

 i

jBASE BASIC

Programmers Reference Guide

Functions and Statements Guide for 4.1

 ii

Copyright

Copyright (c) 2007 TEMENOS HOLDINGS NV

All rights reserved.

This document contains proprietary information that is protected by copyright. No part of this

document may be reproduced, transmitted, or made available directly or indirectly to a third party

without the express written agreement of TEMENOS UK Limited. Receipt of this material directly

from TEMENOS UK Limited constitutes its express permission to copy. Permission to use or copy

this document expressly excludes modifying it for any purpose, or using it to create a derivative

therefrom.

Acknowledgements

Information regarding Unicode has been provided in part courtesy of the Unicode Consortium. The

Unicode Consortium is a non-profit organization founded to develop, extend and promote use of the

Unicode Standard, which specifies the representation of text in modern software products and

standards. The membership of the consortium represents a broad spectrum of corporations and

organizations in the computer and information processing industry. The consortium is supported

financially solely through membership dues. Membership in the Unicode Consortium is open to

organizations and individuals anywhere in the world who support the Unicode Standard and wish to

assist in its extension and implementation.

Portions of the information included herein regarding IBM’s ICU has been reprinted by permission

from International Business Machines Corporation copyright 2001

jBASE, jBASE BASIC, jED, jSHELL, jLP, jEDI, jCL, jQL, j3 j4 and jPLUS files are trademarks of

TEMENOS Holdings NV.

REALITY is a trademark of Northgate Solutions Limited.

PICK is a trademark of Raining Data Inc.

All other trademarks are acknowledged.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through

X/Open Company Limited.

Other company, product, and service names used in this publication may be trademarks or service

marks of others.

 iii

Errata and Comments

If you have any comments regarding this manual or wish to report any errors in the documentation,

please document them and send them to the address below:

Technical Publications Department

TEMENOS UK Limited

2 Peoplebuilding

Maylands Avenue

Hemel Hempstead

Hertfordshire

HP2 4NW

England

Tel SB: +44 (0) 1442 431000

Fax: +44 (0) 1442 431001

Please include your name, company, address, and telephone and fax numbers, and email address if

