP.STATUS
scheduler is running
system default destination: hpzone3
device for hpzone4: /dev/null
device for hpzone3: /dev/null
device for parallel: /dev/c1t0d0_lp
hpzone4 accepting requests since Dec 10 10:21
hpzone3 accepting requests since Dec 10 10:22
parallel accepting requests since Apr 1 14:12
printer hpzone4 is idle. enabled since Dec 10 10:21
fence priority : 0
printer hpzone3 is idle. enabled since Dec 10 10:22
fence priority : 0
printer parallel is idle. enabled since Apr 1 14:12
fence priority : 0
no entries
(EOF)Enter h for help, <CR> for next page
1-474 UniData Commands Reference



The next example shows an SP.STATUS display on UniData for Windows Platforms:

:SP.STATUS
Device for \\DENVER4\hpzone3: hpzone3
\\DENVER4\hpzone3 is Running.
JobId.... User............ Size.... Status... Unit.. 
Printer..................
230 terric 10143 Defered 0 \\DENVER4\hpzone3
Device for LETTER: \\DENVER4\hpzone3
LETTER is Running.
:

     1-475



 

SPOOL

Syntax
SPOOL filename record [recordM...recordN][-O][-T]

Description
The ECL SPOOL command prints the contents of a record or records.

Even though SETPTR mode may be set to 3 or 6 (route to _HOLD_ file), SPOOL 
directs output only to the print queue or terminal.

Tip: The SPOOL command is useful for printing text files, such as _PH_ and 
_HOLD_ records and for printing UniBasic programs.

Parameters
The following table describes each parameter of the syntax.

SPOOL Parameters 

Parameter Description

filename The UniData file to be printed.

record The record ID in filename. You can list more than one record by separating 
the record IDs with a space.

-O Suppresses display of the file name and the record ID in the output.

-T Displays output to the terminal rather than the printer.
1-476 UniData Commands Reference



Examples
In the following example, UniData displays the contents of three records from the 
ORDERS demo file to the terminal:

:SPOOL ORDERS 801 912 941 -T
ORDERS:
801:
10133
59640
...
10009
50000
Gray
10
139999
:

The following example displays the UniBasic program TEST, which is stored in the 
BP directory file:

:SPOOL BP TEST -T
BP:
TEST
PRINT ‘HELLO THERE’
:

     1-477



 

SQL

Syntax
SQL

Description
The ECL SQL command invokes UniData SQL, the UniData ANSI Structured 
Query Language.

For more information about using UniData’s structured query language, see Using 
UniData SQL.

Tip: You can open a UniData SQL session and execute a UniData SQL statement on 
the same command line from the UniData colon prompt, as in :SQL SELECT 
GRAND_TOTAL FROM ORDERS; You can also execute a script file containing 
UniData SQL commands in the same manner, as in

:SQL filename

Example
The following example initiates UniData SQL:

:SQL
sql>
1-478 UniData Commands Reference



STACKCOMMON

Syntax
STACKCOMMON [ON | OFF]

Description
The ECL STACKCOMMON command controls whether UniBasic programs share 
unnamed common when one program uses the EXECUTE, PERFORM, or 
MDPERFORM command to call a second program.

If you enter STACKCOMMON without any parameters, UniData displays the 
setting: ON or OFF.

STACKCOMMON has no effect on common areas when the UniBasic CALL 
command is used to call programs.

For more information about assigning variables in UniBasic, see Developing 
UniBasic Applications or see the COMMON command in the UniBasic Commands 
Reference.

Parameters
The following table describes each parameter of the syntax.

STACKCOMMON Parameters 

Parameter Description

ON Unnamed common is not shared with executed programs. The unnamed 
common of the second program is initialized to 0. When control is passed 
back to the first program, unnamed common is restored to settings for that 
program.
Unnamed common is never passed to a phantom program.

OFF Unnamed common is shared with programs called with the ECL EXECUTE 
command.
     1-479



 

Example
The following example displays the programs, test.common and executed.program:

PROGRAM test.common
COMMON A,B,C,D
A =1
B =2
C =3
D =4
PRINT “In test.common, A,B,C,D = “:A:B:C:D
EXECUTE “RUN BP executed.pgm”
PRINT “Back in test.common, A,B,C,D = “:A:B:C:D
END

PROGRAM executed.pgm
COMMON A,B,C,D
PRINT “In executed.pgm. A,B,C,D = “:A:B:C:D
RETURN

In the following test run, we set STACKCOMMON OFF before executing 
test.common, causing variables in unnamed common to be passed to the executed 
program. Finally, we set STACKCOMMON ON, so that common variables are no 
longer passed.

:STACKCOMMON OFF
:RUN BP test.common
In test.common, A,B,C,D = 1234
In executed.pgm. A,B,C,D = 1234
Back in test.common, A,B,C,D = 1234
:STACKCOMMON ON
:RUN BP test.common

In test.common, A,B,C,D = 1234
In executed.pgm. A,B,C,D = 0000
Back in test.common, A,B,C,D = 1234
1-480 UniData Commands Reference



STARTPTR
STARTPTR is a synonym for the PTRENABLE command. For information, see 
PTRENABLE.

Synonym
PTRENABLE
     1-481



 

startud

Syntax
startud [-i ] [-m]

Description
The system-level startud command starts the UniData background processes (smm, 
sbcs, and cleanupd). If the SB_FLAG is set to 1, UniData also starts the Recoverable 
File System (RFS) daemons. This command ensures that the UniData daemons start 
up in the correct sequence.

For information about startud and starting the UniData background processes, see 
Administering UniData. For more information about startud with the RFS, see 
Administering the Recoverable File System.

Note: To execute the startud command, you must log on as root on UniData for UNIX 
or as Administrator on UniData for Windows Platforms.

Parameters
The following table describes each parameter of the syntax.

startud Parameters 

Parameter Description

-i Bypasses the automated crash recovery sequence on systems running RFS.
Warning: To avoid file corruption on systems running RFS, IBM recom-
mends that you avoid using the -i parameter unless directed to do so by IBM 
Technical Support.

-m Executed the ECL command mediarec to restore archived changes made 
since the last backup. See the mediarec command in this manual for more 
information about that command, and Administering the Recoverable File 
System for information about the recovery process. 
1-482 UniData Commands Reference



Example
In the following example, UniData starts the UniData daemons with RFS turned on 
(SB_FLAG = 1).

# $UDTBIN/startud
Using UDTBIN=/disk1/ud72/bin
All output and error logs have been saved
to /disk1/ud72/bin/saved_logs directory.
SMM is started.
SBCS is started.
CLEANUPD is started.
SM is started.
Unirpcd is started
UniData R7.1 has been started.
#

The next example, taken from UniData for Windows Platforms, starts the UniData 
services:

D:\IBM\ud72\Bin>startud
Wait for Unidata Service to be started ...
The Unidata Service has been started successfully.
     1-483



 

STATUS

Syntax
STATUS

Synonym
STAT

Description
The ECL STATUS command lists information about users logged on to the system. 
For each user, UniData displays user ID, tty device ID, and date and time of log on. 
UniData also displays a list of the file systems and disk space information.

On UniData for UNIX, the STATUS command display is equivalent to the combined 
display of the WHO and AVAIL commands.

Example
The following example shows a STATUS display on UniData for UNIX:

:STATUS
carolw pts/1 Jun 6 07:55
carolw pts/4 Jun 6 08:29
amyc pts/5 Jun 6 08:59
amyc pts/6 Jun 6 09:20
/disk1 (/dev/vg01/lvol2 ): 313910 blocks 349051 i-nodes
/home (/dev/vg01/lvol1 ): 1667012 blocks 304276 i-nodes
/opt (/dev/vg00/lvol5 ): 54340 blocks 27470 i-nodes
/tmp (/dev/vg00/lvol6 ): 79036 blocks 28995 i-nodes
/usr (/dev/vg00/lvol7 ): 86260 blocks 54787 i-nodes
/var (/dev/vg00/lvol8 ): 117722 blocks 68583 i-nodes
/stand (/dev/vg00/lvol1 ): 58230 blocks 7659 i-nodes
/ (/dev/vg00/lvol3 ): 147210 blocks 14863 i-nodes
1-484 UniData Commands Reference



The next examples shows a STATUS display on UniData for Windows Platforms:

:STATUS
terric pts/1 14:06:27 Jun 30 1999 (192.245.120.102)
Drive Free Bytes / Total Bytes
C: 188530688/649576448
D: 669504000/1496968704
:

Related Commands
AVAIL, WHO
     1-485



 

STOPPTR
STOPPTR is a synonym for the PTRDISABLE command. For more information, see 
PTRDISABLE.

Synonym
PTRDISABLE
1-486 UniData Commands Reference



stopud

Syntax
stopud [-f]

Description
The system-level stopud command stops all UniData background processes. The -f 
option forces UniData daemons to stop unconditionally, which kills all active udt 
processes. For information about stopud with recoverable files, see Administering the 
Recoverable File System.

Note: To execute the stopud command, you must log on as root on UniData for UNIX 
or as Administrator on UniData for Windows Platforms.

Warning: Use this command with the -f option only as a last resort. It could cause 
file corruption.

Examples
In the next example, taken from UniData on UNIX, UniData stops all UniData 
daemons. In this example, the Recoverable File System is ON:

# $UDTBIN/stopud -f
Using UDTBIN=/disk1/ud72/bin
The Last archive file (/disk1/archive/ud500) is LSN -- 0
SM stopped successfully.
CLEANUPD stopped successfully.
SBCS stopped successfully.
SMM stopped successfully.
Unirpcd stopped successfully
Unidata R7.2 has been shut down.
#

The next example, taken from UniData for Windows Platforms, stops all UniData 
services:

D:\IBM\ud72\Bin>stopud
Stop Unidata Service now ...

The Unidata Service has been stopped successfully.
     1-487



 

stopudt

Syntax
stopudt pid [pidM...pidN]

Description
The system-level stopudt command stops one or more UniData processes. This 
command sends a signal to the process requesting that the process terminate in an 
orderly manner.

pid represents the process identification number for the process or processes you 
intend to halt.

Tip: Use the ECL LISTUSER command or the system-level listuser command to 
display a list of users and their processes.

Example
The following example demonstrates using LISTUSER to list all users on the system, 
then execute stopudt against user 6372. The final LISTUSER display demonstrates 
that this user has been eliminated from UniData:

:LISTUSER
Licensed/Effective # of Users Udt Sql Total
32 /32 2 0 2
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 15885 0 root udt pts/1 14:01:57 Jun 05 2000
2 15903 1172 claireg udt pts/2 14:02:28 Jun 05 2000
:!$UDTBIN/stopudt 15903
:LISTUSER

Licensed/Effective # of Users Udt Sql Total
32 /32 1 0 1
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 15885 0 root udt pts/1 14:01:57 Jun 05 2000
1-488 UniData Commands Reference



Related Commands
deleteuser, LISTUSER
     1-489



 

SUPERCLEAR.LOCKS

Syntax
SUPERCLEAR.LOCKS pid [locknum]

Synonym
SUPERCLEAR-LOCKS

Description
The ECL SUPERCLEAR.LOCKS command deletes semaphore locks set by the 
user executing the command. This command can be executed from a different 
process or terminal than the one from which the locks were set. You can clear only 
the semaphore locks set by your process ID.

For information on UniData locks, see Developing UniBasic Applications or Admin-
istering UniData.

Note: If you are logged on as root on UniData for UNIX or as Administrator on 
UniData for Windows Platforms, you can execute SUPERCLEAR.LOCKS to clear 
semaphore locks set by other users.

The LIST.LOCKS command displays the locks that are currently active. The 
GETUSER command lists your user number.
1-490 UniData Commands Reference



Parameters
The following table describes each parameter of the syntax.

SUPERCLEAR.LOCKS Parameters 

Parameter Description

pid Specified the process ID of the user that set the lock.

locknum Specifies the number of the lock to be released. If you do not specify 
locknum, UniData releases all locks set by pid.

Example
In the following example, SUPERCLEAR.LOCKS deletes locks set by user carolw 
(user ID 1283) from UniData session 2253:

:LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
1 2253 1283carolw ts/1 semaphor -1 0 1 X 10:44:29 Jun 31
6 2365 1283carolw ts/6 semaphor -1 0 2 X 10:44:29 Jun 31
:SUPERCLEAR.LOCKS 2253
:LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
6 2365 1283carolw ts/6 semaphor -1 0 2 X 10:44:29 Jun 31
:

Related Command
SUPERRELEASE
     1-491



 

SUPERRELEASE

Syntax
SUPERRELEASE pid [inbr devnum | record_ID]

Description
The ECL SUPERRELEASE command clears exclusive file and record locks set by 
the user executing the command. This command can be executed from a different 
process than the one in which the locks were set.

Tip: Use the GETUSER command to list user number, user name, and user ID. Use 
the LIST.READU command to display record locks that are active.

Parameters
The following table describes each parameter of the syntax.

Example
In the following example, the SUPERRELEASE command releases the record lock 
set by user number 14435 on the file with an i-node number of 1121 and a device 
number 45:

:SUPERRELEASE 14435 1121 45

Related Command
SUPERCLEAR.LOCKS
1-492 UniData Commands Reference



sysmon

Syntax
sysmon [-b |-m] [-o outputfile][-t nn] [-s screens]

Description
The system-level sysmon utility monitors the performance of the Recoverable File 
System.

This information may help you make decisions about how to set UniData configu-
ration parameters. To learn more about sysmon and the Recoverable File System, see 
Administering the Recoverable File System.

Note: You can us e t he ECL ! (bang) command to execute this command from the 
ECL (colon) prompt.

Parameters
The following table describes each parameter of the syntax.

sysmon Parameters 

Parameter Description

-b Displays detailed information about the Block Index table (BIG) in shared 
memory. You cannot use -m with -b.

-m Displays detailed information about user requests. You cannot use the -b 
option with the -m option.

-o outputfile Directs sysmon output to outputfile.

-t nn Samples the data at intervals of every nn seconds.

-s screens Specifies how many screens to display before exiting.
     1-493



 

Example
The following example shows a sysmon display:

% sysmon
======= BLOCK INDEX GROUP (BIG) STATISTICS ======= Thu Jun 25 
18:59:08 1999
PinRead :1579 TmRead :121 Dirty:0 Hits :1539
PinWrite :67 TmWrite:16 Neat :80 HitRate:93.50%
PinWaitQ :0 CmRead :0 Total:80
PinWaitRate:0.00% CmWrite:8
=============== LATCHING STATISTICS =============== === TM STATUS 
===
Type----WaitQ---Latches-WaitRate-PollCall-PollRate Tm# :2 Req#:204
Big : 0 12720 0.00% 0 0.00% ActTm:2
Aft : 0 248 0.00% 0 0.00%
Aimg: 0 252 0.00% 0 0.00% === SHM INFO ====
Bimg: 0 162 0.00% 0 0.00% ShmPV:197 Total:197
========================= LOG FILE STATISTICS 
=========================
TmBimgFlush:29 WaitQ0:58 LogCkSuccess:8089 BimgRawBlks:41
TmAimgFlush:29 WaitQ1:0 LogCkFail :58 AimgRawBlks:29
CmBimgFlush:10 WaitQ2:0 LogOvrflos :0 TotRaw :70
CmAimgFlush:10 WaitQ3:102 LogSwitchd :5
LogID-Total-Length
4 1 1 ========== RECORD INFO ========== === TRANS INFO ===
5 1 1 RecRead : 865 AvgRead : 61 Committed: 76
6 1 1 RecWrite : 0 AvgWrite: 0 Aborted : 0
7 1 1 RecDelete: 0
TotLength:4
1-494 UniData Commands Reference



systest

Syntax
systest [-mn][-sn][-u][-ffilename][-v][c {n|r}]

Description
The system-level systest command, available only on UniData for UNIX, checks all 
parameters in the udtconfig file located in /usr/ud72/include. For more information 
about setting UniData configuration parameters, as well as systest, see Administering 
UniData.

Parameters
The following table describes each parameter of the syntax.

systest Command Parameters 

Parameter Description

[-mn] Changes memory map display by about n MB. Highly platform dependent. 
Do not use this unless advised by IBM. 

[-sn] Changes memory map display by about n MB. Highly platform dependent. 
Do not use this unless advised by IBM. 

[-u] Creates UniData configuration parameters if they do not already exist in the 
udtconfig file.

[-f filename] Creates a file with the specified filename that contains the UniData config-
uration parameters that systest would calculate if you specified the -u 
parameter.

[-v] Displays detailed (verbose) output.

[-c {n|r}] Checks current kernel parameter settings against our recommendations. 
Specify the -cr parameters to compare against recommendations for the 
Recoverable File System. Specify the -cn parameters if you will not be using 
recoverable files.
     1-495



 

Note: Prior to Release 4.1, the systest -u command may have updated values that 
already existed in the udtconfig file. Beginning with Release 4.1, existing values are 
no longer updated, but parameters that do not exist in the udtconfig file are added by 
systest -u. To change existing values to recommended values, IBM recommends using 
the udtconf command.

Examples
This example demonstrates executing systest -f (followed by the UNIX diff 
command) to find out what changes systest -u would make to udtconfig:

# ./systest -f /tmp/testconfi
...
#diff/tmp/testconfig /usr/ud72/include/udtconfig
33c33
<SHM_MAX_SIZE=16777216

...

Notice that diff output includes lines like

33c33

which shows the edit command necessary for correcting differences. In this example, 
systest would have changed the value of SHM_MAX_SIZE. This is the type of 
correction to udtconfig you would expect if you change the shmmax kernel parameter 
after installing UniData or since you last ran systest.

systest -f does not update LOCKFIFO, PART_TBL, or WRITE_TO_CONSOLE in 
output.If they were present in your udtconfig file (and they usually are after instal-
lation) they always show up in diff output.

You can use this information to decide how you want to change the live udtconfig 
file. Remember, you need to stop and start UniData for the changes to take effect.

systest -f updates NFILES, so this is also a great, noninvasive way to check NFILES 
when that setting is suspect.
1-496 UniData Commands Reference



T.ATT

Syntax
T.ATT [cn] [BLKSIZE block] [TAPELEN length]

Synonym
T- ATT

Description
The ECL T.ATT command attaches a tape drive for exclusive use by the current 
process. Before you can use any tape commands, the tape unit must be defined. See 
SETTAPE for information about initializing a tape unit.

Tip: If you have trouble reading tapes from non-UniData systems, try varying the 
block size.
     1-497



 

Parameters
The following table lists the T.ATT parameters.

T.ATT Parameters 

Parameter Description

nn Indicates conversion and tape unit.
c – Conversion code number. Valid conversion codes are:
? 0 – Default. No conversion. ASCII is assumed.

? 1 – EBCDIC conversion.

? 2 – Invert high-bit.

? 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–
9. If you do not indicate the tape unit number, UniData uses tape 
unit 0 (zero).
Do not separate the conversion code from the tape unit with a 
space.

BLKSIZE block Indicates block size. block is a valid block size. If you do not 
stipulate BLKSIZE, UniData uses the block size set by the 
SETTAPE command.

TAPELEN length Indicates a tape length for multi-reel tape processing. length is 
the desired tape length in megabytes.
Note: TAPELEN applies only to tapes created in UniData. 
UniData cannot read multi-reel TDUMP tapes made on legacy 
systems.
1-498 UniData Commands Reference



Example
In the following example, UniData attaches tape unit 4 without indicating a block 
size. (For the block size, UniData uses the block size set by the SETTAPE command.)

:T.ATT 4
tape unit 4 blocksize = 16384.
:T.STATUS
UNIT STATUS UDTNO USER CHANNEL ASSIGNED
NUMBER NAME NAME BLOCKSIZE
1 AVAILABLE
2 AVAILABLE
3 AVAILABLE
5 AVAILABLE
8 AVAILABLE
4 ASSIGNED 3 root /tmp/diskfile1 16384
:

Related Commands
SETTAPE, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD, 
T.RDLBL, T.READ,T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
     1-499



 

T.BAK

Syntax
T.BAK [n |MU[cn]

Synonym
T-BAK

Description
The ECL T.BAK command moves the pointer to a tape backward n files.

Before you can execute any tape commands, the tape unit must be configured. See 
SETTAPE for information about initializing a tape.
1-500 UniData Commands Reference



Parameters
The following table describes each parameter of the syntax.

T.BAK Parameters

Parameter Description

n The number of files to move the pointer back.

MU cn Indicates conversion and tape unit.
c – Conversion code number. Valid conversion codes are:
? 0 – Default. No conversion. ASCII is assumed.

? 1 – EBCDIC conversion.

? 2 – Invert high-bit.

? 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–
9. If you do not indicate the tape unit number, UniData uses tape 
unit 0 (zero).
Do not separate the conversion code from the tape unit with a 
space.

Related Commands
SETTAPE, T.ATT, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD, 
T.RDLBL,T.READ,T.REW,T.SPACE, T.STATUS, T.UNLOAD,T.WEOF
     1-501



 

T.CHK

Syntax
T.CHK [cn]

Synonyms
T-CHK, T.CHECK

Description
The ECL T.CHK command reads the contents of a tape that was produced with the 
T.DUMP command and checks for tape errors such as physical damage and block 
size corruption.

The first digit of nn represents the conversion code number. The second digit is the 
unit number. If you do not indicate nn, UniData uses 00. UniData allows up to 10 unit 
numbers, from 0 through 9.

Note: Before you can execute any tape commands, the tape system must be 
configured. See SETTAPE for information about initializing a tape.
1-502 UniData Commands Reference



Parameters
The following table lists the T.CHK parameters.

T.CHK Parameters 

Parameter Description

c Conversion code number. Valid conversion codes are:
? 0 – Default. No conversion. ASCII is assumed.

? 1 – EBCDIC conversion

? 2 – Invert high-bit

? 3 – Swap bytes

Note: Do not separate the conversion code from the tape unit with a space.

n Tape unit number. UniData allows up to 10 unit numbers, from 0 through 9. 
If you do not indicate the tape unit number, UniData uses tape unit 0 (zero).
Note: Do not separate the conversion code from the tape unit with a space.

Related Commands
SETTAPE, T.ATT, T.BAK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD, T.RDLBL, 
T.READ, T.REW, T.SPACE,T.STATUS, T.UNLOAD, T.WEOF
     1-503



 

T.DET

Syntax
T.DET [n]

Synonym
T- DET

Description
The ECL T.DET command releases a tape unit that was attached with the T.ATT 
command. n is the tape unit number. UniData allows up to 10 unit numbers, from 0 
through 9.

Before you can use any tape commands, the tape system must be configured. See 
SETTAPE for information about initializing a tape.

Example
In the following example, UniData releases tape unit 8:

:T.DET 8

Related Commands
SETTAPE, T.ATT, T.BAK,T.CHK, T.DUMP,T.EOD, T.FWD, T.LOAD, T.RDLBL, 
T.READ, T.REW,T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
1-504 UniData Commands Reference



T.DUMP

Syntax
T.DUMP [DICT] filename [MU cn][record[recordM...recordN]|select_criteria] 
[[PICK | pick] [HDR.SUP]]

Synonym
T-DUMP

Description
The ECL T.DUMP command copies the contents of a file to a tape that was attached 
with the T.ATT command. UniData writes an end-of-file mark at the end of the file.

T.DUMP works with an active select list. If you wish to copy a sorted subset of 
records, create a select list before using T.DUMP. For information about creating 
select lists, refer to Using UniQuery. If a record ID is included in a saved list that does 
not exist in the file, UniData displays a message that the record was not found and 
not copied.

Before you can execute any tape commands, the tape unit must be configured. See 
SETTAPE for information about initializing a tape.

Note: UDT.OPTIONS 50 allows you to choose the ASCII characters used as the end-
of-record mark. When this option is on, UniData uses character 251, a UniData text 
mark. When this option is off, UniData uses character 254, an attribute mark, 
followed by the text mark. This feature provides compatibility with Pick® on Ultimate 
systems.

Tip: Due to the differences in Pick ® operating systems and manufactured tapes, IBM 
suggests that you use the HDR.SUPP keyword when using the T.DUMP command, 
and when using the Pick® T-LOAD command to avoid inconsistencies in tape labels.
     1-505



 

Parameters
The following table describes each parameter of the syntax.

T.DUMP Parameters 

Parameter Description

DICT Indicates the dictionary portion of the file. If you do not stipulate 
DICT, UniData copies only the data portion of the file.

filename The UniData file to be copied.

MU cn Indicates conversion and tape unit.
c – Conversion code number. Valid conversion codes are:
? 0 – Default. No conversion. ASCII is assumed.

? 1 – EBCDIC conversion.

? 2 – Invert high-bit.

? 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–
9. If you do not indicate the tape unit number, UniData uses tape 
unit 0 (zero).
Do not separate the conversion code from the tape unit with a 
space.

record The records within filename to copy.

select_criteria The record IDs, a select list of the record IDs, or a selection 
condition. If you do not indicate select_criteria, UniData copies 
all records within filename.

PICK | pick Produces a tape that can be loaded on a Pick® system. To avoid 
incompatibility in tape label format, suppress the label by 
including HDR.SUP.