applicable. documentation@temenos.com

 iv

Contents

Documentation Conventions .. 1

Organization of this manual ... 3

jBASE BASIC Language Overview .. 3

Features of jBASE BASIC .. 4

Benefits of using jBASE BASIC ... 4

jBASE BASIC Environment .. 5

jBASE BASIC Programming .. 5

jBASE BASIC Comparisons ... 7

With BASIC ... 7

With 'C' .. 7

File and Directory Organization .. 7

@ .. 9

@ (SCREENCODE) .. 10

@APPLICATION.ID .. 12

@CALLSTACK .. 12

@CODEPAGE .. 12

@DATA... 12

@DATE ... 12

@DAY ... 12

@EOF .. 12

@FILENAME ... 12

@FOOTER.BREAK .. 12

@HEADER.BREAK ... 12

@LEVEL ... 12

@LOCALE .. 12

@LPTRHIGH .. 12

@MONTH ... 12

@PARASENTENCE ... 12

@PATH ... 12

@PID ... 12

@RECORD ... 12

@SELECTED .. 13

@TERMTYPE ... 13

 v

@TIME .. 13

@TIMEZONE ... 13

@TTY .. 13

@UID .. 13

@USER.ROOT .. 13

@USERSTATS ... 17

ABORT .. 23

ABS ... 24

ABSS ... 25

ADDS .. 26

ALPHA .. 27

ANDS .. 28

ASCII ... 29

ASSIGNED .. 30

BITAND .. 31

BITCHANGE .. 32

BITCHECK ... 33

BITLOAD .. 34

BITNOT ... 35

BITOR ... 36

BITRESET ... 37

BITSET .. 38

BITTEST ... 39

BITXOR .. 40

BREAK .. 41

BYTELEN ... 42

CALL ... 43

CALLC .. 44

CALLdotNET .. 46

CALLJ ... 50

CALLONEXIT .. 60

CASE ... 61

CATALOG Command ... 62

CATS ... 64

CHAIN ... 65

CHANGE ... 66

CHANGETIMESTAMP .. 67

CHAR .. 68

 vi

CHARS .. 68

CHDIR ... 70

CHECKSUM ... 71

CLEAR .. 72

CLEARCOMMON .. 73

CLEARDATA ... 74

CLEARFILE .. 75

CLEARINPUT .. 76

CLEARSELECT .. 77

CLOSE ... 78

CLOSESEQ ... 79

COL1 and COL2 .. 80

COLLECTDATA .. 81

COMMON ... 82

COMPARE .. 83

CONTINUE ... 84

CONVERT .. 85

CONVERT (STATEMENT) ... 86

COS ... 87

COUNT.. 88

COUNTS ... 89

CREATE .. 90

CRT ... 91

DATA .. 92

DATE ... 93

DCOUNT ... 94

DEBUG.. 95

DECATALOG and DELETE-CATALOG Commands ... 96

DECRYPT ... 97

DEFC ... 99

DEFCE ... 101

DEFFUN .. 102

DEL ... 104

DELETE .. 105

DELETELIST .. 106

DELETESEQ ... 107

DELETEU ... 108

DIMENSION ... 109

 vii

DIR .. 110

DIV .. 111

DIVS .. 112

DOWNCASE / UPCASE .. 113

DROUND .. 114

DTX ... 115

DYNTOXML .. 116

EBCDIC ... 118

ECHO .. 119

ENCRYPT ... 120

ENTER .. 122

EQS .. 123

EQUATE ... 124

EREPLACE ... 125

EXECUTE ... 126

EXIT .. 128

EXP .. 129

EXTRACT ... 130

FADD .. 131

FDIV .. 132

FIELD .. 133

FIELDS .. 134

FILEINFO .. 136

FILELOCK .. 137

FILEUNLOCK .. 139

FIND .. 140

FINDSTR ... 141

FORMLIST .. 142

FLUSH ... 143

FMT ... 144

FMTS ... 147

FOLD ... 148

FOOTING .. 150

FOR ... 151

FSUB ... 153

FUNCTION ... 154

GES .. 155

GET ... 156

 viii

GETCWD .. 157

GETENV ... 158

GETLIST ... 159

GETUSERGROUP .. 160

GETX ... 161

GOSUB .. 162

GOTO .. 163

GROUP .. 164

HEADING ... 165

HEADINGE and HEADINGN .. 166

HUSH .. 167

ICONV ... 168

ICONVS .. 169

IF (statement) ... 170

IFS ... 172

IN ... 173

INDEX ... 174

INMAT .. 175

INPUT ... 176

INPUTCLEAR .. 178

INPUTNULL ... 179

INS ... 180

INSERT ... 181

INT ... 182

IOCTL ... 183

ISALPHA .. 191

ISALNUM ... 192

ISCNTRL ... 193

ISDIGIT ... 194

ISLOWER .. 195

ISPRINT .. 196

ISSPACE ... 197

ISUPPER ... 198

ITYPE .. 199

JBASECOREDUMP ... 201

JBASETHREADCreate ... 204

JBASETHREADStatus .. 205

JQLCOMPILE ... 206

 ix

JQLEXECUTE .. 207

JQLFETCH .. 208

JQLGETPROPERTY .. 209

JQLPUTPROPERTY ... 210

KEYIN ... 211

LATIN1 ... 212

LEFT .. 213

LEN ... 214

LENS ... 215

LENDP .. 216

LES .. 217