HDR.SUP Suppresses the generation of a tape label.
1-506 UniData Commands Reference



Examples
The following example copies all records from the ORDERS demo file to default 
tape unit 0 with no conversion:

:T.DUMP ORDERS
193 record(s) dumped to tape

In the following example, UniData sends the contents of the ORDERS demo file to 
tape unit 0 with no conversion. Since only one number is indicated on the command 
line, UniData uses that number for the conversion code and uses 0 for the tape unit:

:T.DUMP ORDERS MU 1
193 record(s) dumped to tape

Related Commands
SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.EOD, T.FWD, T.LOAD, 
T.RDLBL,T.READ, T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
     1-507



 

T.EOD

Syntax
T.EOD [n]

Synonym
T-EOD

Description
The ECL T.EOD command moves the file pointer for tape unit n to the end of the 
file. UniData allows up to 10 tape unit numbers, from 0 through 9.

Before you can execute any tape commands, the tape unit must be configured. See 
SETTAPE for information about initializing a tape.

Related Commands
SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.FWD, T.LOAD, T.RDLBL, 
T.READ,T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
1-508 UniData Commands Reference



T.FWD

Syntax
T.FWD n

Synonym
T- FWD

Description
The ECL T.FWD command moves the file pointer for tape unit n to the beginning of 
the next file.

Before you can use any tape commands, the tape unit must be configured. See 
SETTAPE for information about initializing a tape.
     1-509



 

T.LOAD

Syntax
T.LOAD [DICT] filename [MU cn][select_criteria]] [OVERWRITING] 
[TAPELEN length] [PICK | pick]

Synonym
T-LOAD

Description
The ECL T.LOAD command loads to filename records that were stored on tape using 
the T.DUMP command. UniData cannot read files from tapes that were created using 
a tape command other than T.DUMP.

UniData can read Pick ® system tapes that were created with T.DUMP and the PICK 
(or pick) option without tape labels. To avoid incompatibility between systems with 
different tape label formats, suppress the tape label when performing the T.DUMP 
operation.

The tape unit must have been attached using T.ATT before being loaded with the 
T.LOAD command.

Before you can use any tape commands, the tape unit must be configured. See 
SETTAPE for information about initializing a tape.

Note: UDT.OPTIONS 50 selects ASCII characters that UniData can use as the end-
of-record mark. When this option is on, UniData uses character 251, the UniData 
text mark. When this option is off, UniData uses character 254, the attribute mark, 
followed by the text mark. This feature provides compatibility with Pick ® on 
Ultimate systems.
1-510 UniData Commands Reference



Parameters
The following table describes each parameter of the syntax.

T.LOAD Parameters 

Parameter Description

DICT Dictionary records will be loaded.

filename The target disk file. filename must exist in the UniData account.

MU cn Indicates conversion and tape unit.
c – Conversion code number. Valid conversion codes are:
? 0 – Default. No conversion. ASCII is assumed.

? 1 – EBCDIC conversion.

? 2 – Invert high-bit.

? 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–
9. If you do not indicate the tape unit number, UniData uses tape 
unit 0 (zero).
Do not separate the conversion code from the tape unit with a 
space.

select_criteria The record IDs, a select list of the record IDs, or a selection 
condition. If you do not indicate select_criteria, UniData copies 
all records within filename.
Tip: For information about creating select lists, see Using 
UniQuery.

OVERWRITING Overwrites records that already exist in the target file.

TAPELEN length Indicates the tape length for multi-reel tape processing. length 
represents the desired tape length in megabytes for multi-reel 
tape processing.

PICK | pick Removes special end-of-block characters from tapes to expedite 
the conversion process to UniData.
     1-511



 

Example
The following example loads records stored on tape unit 0 to file ORDERS_LOAD. 
UniData loads only the records that meet the selection criteria ORD_DATE < 
01/01/96.

:T.LOAD ORDERS_LOAD WITH ORD_DATE < 01/01/96
56 records loaded to ORDERS_LOAD
:

Related Commands
SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.RDLBL, 
T.READ, T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
1-512 UniData Commands Reference



T.RDLBL

Syntax
T.RDLBL [MU cn]

Synonym
T-RDLBL

Description
The ECL T.RDLBL command reads the tape label (the first 80 characters) of a file 
that was saved to tape by the T.DUMP command. The label displays on the terminal.

Parameters
The following table describes each parameter of the syntax.

T.RDLBL Parameters 

Parameter Description

MU cn Indicates conversion and tape unit.
c – Conversion code number. Valid conversion codes are:
? 0 – Default. No conversion. ASCII is assumed.

? 1 – EBCDIC conversion.

? 2 – Invert high-bit.

? 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–
9. If you do not indicate the tape unit number, UniData uses tape 
unit 0 (zero).
Do not separate the conversion code from the tape unit with a 
space.
     1-513



 

Example
The following is a T.RDLBL display:

:T.RDLBL
L4000 16:01:40 14 Jun 1999 ORDERS

Related Commands
SETTAPE, T.ATT, T.BAK,T.CHK, T.DET,T.DUMP, T.EOD, T.FWD, T.LOAD, 
T.READ, T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
1-514 UniData Commands Reference



T.READ

Syntax
T.READ [-code][cn]

Synonym
T-READ

Description
The ECL T.READ command reads the next record from tape and displays it on the 
display. The tape unit must have been attached using T.ATT. To quit processing the 
tape, enter q at the prompt;T.READ reads a tape to end-of-file.

Before you can use any tape commands, the tape system must be configured. For 
information about initializing a tape, see SETTAPE.
     1-515



 

Parameters
The following table describes each parameter of the syntax.

T.READ Parameters 

Parameter Description

-code On UniData for UNIX, enables you to specify special options associated 
with the UNIX “od” command. These options control the format and 
display the records retrieved. Refer to your host operating system manual 
for an explanation of the operating system commands and their options.

cn Indicates conversion and tape unit.
c – Conversion code number. Valid conversion codes are:
? 0 – Default. No conversion. ASCII is assumed.

? 1 – EBCDIC conversion.

? 2 – Invert high-bit.

? 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–9. If you 
do not indicate the tape unit number, UniData uses tape unit 0 (zero).
Do not separate the conversion code from the tape unit with a space.

Example
The following example shows a T.READ display:

:T.READ 04
0000000 377 L 4 0 0 0 1 6 :01 :4 0
0000020 1 4 J u n 1 9 9 6 O R DE
0000040 R S
0000060
0000100 0 0
0000120 9 1 2376 1 0 24 037645 0 0 0376
0000140 9 9 84376 5 30 0 0376N /A3766
0000160 376 1 2 9 9 5 376 373 8 0 1376 1 0 13
0000200 3 376 5 9 6 4 0376 1 0 01 837611
0000220 0 0 0376 G r ay37613761 7 9 90
0000240 0 376 373 9 4 1 376 1 0 2 41376 5 40
0000260 0 0 376 1 0 0 09376 5 00 0 0376G
0000300 r a y376 1 03761 3 9 99 93763738

0000320 0 5 376 1 0 1 40376 4 02 6 03769
...
1-516 UniData Commands Reference



Related Commands
SETTAPE, T.ATT, T.BAK, T.CHK,T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD, 
T.RDLBL,T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
     1-517



 

T.REW

Syntax
T.REW [n]

Synonym
T-REW

Description
The ECL T.REW command rewinds a tape unit to the beginning of the tape. n is the 
tape unit number. UniData allows up to 10 unit numbers, from 0 through 9.

Before you can use any tape commands, the tape system must be configured. See 
SETTAPE for information about initializing a tape.

Related Commands
SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD, 
T.RDLBL,T.READ, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
1-518 UniData Commands Reference



T.SPACE

Syntax
T.SPACE [n |MU cn]

Synonym
T-SPACE

Description
The ECL T.SPACE command moves the file pointer n files forward on the tape.

Before you can use any tape commands, the tape unit must be configured. See 
SETTAPE for information about initializing a tape.
     1-519



 

Parameters
The following table describes each parameter of the syntax.

T.SPACE Parameters 

Paramete
r Description

n The number of files to move the file pointer.

MU cn Indicates conversion and tape unit.
c – Conversion code number. Valid conversion codes are:
? 0 – Default. No conversion. ASCII is assumed.

? 1 – EBCDIC conversion.

? 2 – Invert high-bit.

? 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–9. If you do 
not indicate the tape unit number, UniData uses tape unit 0 (zero).
Do not separate the conversion code from the tape unit with a space.

Example
In the following example, UniData moves forward two files on a tape:

:T.SPACE 2
2 FILE ARE SKIPPED
:

Related Commands
SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD, 
T.RDLBL, T.READ, T.REW, T.STATUS, T.UNLOAD, T.WEOF
1-520 UniData Commands Reference



T.STATUS

Syntax
T.STATUS [n]

Synonym
T- STATUS

Description
The ECL T.STATUS command displays the current tape device assignment. n is the 
tape unit number. UniData allows up to 10 unit numbers, from 0 through 9. If you do 
not include a tape unit number, UniData displays assignments for all tape units 
defined by SETTAPE.

T.STATUS displays the contents of the file udthome/sys/tapeinfo on UniData for 
UNIX, or udthome\sys\tapeinfo on UniData for Windows Platforms.

Before you can use any tape commands, the tape system must be configured. See 
SETTAPE for information about initializing a tape.

Example
The following example shows a T.STATUS display:

:T.STATUS
UNIT STATUS UDTNO USER CHANNEL ASSIGNED
NUMBER NAME NAME BLOCKSIZE
1 AVAILABLE
2 AVAILABLE
3 AVAILABLE
5 AVAILABLE
8 AVAILABLE
4 ASSIGNED 1 terric /tmp/diskfile1 4096
:

     1-521



 

Related Commands
SETTAPE,T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD, 
T.RDLBL, T.READ,T.REW, T.SPACE, T.UNLOAD, T.WEOF
1-522 UniData Commands Reference



T.UNLOAD

Syntax
T.UNLOAD [n]

Synonym
T-UNLOAD

Description
The ECL T.UNLOAD command rewinds and unloads a tape. n is the tape unit 
number. UniData allows up to 10 unit numbers, from 0 through 9.

Before you can use any tape commands, the tape system must be configured. See 
SETTAPE for information about initializing a tape.

Related Commands
SETTAPE,T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD, 
T.RDLBL, T.READ, T.REW, T.STATUS, T.STATUS, T.WEOF
     1-523



 

T.WEOF

Syntax
T.WEOF [n]

Synonym
T-WEOF

Description
The ECL T.WEOF command writes an end-of-file mark on the tape. n is the tape unit 
number. UniData allows up to 10 unit numbers, from 0 through 9.

Before you can use any tape commands, the tape system must be configured. For 
information about initializing a tape, see SETTAPE.

Related Commands
SETTAPE,T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, 
T.LOAD,T.RDLBL,T.READ, T.REW, T.SPACE, T.STATUS, T.UNLOAD
1-524 UniData Commands Reference



tandem

Syntax
tandem [-oxxx] udtno

Description
The UniData system-level tandem command displays or controls the input and 
output displayed on another user’s terminal from your terminal.

Parameters
The following table describes each parameter of the syntax.

tandem Parameters 

Parameter Description

-oxxx Use to specify three single characters to terminate tandem. If you specify 
the -o option, UniData disables ESC+X as the terminating character 
sequence.

udtno The udtno for the user for whom you want to display or control input and 
output.

tandem Modes
The tandem command has the following three modes:

Feed – Enables you to enter commands for another user on your terminal. If 
you enter data at the same time as the other user, your keystrokes are defined 
by the system implementation of the terminal driver. In feed mode, you can 
use the tandem command for phantom and background processes in 
addition to interactive processes.
     1-525



 

Message – Enables you to send text to another user’s terminal. You cannot 
control the location or format of the characters displayed on the users 
terminal. Data is not treated as input for the other user. The message mode 
is not supported when using tandem as a background process.
View – Default mode. Shows another user’s input and output on your 
terminal. This display continues when you use message or feed mode.

You can change modes by entering any of the following escape sequences (ESC + an 
action code).

tandem Action Codes 

Escape 
Sequence Description

ESC+D Puts tandem in view mode. Terminates message or feed mode if active. 
Sends a BREAK to the other user’s process.

ESC+F Puts tandem in feed mode. Terminates message mode, if active. You 
must log in as root to use feed mode.

ESC+M Puts tandem in message mode. Terminates feed mode, if active.

Q In view mode, same as ESC+X. No effect in other modes.

ESC+U Same as ESC+D.

ESC+V Puts tandem in view mode. Terminates message or feed mode, if active.

ESC+X Ends the tandem session. If you did not specify -o c1 c2 c3 on the 
command line.

ESC+ESC In message or feed mode, enables you to send ESC to another user’s 
terminal.

ESC+? Displays information on your terminal, and also displays the status 
information for the current session.

Note: The COMO command does not capture output produced by tandem. When you 
use tandem on a phantom process, you cannot use the feed or message mode.

The feed mode for a tandem session is not supported on all UNIX platforms. If this 
mode is not supported on your operating system, UniData displays a message.
1-526 UniData Commands Reference



TANDEM

Syntax
TANDEM [-oxxx] udtno

Description
The ECL TANDEM command displays or controls the input and output displayed on 
another user’s terminal from your terminal.

Parameters
The following table describes each parameter of the syntax.

tandem Parameters 

Parameter Description

-oxxx Use to specify three single characters to terminate TANDEM. If you specify 
the -o option, UniData disables ESC+X as the terminating character 
sequence.

udtno The udtno for the user for whom you want to display or control input and 
output.

TANDEM Modes
The TANDEM command has the following three modes:

Feed – Enables you to enter commands for another user on your terminal. If 
you enter data at the same time as the other user, your keystrokes are defined 
by the system implementation of the terminal driver. In feed mode, you can 
use the TANDEM command for phantom and background processes in 
addition to interactive processes.
     1-527



 

Message – Enables you to send text to another user’s terminal. You cannot 
control the location or format of the characters displayed on the users 
terminal. Data is not treated as input for the other user. This mode is not 
supported when using TANDEM as a phantom or background process.
View – Default mode. Shows another user’s input and output on your 
terminal. This display continues when you use message or feed mode.

You can change modes by entering any of the following escape sequences (ESC + an 
action code).

tandem Action Codes 

Escape 
Sequence Description

ESC+D Puts TANDEM in view mode. Terminates message or feed mode if 
active. Sends a BREAK to the other user’s process.

ESC+F Puts TANDEM in feed mode. Terminates message mode, if active. You 
must log in as root to use feed mode.

ESC+M Puts TANDEM in message mode. Terminates feed mode, if active.

Q In view mode, same as ESC+X. No effect in other modes.

ESC+U Same as ESC+D.

ESC+V Puts TANDEM in view mode. Terminates message or feed mode, if 
active.

ESC+X Ends the TANDEM session. If you did not specify -o c1 c2 c3 on the 
command line.

ESC+ESC In message or feed mode, enables you to send ESC to another user’s 
terminal.

ESC+? Displays information on your terminal, and also displays the status 
information for the current session.

Note: The COMO command does not capture output produced by TANDEM. When 
you use TANDEM on a phantom process, you cannot use the feed or message mode.

The feed mode for a TANDEM session is not supported on all UNIX platforms. If this 
mode is not supported on your operating system, UniData displays a message.
1-528 UniData Commands Reference



TERM

Syntax
TERM [[type] | [A|,B|,C |,D]]

Description
The ECL TERM changes the settings for your terminal and printer for the current 
UniData session. If you do not indicate type or any of the options (A through D), 
UniData displays the current settings for the terminal, excluding terminal type.

Use a comma as a placeholder for options you are not changing.

Terminal setup is part of the system setup process. IBM recommends that you use 
.login or .profile files to store terminal settings. For more information about system 
setup, see Administering UniData.

Parameters
The following table describes each parameter of the syntax.

TERM Parameters 

Parameter Description

type The terminal type.

A The number of characters per line for the display terminal (default: 80).

,B The number of lines per page for the display terminal (default: 23). TERM 
,0 disables pagination, so that UniData does not pause at the end of each 
display page.

,C The number of characters per line for the printer (from 1 through 256).

,D The number of lines per page for the printer (default: 60). 0 disables 
pagination.
     1-529



 

Examples
In the following example, UniData displays the current settings for the display 
terminal and the printer:

:TERM
TERM parameters are all numeric:
TERM A,B,C,D
For the terminal
A=number of characters in a line(80).
B=number of lines per page(23).
For the line printer
C=number of characters in a line(132).
D=number of lines per page(60).
:

The next example changes all settings for the terminal and one setting for the printer. 
Notice the comma that acts as a placeholder for option C, which does not change:

:TERM 25,10,,40
:TERM
TERM parameters are all numeric:
TERM A,B,C,D
For the terminal
A=number of characters in a line(25).
B=number of lines per page(10).
For the line printer
C=number of characters in a line(132).
D=number of lines per page(40).
:

The following example changes the terminal type:

:TERM vt100
:

1-530 UniData Commands Reference



TIMEOUT

Syntax
TIMEOUT nn

Description
The ECL TIMEOUT command automatically logs a user out of a UniData session 
if input is not received in nn seconds. The setting remains in effect for the current 
UniData session only.

TIMEOUT applies to the following:

ECL (colon) prompt.
Proc IP and IBP commands.
Paragraph inline prompting (except with the I option).
UniBasic INPUT commands and the IN function.

TIMEOUT does not apply to the prompt that displays after an interrupt in ECL.

UniData executes the LOGOUT paragraph before exiting the session.

Warning: Depending on your application coding, setting TIMEOUT could cause 
logical database inconsistencies. For example, without transaction processing in 
effect, an application might update part of a record, prompt for user input, and then 
time out at the prompt without updating the rest of the record.

Example
In the following example, the TIMEOUT command logs the user off after 59 seconds 
if UniData receives no input:

:TIMEOUT 59
Process will timeout after waiting 59 seconds for input.
:

     1-531



 

trunclog

Syntax
trunclog[-minline n | -minsize n] [-verbose] [logfilename...]

Description
The trunclog command appends the contents of a UniData log file you specify to its 
corresponding saved file in the $UDTBIN/saved_logs directory while UniData is 
running. UniData then truncates the log file to a size of zero, and writes a message 
similar to the following example in the truncated log file:

The file was truncated : Thu Jul 25 11:30:47

If you do not specify a file name to truncate, trunclog truncates the following files:

cleanupd.errlog
sbcs.errlog
sm.log 
smm.errlog
udt.log (Windows platforms only)
udtlatch.log

You must be root on UniData for UNIX or Administrator on UniData for Windows 
Platforms to execute this command, and you must set the UDTBIN environment 
variable.
1-532 UniData Commands Reference



Parameters
The following table describes each parameter of the syntax.

trunclog Parameters 

Parameter Description

-minline n Truncates only the log files which contain at least n lines.

-minsize n Truncates only the log files which contain at least n bytes.

-verbose Prints the handling messages.

logfilename Name of the log file to truncate.

If you do not specify -minline n or -minsize n, UniData truncates all of the log files 
you specify.

Example
The following command truncates all log files:

# trunclog

The following command truncates all log files with a minimum size, in bytes, of 1K:

# trunclog -minsize 1024

The next command truncates the sm.log file:

# trunclog sm.log

Warning: Because UniData does not set an exclusive lock while copying and 
truncating a log file, it is possible that one or more messages, for example, those 
generated by another UniData daemon, may be lost.
     1-533



 

udcls

Syntax
udcls

Description
On UniData for Windows platforms, the system-level udcls command clears the 
screen.
1-534 UniData Commands Reference



udfile

Syntax
udfile [-r | -s] filename

Description
The system-level udfile command converts a UniData file to or from recoverable. If 
you enter this command without options, UniData displays the type of type (recov-
erable or nonrecoverable).

Warning: You cannot convert files with this command while UniData is running.

Note: You must have root or Administrator permissions to change the recoverability 
type of a file.

Execute this command at the system prompt.

The udfile command will not convert files that were created in 1/2-K blocks. If you 
attempt to do so, UniData generates an error message indicating that the file cannot 
be converted to recoverable. You must resize the file to at least a 1-K block size using 
the ECL RESIZE command or the UniData system-level memresize command. Or, 
you can create a new file with at least a 1K block size, then copy the contents of the 
old file into the new one using the ECL COPY command.

For details about converting files to recoverable with udfile, see Administering the 
Recoverable File System.
     1-535



 

Parameters
The following table describes each parameter of the syntax.

udfile Parameters 

Parameter Description

filename Name of the UniData file to convert.

-r Converts a nonrecoverable file to recoverable.

-s Converts a recoverable file to nonrecoverable.

Examples
The following example displays the fact that the CLIENTS demo file is 
nonrecoverable:

% udfile CLIENTS
File ‘CLIENTS’ is non-recoverable dynamic file.
%

The next example changes the nonrecoverable CLIENTS demo file to recoverable:

% udfile -r CLIENTS
Non-recoverable file ‘CLIENTS’ changed to recoverable file.
%

The following example changes the recoverable ORDERS demo file to 
nonrecoverable:

% $UDTBIN/udfile -s $UDTHOME/demo/ORDERS
Recoverable file ‘/disk1/ud72/demo/ORDERS’ is changed to non-
recoverable file
1-536 UniData Commands Reference



udipcrm

Syntax
udipcrm

Description
The system-level udipcrm command removes all interprocess communication (IPC) 
structures associated with UniData. Execute this command at the system prompt.

If you are running multiple versions of UniData (for example, 6.1 and 7.2), udipcrm 
removes only the structures associated with the version from which you execute 
udipcrm.

Note: This command is supported on UniData for UNIX only.

Warning: Running udipcrm stops all UniData background processes and halts all 
UniData user processes.
     1-537



 

udstat

Syntax
udstat [-b] [-l num |-Lpid][interval [count]]

Description
The system-level udstat command displays details about process groups and the sbcs 
daemon.

Note: This command is supported on UniData for UNIX only.

Use this command at the UNIX prompt, or use the ECL ! (bang) command to execute 
this command from the ECL (colon) prompt.

Parameters
The following table describes each parameter of the syntax.

udstat Parameters 

Parameter Description

-b Displays benchmark values. Used by IBM only for diagnostic purposes.

-l num Displays a process group using the local control table number (num) of 
the group you want to sample.

-L pid Displays the process group using the group process identification 
number pid. 

interval [count] Invokes udstat with a time and count interval. The default interval is 5 
seconds. For example, udstat 10 3 displays current statistics every 10 
seconds three times, then stops.
1-538 UniData Commands Reference



The following table describes the column headings that display in the output for the 
udstat command.

udstat Display 

Column 
Heading Description

pr Private p_code requests.

gr Global p_code requests.

po Overflow pages accessed.

iv id overflow accessed.

gl Locks requested in a process group.

gu Unlocks requested in a process group.

fs Times of floating to string.

op Virtual files opened.

rd Times of reads.

wt Times of writes.

dl Times of deletes.

sh Times of shell command.

sr Times of subr.

sc Stings flushed (screen io).

lc Total locks requested.

ul Total unlocks requested.

ph Total physical reads.

vr Total virtual requests.
     1-539



 

When you specify the -b parameter, the following headings are displayed in place of 
po, iv, gl, gu, fs, op.

Changed Column Headings with -b Option 

Old 
Heading

-b 
Heading Description

po cr Times of carriage return input

iv tm1 setmark 1

gl tm2 setmark 2

gu tm3 setmark 3

fs tm4 setmark 4

op tm5 setmark 5

Examples
The following example shows a udstat display with the -b option:

% udstat -b
all process group sbcs

pr gr cr tm1 tm2 tm3 tm4 tm5 rd wt dl sh sr sc lc ul ph vr
6 42 217 0 2k 82 3 12 0 2k 704 721 754 0
%

1-540 UniData Commands Reference



udt

Syntax
udt [program_name | RUN program_name | ECL_command]

Description
The system-level udt command starts a UniData session. For UniData to run, the 
product must be installed and licensed, and the following environment variables must 
be set correctly:

UDTBIN must be set to your UniData bin directory
UDTHOME must be set to your UniData home directory

Note: You must use the udtts command to start a UniData session if you are using 
device licensing.

Execute this command at the system prompt.

Consult your system administrator for information about setting up your UniData 
environment.

For a full description of the UniData environment variables, see Administering 
UniData.

You can start a UniData session, execute a UniBasic program or ECL command, then 
automatically exit the UniData session by entering the program name or ECL 
command after the udt command from the system-level prompt. In these cases, 
@USER.TYPE returns 2.
     1-541



 

Parameters
The following table describes each parameter of the syntax.

udt Parameters 

Parameter Description

program_name Starts a UniData session, executes a cataloged program, then 
automatically exits the UniData session. Enter the command 
from the system-level prompt.

RUN program_name Starts a UniData session, executes a noncataloged program, 
then automatically exits the UniData session. Enter the 
command from the system-level prompt.

ECL_command Starts a UniData session, executes an ECL command, then 
automatically exits the UniData session. Enter the command 
from the system-level prompt.

Examples
The following example shows how to start a UniData session:

C:\IBM\ud72\Demo>udt
UniData Release 7.2  Build: (3122)
(c) Copyright IBM Corporation 2005.
All rights reserved.

Current UniData home is C:\IBM\ud72\.
Current working directory is C:\IBM\ud72\Demo.
:

In the following example, taken from UniData for UNIX, the user attempted to start 
a UniData session when the UniData daemons had not been started. To correct this 
problem, you must first start UniData with the startud command.

# $UDTBIN/udt
Start SMM first!
1-542 UniData Commands Reference



The next example illustrates how to start a UniData session, execute an ECL 
command, then automatically exit the UniData session from the system-level.

% udt LIST VOC SAMPLE 5
UniData Release 7.2 Build: (3122)
(c) Copyright IBM Corporation 2005.
All rights reserved.
Current UniData home is /liz1/ud72/.
Current working directory is /home/claireg.

:LIST VOC SAMPLE 5
LIST VOC SAMPLE 5 09:48:30 Jun 21 2005 1
VOC.......
LIST.LABEL
IN
NEWPCODE
NO.NULLS
SETLINE
5 records listed
:%

Related Command
BYE
     1-543



 

udtbreakon

Syntax
udtbreakon pid

Description
The system-level udtbreakon command enables the interrupt key from another port. 
With this capability, users can enter the UniBasic debugger to terminate a program 
that may be stuck in a loop. pid represents the udt process id on another port for which 
you enable the interrupt key.

Use this command at the system prompt, or use the ECL ! (bang) command to execute 
this command from the ECL (colon) prompt.

Tip: Use the LISTUSER command to find the process ID for which you intend to 
enable the interrupt key. The process ID for the UniData session is shown in the 
USRNBR column.

Related Commands
ON.BREAK, PTERM -BREAK ON
1-544 UniData Commands Reference



udtconf

Syntax
udtconf

Description
The system-level udtconf command automatically sets udtconfig parameters for 
shared memory. Although shared memory requirements are highly application- and 
platform-dependent, udtconf can provide suggestions for udtconfig parameters and 
provide information about the actual state of your system.

For detailed information about udtconf, see Administering UniData.
     1-545



 

Example (UniData for UNIX)
The following example shows the main screen of the udtconf utility:

To advance to a field displayed on the screen, press TAB. To page down, press 
CTRL+D. To page up, enter CTRL+U. The udtconf utility displays warning 
messages if some of the kernel parameters are not adequate to support the values 
udtconf calculates. Make sure that the kernel parameter for semaphore undo struc-
tures, usually semmnu, is adequate to support the number of authorized users prior to 
running udtconf.

Settings for the udtconfig parameters NUSERS, SHM_GNTBLS, N_TMQ, and 
N_PGQ, and N_GLM_GLOBAL_BUCKET are based on the number of authorized 
users. Although udtconf displays warning messages if kernel parameters are not 
adequate to support these settings, the udtconfig file is updated with the values you 
set if you choose to ignore the warnings. In this case, UniData may not be able to 
start. For more information about configuring your UniData system, see Adminis-
tering UniData.
1-546 UniData Commands Reference



Example (UniData for Windows Platforms)
The following example shows the main screen of the udtconf utility:

To view the udtconfig parameters, scroll through the list.The udtconf utility displays 
warning messages if some of the system-level parameters are not adequate to support 
the values udtconf calculates. To change the value of a parameter, double-click the 
parameter, enter the setting in the New Value box, and then click Set. To save your 
changes, click Save. To verify the settings against operating system limitations, click 
Check. To exit the program without saving changes, click Exit.
     1-547



 

Settings for the udtconfig parameters NUSERS, SHM_GNTBLS, N_TMQ, and 
N_PGQ, and N_GLM_GLOBAL_BUCKET, are based on the number of authorized 
users. Although udtconf displays warning messages if parameters are not adequate to 
support these settings, the udtconfig file is updated with the values you set if you 
choose to ignore the warnings. In this case, UniData may not be able to start. For 
more information about configuring your UniData system, see Administering 
UniData.
1-548 UniData Commands Reference



udtinstall

Syntax
udtinstall [-f filename][-c]

Description

The system-level udtinstall command installs UniData.

Note: This command is supported on UniData for UNIX only.

For information about installing UniData, see Installing and Licensing UniData 
Products.

Parameters
The following table describes each parameter of the syntax.

udtinstall Parameters 

Parameter Description

-f filename Indicates that all required user input is included in an ASCII file names 
filename.

-c Automatically invokes confprod after the installation process is complete, 
using its default options.
     1-549



 

udtlangconfig

Syntax
udtlangconfig

Description
The system-level udtlangconfig command completes the following tasks:

Changes the language group for the current installation of UniData.
Converts ASCII values used for UniData delimiters and other reserved 
characters using the UniData convmark command for all files in the demo 
database and udthome/sys directories on UniData for UNIX or udthome\sys 
directory on UniData for Windows Platforms.
Warning: On UniData for UNIX, these directories may not contain any 
UNIX links (created with the UNIX ln command). convmark produces an 
error message and aborts if they do.
Starts UniData in the language you specify.

Note: To execute the udtlangconfig command, you must log on as root on UniData 
for UNIX or as Administrator on UniData for Windows Platforms, and be in the 
udtbin directory.

Language group numbers correspond to the record mark value (@RM), print at value 
(@PRINT_AT), and the null value. If you are currently running UniData 3.3.2i, you 
need to run udtlangconfig to change the print at value from the previous 128 to the 
new 130 ASCII value.
1-550 UniData Commands Reference



Example
The following example shows the entire udtlangconfig process. In the section that 
prompts you to enter the language, UniData sets the default to match the operating 
system LANG setting. In this example, LANG is set for French.

# udtlangconfig

Starting configuration of UniData RDBMS system.
The following prompts have the default answers in brackets [],
press Enter to accept these answers.

Using UDTBIN=/usr/ud72/bin

WARNING: ‘stopud -f’ will stop the Unidata System with force.
This may not guarantee the consistency of the database files.

Would you like to continue?(y/n) [n]
y
SM stopped successfully.
CLEANUPD stopped successfully.
SBCS stopped successfully.
SMM stopped successfully

Unidata R7.2 has been shut down.

Please select the appropriate language from the list below:
Language Locale
------------------------------
ENGLISH C
ENGLISH_UK english
ENGLISH_G2 C
JAPANESE japanese.euc
FRENCH french
------------------------------
Please enter language from above list [FRENCH]:
FRENCH
Input complete, UniData processing...
Using UDTBIN=/usr/ud72/bin

All output and error logs have been saved
to /usr/ud72/bin/saved_logs directory.
SMM is started.
SBCS is started.
CLEANUPD is started.
SM is started.

UniData R7.2 has been started.

You now have completed the configuration process.
This is the end of the configuration process.
     1-551



 

udtmon

Syntax
udtmon

Description
The system-level udtmon command starts the Monitor/Profile utility. 
Monitor/Profile is a menu-driven monitoring tool that provides you with information 
about UniData user and system activity.

To exit the Monitor/Profile utility, continue pressing ESC. The cursor returns to the 
environment from which you entered the utility.

Note: udtmon is supported on UniData for UNIX only.

You can select from ten different displays that show system resource use, in either text 
or graphic display. Examples

In the following example illustrates the udtmon command:

:!udtmon
UniData Monitor Utility Version 1.1.5
Display Configuration Help

Display statistics on use of Unidata and the system over a time 
interval.
1-552 UniData Commands Reference



udtts

Syntax
udtts

Description
The system-level udtts command starts a UniData session when you are using device 
licensing. For UniData to run, the product must be installed and licensed, and the 
following environment variables must be set correctly:

UDTBIN must be set to your UniData bin directory
UDTHOME must be set to your UniData home directory

Note: You must use udtts to enter a UniData session if you are using device licensing. 
If you use udt, device licensing has no effect.

Execute this command at the system prompt.

Consult your system administrator for information about setting up your UniData 
environment.For a full description of the UniData environment variables, see Admin-
istering UniData.

Examples
The following example shows how to start a UniData session:

% udtts
UniData Release 7.2 Build: (3112)

(c) Copyright IBM Corporation 2005.
All rights reserved.
Current UniData home is /liz1/ud72/.
Current working directory is /home/claireg.
:

     1-553



 

In the following example, the user attempted to start a UniData session when the 
UniData daemons had not been started. To correct this problem, you must first start 
UniData with the startud command.

# $UDTBIN/udtts
Start SMM first!
Related Command
BYE
1-554 UniData Commands Reference



UDT.OPTIONS

Syntax
UDT.OPTIONS [n {ON | OFF}]

Description
The ECL UDT.OPTIONS command modifies command behavior. The setting 
remains in effect throughout the UniData session or until you reset it.

By setting various UDT.OPTIONS ON or OFF, you can guide behaviors such as the 
following:

How UniData sorts alphanumeric data for right-justified sorts.
How UniData handles page breaks.
The kind of message that UniData displays when you delete data from a file 
using a select list.
Whether to suppress the echo of a prompt character and data when UniData 
passes data to a UniBasic program to fill an input statement.
Where UniData returns control after a Proc executes a UniBasic program.

To use a combination of options, you must set each one separately.

For descriptions of the effects of each UDT.OPTION, see the UDT.OPTIONS 
Commands Reference.

Tip: If you want UniData to set UDT.OPTIONS ON every time you start a UniData 
session, create a login paragraph that turns them on every time you log on to 
UniData. For more information about creating login paragraphs, see Using 
UniData.
     1-555



 

Parameters
The following table describes each parameter of the syntax.

UDT.OPTIONS Parameters 

Parameter Description

n The number of the UDT.OPTION you want to change.

ON Switches the UDT.OPTION on.

OFF Switches the UDT.OPTION off.

Examples
To view the current setting of each option, enter the ECL UDT.OPTIONS command 
at the UniData ECL (colon) prompt:

:UDT.OPTIONS
1 U_NULLTOZERO OFF
2 U_PSTYLEECL OFF
3 U_SHLNOPAGE OFF
...
109 U_TELNET_NODELAY OFF
110 U_OCONV_EMPTY_STR OFF
111 U_NT_CTRL_C_IGNORE OFF

To set an individual option, use the option number with the UDT.OPTIONS 
command and indicate whether to turn the option ON or OFF. The next example turns 
UDT.OPTIONS 2 ON:

:UDT.OPTIONS 2 ON
:

1-556 UniData Commands Reference



uniapi_admin

Syntax
uniapi_admin

Description
The system-level uniapi_admin command starts the ObjectCall Administration tool. 
     1-557



 

UNIENTRY

Syntax
UNIENTRY [DICT] filename record

Synonyms
ENTRO, UFORM

Description
The ECL UNIENTRY command invokes the UniData file-building tool. This 
command sets an exclusive lock on the file being accessed.

When you use UniEntry to modify the dictionary of a file, UniData uses the 
DICT.DICT dictionary to format the display of dictionary attributes. For more infor-
mation about using UniEntry to build UniData files, see Using UniData.

UniEntry displays all D-type attributes. To display multivalued attributes, you must 
select the attribute number and press ENTER.

You cannot use UniEntry to enter the null value into an attribute.

Note: If UniData cannot modify or delete a record due to the presence of a trigger, 
UniData displays an informational message that the update or delete operation was 
not executed.

Regarding other editors:

The ECL AE command invokes the UniData Alternate Editor. You can use 
this line editor to edit UniData hashed files and UniBasic source programs.
The ECL ED command invokes the standard operating system editor 
supported by UniData. See ED, in this manual, for more information.
The ECL VI command invokes vi, the UNIX System V visual editor, from 
within UniData.
1-558 UniData Commands Reference



You can edit UniData hashed files and DIR-type files with any ASCII text 
editor. See your operating system documentation for more information on 
supported editors. Be aware, though, of any changes or conversions the 
editor might make to files it opens.

Parameters
The following table describes each parameter of the syntax.

UNIENTRY Parameters 

Parameter Description

DICT Opens the dictionary portion of the file.

filename A UniData file to access.

record A record in filename.

Example
The following example opens a record in the CLIENTS demo file and displays each 
attribute in the record.

:UNIENTRY CLIENTS 9999

CLIENTS RECORD ID==>9999

0 @ID=9999
1 FNAME=Paul
2 LNAME=Castiglione
3 COMPANY=Chez Paul
4 CITY=Paris
5 STATE=
6 ZIP_CODE=75008
7 COUNTRY=France
8 ==>ADDRESS
9 ==>PHONE_NUM PHONE_TYPE

FROM 8 to 9 ARE MULTI VALUED FIELDS SCREENS.

Enter ‘DELETE’ ‘UNCHANGE’ ‘QUIT’ or NUMBER to change
Change=
     1-559



 

Related Commands
AE, ED
1-560 UniData Commands Reference



UNSETDEBUGLINE

Syntax
UNSETDEBUGLINE

Description
The ECL UNSETDEBUGLINE command releases the port that you were using for 
dual-terminal debugging in UniBasic.

For more information about UniBasic and the UniBasic debugger, see Developing 
UniBasic Applications.

Related Commands
DEBUGLINE.ATT, DEBUGLINE.DET, SETDEBUGLINE
     1-561



 

UNSETLINE

Syntax
UNSETLINE line

Description
The ECL UNSETLINE command disconnects a communications line that had been 
initialized with SETLINE for use during the current UniData session. If you do not 
specify a parameter, UniData displays the current setting.

UNSETLINE modifies the ASCII file udthome/sys/lineinfo on UniData for UNIX or 
udthome\sys\lineinfo on UniData for Windows Platforms.

Note: To execute the UNSETLINE command, you must log on as root on UniData for 
UNIX or as Administrator on UniData for Windows Platforms.

For information about initializing a communication line, see SETLINE and 
LINE.ATT.

Related Commands

UniData

LINE.ATT, LINE.DET, LINE.STATUS, PROTOCOL, SETLINE

UniBasic
GET, SEND For information, see the UniBasic Commands Reference.
1-562 UniData Commands Reference



UPDATE.INDEX

Syntax
UPDATE.INDEX filename

Description
The ECL UPDATE.INDEX command applies deferred updates to alternate key 
indexes when automatic updating was disabled by DISABLE.INDEX. If you are 
running the Recoverable File System (RFS), the ENABLE.INDEX command 
automatically updates the index.

You do not have to execute ENABLE.INDEX before updating with 
UPDATE.INDEX.

Tip: Depending on the number and size of your index, automatic updating may 
adversely impact system performance. By deferring updating to a time of low activity, 
you may improve system performance during peak activity times.

Examples
In the following example, UniData applies deferred updates to the index for the 
ORDERS demo file:

:UPDATE.INDEX ORDERS
Total Defferred Updates Applied: 1
:

     1-563



 

To find out if an index file has updates pending, use the LIST.INDEX command to 
display data about the file, as shown in the next example. Notice the entry on the line 
for Index updates. This tells you that automatic updating is disabled and there are 
pending updates.

Alternate Key Index Details for File ORDERS Page 1
File.................. ORDERS
Alternate key length.. 20
Node/Block size....... 4K
OV blocks............. 1 (0 in use, 0 overflowed)
Indices............... 4 (1 D-type)
Index updates......... Disabled, Indices require updating
Index-Name...... F-type K-type Built Empties Dups In-DICT S/M F-
no/VF-expr....
NAME V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’,
CLIENT_NO,’FNAME‘,’X’): “ “: TRANS(‘CLIENTS’,CLIENT_NO,’LNAME’,’
X’)
GRAND_TOTAL V Num Yes Yes Yes Yes S PRICE*QTY; SUM(SUM(@1))
COUNTRY V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’, CLIENT_NO,’COUNT
RY’,’X’)
PRODUCT_NO D Num Yes Yes Yes Yes M 4
:

Note: DELETE.INDEX fails when an index is disabled.

Related Commands
BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, DISABLE.INDEX, 
ENABLE.INDEX,LIST.INDEX, UPDATE.INDEX
1-564 UniData Commands Reference



updatesys

Syntax
updatesys

Description
The system-level updatesys command updates the installed version of UniData.

Note: This command does everything the system-level udtinstall command does, 
except that it updates your udthome/sys directory instead of creating a new one. This 
leaves your global catalog space intact.

For information about installing and upgrading UniData, see Installing and Licensing 
UniData Products.
     1-565



 

updatevoc

Syntax
updatevoc [-[A |C |I |O |N |S]][directory]

Description
The system-level updatevoc command updates the VOC file for an account. If you 
do not name a directory or use any options, UniData updates the VOC file in the 
current account and appends notes regarding changes to the vocupgrade file. UniData 
updates the VOC file from a master file located in udtbin/VOCUPGRADE on 
UniData for UNIX or udtbin\VOCUPGRADE on UniData for Windows Platforms.

Depending on the option(s) selected, updatevoc takes one or more of the following 
actions:

Compares the account VOC file to VOCUPGRADE.
Notes differences between the two files, appending them to or overwriting 
the vocupgrade file, in the current account.
Displays informational messages and updates records in the local accounts 
VOC file.
Updates the version record in the VOC file, which is read by the VERSION 
command.

Tip: IBM recommends that you run this command on every UniData account after 
you upgrade to a new version of UniData. For tracking purposes, run updatevoc 
from within the account for which you are updating the VOC.
1-566 UniData Commands Reference



Parameters
The following table lists the updatevoc parameters. When you use these options in 
combination, use the minus sign only once, preceding the first option listed (such as 
in updatevoc -ACI).

updatevoc Parameters 

Parameter Description

directory UniData account directory that contains the VOC file you intend to update.

-A Adds new records to the VOC file in the specified directory and in all 
accounts that reside in the directory, but does not modify existing VOC 
records. Appends to vocupgrade notes on differences between the two VOC 
files.

-C Adds new records to the VOC file in the specified directory, but does not 
modify existing VOC records. Does not add notes to vocupgrade on differ-
ences between the two VOC files.
Note: The -I parameter overrides the -C parameter.

-I Prompts for verification before adding or modifying records to the VOC 
file in the specified directory. Does not add notes to vocupgrade on differ-
ences between the two VOC files.

-O Overwrites existing entries in the account’s VOC without prompting for 
verification. Does not add notes to vocupgrade on differences between the 
two VOC files.

-N Adds new records to the VOC file in the specified directory, but does not 
modify existing VOC records. Appends notes to vocupgrade on differences 
between the two VOC files.

-S Adds new records to the VOC file in the specified directory, but does not 
modify existing VOC records. Suppresses the informational messages 
ordinarily displayed after each change. 

Examples
The following example, taken from UniData for UNIX, uses the UNIX more 
command to display the contents of vocupgrade in a demo account.
     1-567



 

Tip: Notice the phrases old item and new item that appear next to each entry. old item 
means that UniData has applied changes to an existing VOC entry. new item notes a 
difference between the two VOC files for which no change has been made.

:!more vocupgrade
BELL~K~BELL | old item |
CP~PA~SPOOL <<I2,FILENAME>> <<I3,ITEMID>> | old item |
CREATE~SQLV~VIEW~TABLE~INDEX | old item |
DEFAULT.LOCKED.ACTION~V~DEFAULT.LOCKED.ACTION | old item |
DROP~SQLV~VIEW~TABLE~INDEX~INTO | old item |
HELP.FILE~F~@UDTHOME/sys/HELP.FILE~@UDTHOME/sys/D_HELP.FILE | old 
item |
HELP~V~HELP | old item |

The next example updates a demo VOC file. For this example, the VOC record for 
the SAMPLE keyword has been changed from type K to type V, so that it differs from 
the entry in VOCUPGRADE.

Notice that UniData adds new entries to the account VOC file but does not change 
the SAMPLE VOC record. If a change had been made to SAMPLE, the last message 
would indicate a new item saved to /home/carolw/demo/vocupgrade.

:AE VOC SAMPLE
Top of “SAMPLE” in “VOC”, 2 lines, 8 characters.
001: V
002: SAMPLE
Bottom.

:
:!updatevoc -C
Now update /home/carolw/demo/VOC ... ...
Adding KEYDATA to VOC file
Adding KEYONLY to VOC file
Adding PARTTBL to VOC file
Adding VERSION to VOC file
Adding version to VOC file
Deleting ERRMSG from VOC file
366 total items in /disk1/ud51/bin/VOCUPGRADE.
6 items updated in VOC file.
1 old items saved to /home/carolw/demo/vocupgrade.
0 new items saved to /home/carolw/demo/vocupgrade.
:

1-568 UniData Commands Reference



The next example updates the local accounts VOC file, but does not record anything 
to the vocupgrade file.

:!updatevoc -O
Now update /home/carolw/demo/VOC ... ...
Adding SAMPLE to VOC file
Adding VERSION to VOC file
Adding ERRMSG to VOC file
Adding version to VOC file
Deleting ERRMSG from VOC file
366 total items in /disk1/ud41/bin/VOCUPGRADE.
5 items updated in VOC file.
0 old items saved to /home/carolw/demo/vocupgrade.
0 new items saved to /home/carolw/demo/vocupgrade.

Related Command
VERSION
     1-569



 

updsys

Syntax
updsys

Description
The system-level updsys command updates the installed version of UniData.

Note: Use the updsys command rather than the updatesys command on any Windows 
platform that has implemented Windows User Account Control (UAC). 

Note: This command does everything the system-level udtinstall command does, 
except that it updates your udthome/sys directory instead of creating a new one. This 
leaves your global catalog space intact.

For information about installing and upgrading UniData, see Installing and Licensing 
UniData Products.

Related Command
updatesys
1-570 UniData Commands Reference



updvoc

Syntax
updvoc [-[A |C |I |O |N |S]][directory]

Description
The system-level updvoc command updates the VOC file for an account. If you do 
not name a directory or use any options, UniData updates the VOC file in the current 
account and appends notes regarding changes to the vocupgrade file. UniData 
updates the VOC file from a master file located in udtbin/VOCUPGRADE on 
UniData for UNIX or udtbin\VOCUPGRADE on UniData for Windows Platforms.

Note: Use the updvoc command rather than the updatevoc command on any 
Windows platform that has implemented Windows User Account Control (UAC). 

Depending on the option(s) selected, updvoc takes one or more of the following 
actions:

Compares the account VOC file to VOCUPGRADE.
Notes differences between the two files, appending them to or overwriting 
the vocupgrade file, in the current account.
Displays informational messages and updates records in the local accounts 
VOC file.
Updates the version record in the VOC file, which is read by the VERSION 
command.

Tip: IBM recommends that you run this command on every UniData account after 
you upgrade to a new version of UniData. For tracking purposes, run updvoc from 
within the account for which you are updating the VOC.
     1-571



 

Parameters
The following table lists the updvoc parameters. When you use these options in 
combination, use the minus sign only once, preceding the first option listed (such as 
in updvoc -ACI).

updvoc Parameters 

Parameter Description

directory UniData account directory that contains the VOC file you intend to update.

-A Adds new records to the VOC file in the specified directory and in all 
accounts that reside in the directory, but does not modify existing VOC 
records. Appends to vocupgrade notes on differences between the two VOC 
files.

-C Adds new records to the VOC file in the specified directory, but does not 
modify existing VOC records. Does not add notes to vocupgrade on differ-
ences between the two VOC files.
Note: The -I parameter overrides the -C parameter.

-I Prompts for verification before adding or modifying records to the VOC 
file in the specified directory. Does not add notes to vocupgrade on differ-
ences between the two VOC files.

-O Overwrites existing entries in the account’s VOC without prompting for 
verification. Does not add notes to vocupgrade on differences between the 
two VOC files.

-N Adds new records to the VOC file in the specified directory, but does not 
modify existing VOC records. Appends notes to vocupgrade on differences 
between the two VOC files.

-S Adds new records to the VOC file in the specified directory, but does not 
modify existing VOC records. Suppresses the informational messages 
ordinarily displayed after each change. 

Examples
The following example updates a demo VOC file. For this example, the VOC record 
for the SAMPLE keyword has been changed from type K to type V, so that it differs 
from the entry in VOCUPGRADE.
1-572 UniData Commands Reference



Notice that UniData adds new entries to the account VOC file but does not change 
the SAMPLE VOC record. If a change had been made to SAMPLE, the last message 
would indicate a new item saved to \home\carolw\demo\vocupgrade.

:AE VOC SAMPLE
Top of “SAMPLE” in “VOC”, 2 lines, 8 characters.
001: V
002: SAMPLE
Bottom.

:
:!updatevoc -C
Now update \home\carolw\demo\VOC ... ...
Adding KEYDATA to VOC file
Adding KEYONLY to VOC file
Adding PARTTBL to VOC file
Adding VERSION to VOC file
Adding version to VOC file
Deleting ERRMSG from VOC file
366 total items in \ibm\ud72\bin\VOCUPGRADE.
6 items updated in VOC file.
1 old items saved to \home\carolw\demo\vocupgrade.
0 new items saved to \home\carolw\demo\vocupgrade.
:

The next example updates the local accounts VOC file, but does not record anything 
to the vocupgrade file.

:!updatevoc -O
Now update \home\carolw\demo\VOC ... ...
Adding SAMPLE to VOC file
Adding VERSION to VOC file
Adding ERRMSG to VOC file
Adding version to VOC file
Deleting ERRMSG from VOC file
366 total items in \ibm\ud72\bin\VOCUPGRADE.
5 items updated in VOC file.
0 old items saved to \home\carolw\demo\vocupgrade.
0 new items saved to \home\carolw\demo\vocupgrade.

Related Command
updatevoc, VERSION
     1-573



 

usam

Syntax
usam

Description
The system-level usam command runs USAM (UniData System Administration 
Manager), an interactive utility. For detailed information on this utility, see Using 
USAM and USAM Batch/USAM Print.

To quit the USAM utility, press ESC continuously until you return to the environment 
from which you entered USAM.

Note: USAM is supported on UniData for UNIX only.

Use this command at the system prompt, or use the ECL ! (bang) command to execute 
this command from the ECL (colon) prompt.
1-574 UniData Commands Reference



USHOW

Syntax
USHOW [DICT] filename [attribute [attributeN...]]

Description
The ECL USHOW command generates lists of selected attributes from UniData 
files. This command is an implementation of the Prime Information SHOW 
command.

Parameters
The following table lists the USHOW parameters.

USHOW Parameters 

Parameter Description

DICT Lists the dictionary file.

filename A UniData file.

attribute The name of an attribute to display.
     1-575



 

Examples
The following example shows the result of USHOW with the ORDERS demo file:

:USHOW ORDERS PRODUCT_NO
Page no :1 of 13 No.ofrecs. selected 0 of 193
ORDERS|Product Number|
------------------------------------------------------------------
--------------
1 | 912| | 55040| |

2 | 801| | 11000| |
3 | 941| | 50000| |
4 | 805| | 11140| |
5 | 830| | 55090| |
6 | 970| | 13003| |
7 | 863| | 40005| |
8 | 834| | 40007| |
9 | 861| | 56080| |
10| 890| | 54090| |
11| 914| | 40007| |
12| 803| | 10004| |
13| 832| | 10020| |
14| 972| | 10090| |
15| 860| | 57010| |
------------------------------------------------------------------
--------------
Command :
S (range) - Select, C (range) - Clear, F - forwars, B - backwards
Range - ALL, VISIBLE, nn-nn, nn, nn-At
the Command : prompt, you can do any of the following:
 S Save a range of record IDs to a select list
 C Clear a range of record IDs
 F Move forward through the USHOW display
 B Move backward through the USHOW display

After creating a select list, UniData displays the active select list prompt (>). At this 
prompt, you can operate on the active select list or enter quit or QUIT to exit the 
USHOW process and end the UniData session.

To return to the UniData colon prompt, enter CLEARSELECT at the active select list 
prompt, or press your interrupt key (enable the interrupt key with PTERM -BREAK).
1-576 UniData Commands Reference



UV_RESTORE

Syntax
UV_RESTORE [ -HDYNAMIC0 | -HDYNAMIC1] [-O] [-S] [-R] [-X char_list][-
Kn] [-A outputfile] [-F [DICT | DATA | DIR | filelist]] [-D uniVerse_path] acct_name

Description
The system-level UV_RESTORE command restores a UniVerse account from tape 
to disk in UniData format.

The target account directory that you intend to restore must reside on the machine to 
which you are migrating. UV_RESTORE reads data from an account you specify by 
a full path (uniVerse_path) and restores it to a UniData account. If the UniData 
account does not exist, UV_RESTORE creates it and names it acct_name.

Use this command at the system prompt.

Tip: If very large data files (larger than 1 gigabyte) have been saved from UniVerse, 
IBM recommends that you create the target UniData files as dynamic before you 
begin the restore. Assign a modulo to accommodate a file about 40 percent larger 
than the original UniVerse file.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

-HDYNAMIC0 Creates dynamic files with hash type 0.

-HDYNAMIC1 Creates dynamic files with hash type 1.

-O Forces overwriting of files in the UniData account. (The default 
UV_RESTORE behavior is to check the account for existing file 
names, and if a file exists, UniData prompts to skip or overwrite the 
file).

UV_RESTORE Parameters 
     1-577



 

-R Removes each UniVerse file from the disk after conversion. This is 
a useful parameter if you are short on disk space.

-S Truncates file names to 12 characters in length. This parameter is not 
necessary if you run UV_RESTORE on an operating system that 
automatically shortens file and program names.

-X char_list char_list indicates characters to be considered invalid for:
? file names

? account names

? record IDs in DIR-type files

While restoring, UniData converts these characters to underscore 
(_). If the resulting name conflicts with an existing account name, 
UniData adds a character to the end of the name to make it unique. 
For example: A&B becomes A_B. If A_B is used by another file, the 
name becomes A_Ba.
Default invalid characters are the following: space * ? / & ‘.
You cannot specify nonprinting characters as invalid.
Do not separate characters in char_list with spaces or commas. 

-K n Defines the size of the internal memory buffer (in kilobytes). Default 
size is 8000 K.
System restoration performs best when buffer size is large. Change 
the size to match the capacity of your operating system.

-A outputfile Creates filename, an ASCII text file, in the current directory, 
containing statistics about each file on the tape. -A does not restore 
files.

Parameter Description

UV_RESTORE Parameters (continued)
1-578 UniData Commands Reference



-F [DICT | DATA 
|DIR | filelist]

Loads only certain kinds of files:
? DICT– dictionary

? DIR – directory (including DIR and LD)

? DATA – hashed files (including DATA and LF)

? filelist – files listed in filelist, an ASCII text file that you create.

To convert files from different UniVerse accounts, specify the path 
(uniVerse_path) in filelist. UV_RESTORE converts the files into a 
single UniData account.
Tip: Use the -D parameter with this option so that you do not have 
to include the full path for each file in filelist.

-D uniVerse_path Designates the location of the UniVerse account directory.

acct_name Name of the UniVerse account to be restored.

Parameter Description

UV_RESTORE Parameters (continued)
     1-579



 

VCATALOG

Syntax
VCATALOG filename catalogname programname

Description
The ECL VCATALOG command compares the object file and the compiled program 
in the global catalog file byte-by-byte. If the source file has been modified after the 
program was cataloged, VCATALOG returns a negative result.

For more information on UniBasic, see Developing UniBasic Applications.

Parameters
The following table describes each parameter of the syntax.

VCATALOG Parameters 

Parameter Description

filename The file that contains the compiled version of the program. This must be 
a DIR-type record in the VOC file.

catalogname The cataloged name of the object code for the program. By default, this 
is the same as the program name, however, a different name may be 
assigned when the program is cataloged.

programname The program that is globally cataloged under this name or catalogname.

Examples
In the following example, UniData verifies a program called PSTLCODE_FMT 
which resides in the BP_SOURCE file of the demo database:

:VCATALOG BP_SOURCE PSTLCODE_FMT PSTLCODE_FMT
Program ‘PSTLCODE_FMT’ verifies.
:

1-580 UniData Commands Reference



The following example demonstrates VCATALOG returning a negative result, 
indicating that the source code has been changed since the program was cataloged.

:VCATALOG BP TEST
Program ‘TEST’ does not verify.
     1-581



 

VERIFY.EDAMAP

Syntax
VERIFY.EDAMAP {[XMAP] eda_schema | EDA.FILE [DICT] eda_file | 
DEFAULT.MAP} [DATA.SOURCE data_source] [OBJECT.SET 
[name_space.]primary_table] [FILE.NAME target_file [METADATA]

Description
The VERIFY.EDAMAP command verifies the EDA schema.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

eda_schema Specifies the name of the EDA schema to verify.

eda_file Specifies the name of the EDA file whose schema is to be 
extracted and verified. If you specify FILE.NAME target_file, 
target_name replaces the UniData file name in the schema 
UniData verifies.

DEFAULT.MAP Specifies to only verify the primary key (@ID) mapping, 
irrespective of the attributes actually mapped of the schema you 
specify.

data_source Specifies the data source name to use when verifying the 
schema.

VERIFY.EDAMAP Parameters 
1-582 UniData Commands Reference



primary_table Specifies the name of the primary table, containing only singl-
evalued attributes, to use when verifying the schema. If you also 
specify name_space, UniData uses it as the DB2 schema name.

target_file Specifies the name of the UniData file to use when verifying the 
schema.

METADATA Connects to the DB2 database and verifies the metadata on that 
database.

Parameter Description

VERIFY.EDAMAP Parameters (continued)
     1-583



 

VERSION

Syntax
VERSION

Description
The ECL VERSION command displays the most current UniData product version 
numbers recorded in the VOC file and the UniData bin directory as well as the current 
patch level.

Example
In the following example, the UniData displays the versions of all UniData products 
licensed on a system:

:VERSION
Module Name Version Licensed
UniData RDBMS............ 7.2 Yes
UniData OFS/NFA.......... 7.2 Yes
UniServer for ObjectCall. 7.2 Yes
RFS/TP................... 7.2 Yes
Device License........... 7.2 Yes
ODBC/UniOLEDB............ 7.2 Yes
UniObjects............... 7.2 Yes
1-584 UniData Commands Reference



VI

Syntax
VI filename record

Description
The ECL VI command invokes the vi editor on UniData for UNIX, or the MS-DOS 
editor on UniData for Windows Platforms from within UniData. VI opens the file 
filename and record you name. For more information on these editors, see your host 
operating system documentation.

Regarding other editors:

The ECL AE command invokes the UniData Alternate Editor. You can use 
this line editor to edit UniData hashed files and UniBasic source programs.
The ECL ED command invokes the standard operating system editor 
supported by UniData. See ED in this manual for more information.
UniData supplies UniEntry for modifying UniData records.
You can edit UniData hashed files and DIR-type files with any ASCII text 
editor. Refer to your operating system documentation for more information 
on supported editors. Be aware, though, of any changes or conversions the 
editor might make to files it opens.

Parameters
The following table describes each parameter of the syntax.

VI Parameters 

Parameter Description

filename The UniData file to be opened by the editor.

record The record in filename.
     1-585



 

Example
The following example shows how UniData invokes the vi editor from within 
UniData in order to access a record in the CLIENTS demo file:

:VI CLIENTS 9999
Paul
Castiglione
Chez Paul
45, reu de Rivoli
Paris
75008
France
3342425544}3342664857
Work}Fax
~
~

1-586 UniData Commands Reference



WAKE

Syntax
WAKE pid

Description
The ECL WAKE command activates a UniData process (pid) that has been paused 
with either the ECL PAUSE command or the UniBasic PAUSE command. If the 
process you specify has not been paused, UniData disregards the next PAUSE issued 
for that process.

Examples
Note: See the ECL PAUSE command for more examples.

The following series of examples demonstrates executing the WAKE command 
before executing PAUSE.

First, the user executes the listuser command to identify the process ID for the current 
UniData session. The process ID is the located in the USRNBR column. In this 
example, 11523 is the process ID for the session to pause:

:LISTUSER
Licensed/Effective # of Users Udt Sql Total
32 /32 2 0 2
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 11523 1172 claireg udt ttyp3 11:42:50 Jun 05 2005
2 11528 0 root udt pts/0 11:43:45 Jun 05 2005

Next, the user initiates a second UniData session and executes a WAKE against 
process 11523, the process identified in the preceding step:

:WAKE 11523
     1-587



 

Finally, the user attempts to pause the first session with the PAUSE command, but the 
command is ignored by UniData because of the previously issued WAKE against this 
process:

:PAUSE
:

Related Commands

UniData

LIST.PAUSED, PAUSE

UniBasic Commands

PAUSE, WAKE – For information, see the UniBasic Commands Reference.
1-588 UniData Commands Reference



WHAT

Syntax
WHAT

Description
The ECL WHAT command displays the system information stored in 
udthome/include/sysconfig on UniData for UNIX or udthome\include\sysconfig on 
UniData for Windows Platforms.

Examples
The following example shows a WHAT command display. The Product Serial 
Number on the last line in the example is the text entered at the product number 
prompt during udtinstall or updatesys on UniData for UNIX.

:WHAT
Platform         : HPUX11
Operating System : HP-UX hal B.11.00 A 9000/820 2000945515 two-
user license
Porting Date     : Jun. 05, 05
UniData Release  : 60_020905_4112
Ported by        :
Product Serial Number : serial_number
     1-589



 

The next example illustrates output from the WHAT command on UniData for 
Windows Platforms:
1-590 UniData Commands Reference



WHERE

Syntax
WHERE

Description
The ECL WHERE command displays the current account.

Example
The following example, taken from UniData for UNIX, shows a WHERE command 
display:

:WHERE
/home/carolw/demo
:

     1-591



 

WHO

Syntax
WHO

Description
The ECL WHO command displays information about users logged on to the system, 
including:

User ID
Port number
Date of login
Time of login

Example
In the following example, the UniData lists the users logged into the system:

:WHO
carolw pty/ttyv0 Jun 17 11:52
peggys pty/ttyv2 Jun 17 10:59
:

1-592 UniData Commands Reference



XMLSETOPTIONS

Syntax
XMLSETOPTIONS <options>

Description
Use this command to set the encoding parameter and other options for XML 
documents in the current session. XML settings entered in this command override the 
settings in the system-level and account-level xmlconfig files during the current 
UniData session.

Parameters
The following table describes each parameter of the syntax.

XMLSETOPTIONS Parameters 

Parameter Description

options A string in the format of space-delimited key/value pairs.
The XML options are the same as those in the xmlconfig file and 
accept the same values. Keys and values are case-insensitive.
The XMLSETOPTIONS command also accepts three special 
strings as the options parameter. A special string must be entered 
as the only option:
defaults – Sets all XML options to their default settings in 
the current session.

reload – Reloads the current system-level and account-level 
xmlconfig files, since they may have changed after you started 
your UniData session.

reset – Resets XML options to the original settings that were 
loaded when you started the UniData session.

Note: If UniData encounters a problem such as a syntax error or 
an invalid value in the options string, it displays an error message 
and none of the XML parameters are changed.
     1-593



 

Examples
The following example shows the format for entering the XML options as key/value pairs in 
the ECL command.

XMLSETOPTIONS encoding=UTF-8 standalone=yes out-xml-
declaration=true out-format-pretty-print=true out-normalize-
characters=true out-split-cdata-sections=true out-validation=false 
out-expand-entity-references=false out-whitespace-in-element-
content=true out-discard-default-content=true out-format-
canonical=false out-write-bom=false

The next example shows the format for entering a special string as the options 
parameter:

XMLSETOPTIONS defaults
1-594 UniData Commands Reference



XMLGETOPTIONS

Syntax
XMLGETOPTIONS <delimiterString>

Description
Use this command to return the values of the encoding parameter and other XML 
options in effect in the current UniData session.

Parameters
The following table describes each parameter of the syntax.

XMLGETOPTIONS Parameters 

Parameter Description

delimiterString Specifies the string to be used to separate the key/value pairs 
returned by the command.
     1-595



 

Examples
The following example shows the format for entering delimiterString as the string 
used to separate the key/value pairs returned by the command. Key/value pairs can 
be separated by a space or by any string, such as <>, as shown in this example:

:XMLGETOPTIONS <>

standalone=yes<>out-xml-declaration=true<>out-format-pretty-
print=true<>out-norm
alize-characters=true<>out-split-cdata-sections=true<>out-
validation=false<>out-
expand-entity-references=false<>out-whitespace-in-element-
content=true<>out-disc
ard-default-content=true<>out-format-canonical=false<>out-write-
bom=false
matchelement=1<>emptyattribute=0<>elementmode=0<>schematype=ref<>h
idemv=0<>hidem
s=0<>collapsemv=0<>collapsems=0<>hideroot=0<>

If you enter the XMLSETOPTIONS command with no delimiterString, the key/value 
pairs are separated by a space, as shown in the next example:

XMLGETOPTIONS

standalone=yes out-xml-declaration=true out-format-pretty-
print=true out-normali
ze-characters=true out-split-cdata-sections=true out-
validation=false out-expand
-entity-references=false out-whitespace-in-element-content=true 
out-discard-defa
ult-content=true out-format-canonical=false out-write-bom=false
matchelement=1 emptyattribute=0 elementmode=0 schematype=ref 
hidemv=0 hidems=0 c
ollapsemv=0 collapsems=0 hideroot=0
1-596 UniData Commands Reference



XMLGETOPTIONVALUE

Syntax
XMLGETOPTIONVALUE <optionName>

Description
Use this command to return the value of the encoding parameter or any other XML 
option in effect in the current UniData session.

Parameters
The following table describes each parameter of the syntax.

XMLGETOPTIONVALUE Parameters 

Parameter Description

optionName Specifies the name of the XML option for which you want to 
return the current value.

Example
The following example shows the format for entering optionName to specify the 
XML parameter for which you want to return the current value.

XMLGETOPTIONVALUE encoding

This command returns the value of the encoding option, as shown below:

XMLGETOPTIONVALUE encoding

UTF-8
     1-597



 

XML.TODB

Syntax
XML.TODB <xml_document> <xmap_filename>

Description
Use the XML.TODB command to populate the UniData database with data from an 
XML document from ECL.

Parameters
The following table describes each parameter of the syntax.

XML.TODB Parameters

Parameter Description

xml_document Name of the XML document from which you are extracting data.

xmap_filename Name of the previously defined XMAP file to use when extracting the 
data.

For information about creating the XMAP file, see Using UniData.

Example
The following example illustrates extracting data from an XML document to the 
database:
1-598 UniData Commands Reference



XML.TODB  STUDENT.XML  STUDENT.MAP
LIST SCHOOL
SCHOOL..... Name......       District…..            Class Of…

CO001              Fairview                         BVSD                        2004
2005

CO002                  Golden                            ACSD   2004
2005

CO003                   Cherry Creek               CCSD         2004
2005

LIST STUDENT
STUDENT.....        Name………… DOB… Class Of           Semester..      Course NO.     Grade

414446545              Karl Offenbach 24 DEC 84 2004               FA02               HY104             D
MA101            C
FR100              C

SP03        HY105              B
MA102             C
FR101             C

4243255656            Sally Martin                01 DEC 85     2005               FA02        PY100             C  
. . . . . . . .       
     1-599



 

XTD

Syntax
XTD hex

Description
The ECL XTD command converts a hexadecimal number to its decimal equivalent.

If the input number is longer than 8 digits, only the rightmost 8 digits are converted. 
If the input contains characters other than 0-9 and A-F, XTD returns 0.

The valid hexadecimal value ranges from 0 to FFFFFFFF. hexadecimal numbers in 
the range between 80000001 (-2,147,483,647) and FFFFFFFF (-1) are considered 
negative, and produce a negative decimal result.

XTD performs the inverse operation of the DTX command.

Example
In the following example, various hexadecimal values are translated to decimal 
values:

:XTD FF
255
:XTD 34ab
13483
:XTD Ab2
2738
:XTD K01
0
:

1-600 UniData Commands Reference



Related Command
DTX
     1-601


	About This Manual
	Elements of Syntax Statements

	!
	ACCT_RESTORE
	acctrestore
	ACCT.SAVE
	ACTIVATE.ENCRYPTION.KEY
	AE
	Common AE Commands

	ANALYZE.FILE
	auditor
	AVAIL
	BASIC
	BASICTYPE
	BLIST
	BLOCK.PRINT
	BLOCK.TERM
	BUILD.INDEX
	BYE
	CATALOG
	CENTURY.PIVOT
	CHECKOVER
	CLEAR.ACCOUNT
	CLEAR.FILE
	CLEAR.LOCKS
	CLEAR.ONABORT
	CLEAR.ONBREAK
	CLEARDATA
	CLEARPROMPTS
	clearq
	CLR
	CNAME
	cntl_install
	COMO
	COMPILE.DICT
	CONFIGURE.FILE
	confprod
	CONNECT
	CONTROLCHARS
	convcode
	convdata
	convhash
	convidx
	convmark
	CONVERT.SQL
	COPY
	CREATE.FILE
	Estimating the Modulo
	Estimating the File Size
	Special Considerations for Dynamic Files

	CREATE.INDEX
	CREATE.TRIGGER
	DATE
	DATE.FORMAT
	DB.TOXML
	dbpause
	dbpause_status
	dbresume
	DEACTIVATE.ENCRYPTION.KEY
	DEBUG.FLAG
	DEBUGLINE.ATT
	DEBUGLINE.DET
	DECRYPT.FILE
	DEFAULT.LOCKED.ACTION
	DELETE
	DELETECOMMON
	DELETE.CATALOG
	DELETE.FILE
	DELETE.INDEX
	DELETE.TRIGGER
	deleteuser
	DISABLE.DECRYPTION
	DISABLE.INDEX
	DISABLE.RFS.FILE
	DISABLE.USERSTATS
	DTX
	dumpgroup
	DUP.STATUS
	ECLTYPE
	ED
	EDA.CONVERT
	EDA.DISCONNECT
	EDA.EXCEPTION
	EDA.VERSION
	ENABLE.INDEX
	ENABLE.USERSTATS
	ENCRYPT.FILE
	Example

	FILE.STAT
	FILELIMIT
	FILEVER
	fixfile
	fixgroup
	fixtbl
	FLOAT.PRECISION
	Rounding Before Truncating with FLOAT.PRECISION 4, round

	forcecp
	GETUSER
	GROUP.STAT
	gstt
	guide
	guide_ndx
	HASH.TEST
	HELP
	HUSH
	HUSHBASIC
	ipcstat
	ISTAT
	kp
	LIMIT
	LINE.ATT
	LINE.DET
	LINE.STATUS
	LIST.CONNECT
	LIST.EDAMAP
	LIST.ENCRYPTION.KEY
	LIST.INDEX
	Using Indexes Created in an Earlier Release
	LIST.INDEX Display
	STATISTICS Display

	LIST.LANGGRP
	LIST.LOCKS
	LIST.PAUSED
	LIST.QUEUE
	LIST.READU
	LIST.TRIGGER
	LIST.USERSTATS
	LISTPEQS
	LISTPTR
	LISTUSER
	LO
	LOCK
	log_install
	LOGTO
	LS
	LSL
	lstt
	MAG_RESTORE
	Preparing for Restoration
	Files Created by MAG_RESTORE

	MAKE.MAP.FILE
	makeudapi
	makeudt
	MAP
	MAX.USER
	mediarec
	memresize
	Default Rules

	MENUS
	MESSAGE
	MIN.MEMORY
	mvpart
	MYSELF
	newacct
	newhome
	Creating an Alternate Catalog Space on UniData for Windows Platforms
	Creating an Alternate Catalog Space on UniData for UNIX

	NEWPCODE
	newversion
	NODIRCONVERT
	ON.ABORT
	ON.BREAK
	PAGE
	PATHSUB
	PAUSE
	PHANTOM
	PHANTOM Command Exit Codes

	PORT.STATUS
	PRIMENUMBER
	PRINT.ORDER
	PROTOCOL
	PTERM
	PTRDISABLE
	PTRENABLE
	QUIT
	READDICT.DICT
	REBUILD.FILE
	RECORD
	RELEASE
	RELEASE.ITEMS
	RESIZE
	Recovering from a Concurrent Resize Error
	Log Files

	REUSE.ROW
	REVOKE.ENCRYPTION.KEY
	RUN
	SAVE.EDAMAP
	sbcsprogs
	SET.DEC
	SET.LANG
	SET.MONEY
	SET.THOUS
	SET.TIME
	SET.WIDEZERO
	SETDEBUGLINE
	SETFILE
	SETLINE
	SETOSPRINTER
	SETPTR
	SETPTR (UniData for Windows Platforms)
	Redefining the Default UniData Print Unit
	Submitting Concurrent Print Jobs

	SETTAPE
	SG.LIST
	shmconf
	showconf
	showud
	smmtest
	smmtrace
	sms
	SORT
	SORT.TYPE
	SP.ASSIGN
	SP.CLOSE
	SP.EDIT
	SP.KILL
	SP-LISTQ
	SP.STATUS
	SPOOL
	SQL
	STACKCOMMON
	STARTPTR
	startud
	STATUS
	STOPPTR
	stopud
	stopudt
	SUPERCLEAR.LOCKS
	SUPERRELEASE
	sysmon
	systest
	T.ATT
	T.BAK
	T.CHK
	T.DET
	T.DUMP
	T.EOD
	T.FWD
	T.LOAD
	T.RDLBL
	T.READ
	T.REW
	T.SPACE
	T.STATUS
	T.UNLOAD
	T.WEOF
	tandem
	tandem Modes

	TANDEM
	TANDEM Modes

	TERM
	TIMEOUT
	trunclog
	udcls
	udfile
	udipcrm
	udstat
	udt
	udtbreakon
	udtconf
	udtinstall
	udtlangconfig
	udtmon
	udtts
	UDT.OPTIONS
	uniapi_admin
	UNIENTRY
	UNSETDEBUGLINE
	UNSETLINE
	UPDATE.INDEX
	updatesys
	updatevoc
	updvoc
	usam
	USHOW
	UV_RESTORE
	VCATALOG
	VERIFY.EDAMAP
	VERSION
	VI
	WAKE
	WHAT
	WHERE
	WHO
	XMLSETOPTIONS
	XMLGETOPTIONS
	XMLGETOPTIONVALUE
	XML.TODB
	XTD