LN .. 218

LOCALDATE ... 219

LOCALTIME .. 220

LOCATE .. 221

LOCK .. 223

LOOP ... 224

LOWER ... 225

MAKETIMESTAMP ... 226

MAT .. 227

MATBUILD .. 228

MATCHES .. 229

MATCHFIELD .. 231

MATPARSE .. 233

MATREAD .. 234

MATREADU ... 236

MATWRITE .. 238

MATWRITEU ... 239

MAXIMUM ... 240

MINIMUM .. 241

MOD .. 242

MODS .. 243

MSLEEP .. 244

MULS .. 245

NEGS ... 246

NES .. 247

NOBUF .. 248

NOT ... 249

 x

NOTS ... 250

NULL ... 251

NUM .. 252

NUMS .. 253

OBJEXCALLBACK ... 254

OCONV ... 255

OCONVS ... 257

ONGOTO .. 258

OPEN ... 259

OPENDEV ... 261

OPENINDEX .. 262

OPENPATH .. 263

OPENSEQ ... 265

OPENSER .. 269

ORS ... 271

OSBREAD ... 272

OSBWRITE ... 273

OSCLOSE .. 274

OSDELETE ... 275

OSOPEN .. 276

OSREAD ... 277

OSWRITE .. 278

OUT ... 279

PAGE ... 280

PAUSE ... 281

PCPERFORM .. 282

PERFORM ... 282

PRECISION ... 283

PRINT .. 284

PRINTER ... 285

PRINTERR .. 286

PROCREAD .. 287

PROCWRITE .. 288

PROGRAM .. 289

PROMPT ... 290

PUTENV .. 291

PWR ... 292

QUOTE / DQUOTE / SQUOTE .. 293

 xi

RAISE .. 294

READ .. 295

READBLK .. 297

READL .. 299

READLIST .. 301

READNEXT .. 302

READPREV .. 303

READSELECT .. 305

READSEQ ... 306

READT .. 307

READU.. 308

READV.. 310

READVL ... 312

READVU ... 313

READXML .. 315

RECORDLOCKED ... 316

REGEXP .. 317

RELEASE .. 318

REMOVE .. 319

REPLACE .. 321

RETURN ... 322

REWIND ... 323

RIGHT ... 324

RND ... 325

RQM .. 326

RTNDATA .. 327

SADD .. 328

SDIV .. 329

SEEK ... 330

SELECT ... 332

SEND ... 334

SENDX .. 335

SENTENCE ... 336

SEQ .. 337

SEQS ... 338

SIN ... 339

SLEEP ... 340

SMUL .. 341

 xii

SORT ... 342

SOUNDEX .. 343

SPACE ... 344

SPACES ... 345

SPLICE .. 346

SPOOLER .. 347

SQRT ... 350

SSELECT .. 351

SSELECTN .. 353

SSELECTV .. 353

SSUB ... 354

STATUS Function ... 355

STATUS function .. 356

STATUS statement .. 358

STOP ... 360

STR .. 361

STRS .. 362

SUBROUTINE .. 363

SUBS ... 364

SUBSTRINGS ... 365

SUM ... 367

SWAP .. 368

System Functions ... 369

TAN ... 375

TIME ... 376

TIMEDATE ... 377

TIMEDIFF ... 378

TIMEOUT ... 379

TIMESTAMP .. 380

TRANS .. 381

TRANS .. 381

TRANSABORT ... 383

TRANSQUERY... 384

TRANSTART .. 385

TRANSEND .. 386

TRIM ... 387

TRIMB ... 388

TRIMBS .. 389

 xiii

TRIMF ... 390

TRIMFS ... 391

UNASSIGNED .. 392

UNIQUEKEY .. 393

UNLOCK ... 394

UDTEXECUTE ... 395

UPCASE .. 395

UTF8 .. 396

WAKE ... 397

WEOF .. 398

WEOFSEQ .. 399

WRITE ... 400

WRITEBLK ... 401

WRITELIST .. 402

WRITESEQ ... 403

WRITESEQF ... 404

WRITEU .. 406

WRITEV .. 408

WRITEXML .. 410

WRITEVU ... 411

XLATE .. 413

XMLTODYN .. 415

XMLTOXML .. 417

XTD ... 418

 1

Documentation Conventions

This manual uses the following conventions:

Convention Usage

BOLD

In syntax, bold indicates commands, function names, and options. In text,

bold indicates keys to press, function names, menu selections, and MS-

DOS commands.

UPPERCASE In syntax, uppercase indicates JBASE commands, keywords, and options;

BASIC statements and functions; and SQL statements and keywords. In

text, uppercase also indicates JBASE identifiers such as filenames, account

names, schema names, and Windows NT filenames and pathnames.

UPPERCASE

Italic

In syntax, italic indicates information that you supply. In text, italic also

indicates UNIX commands and options, filenames, and pathnames.

Courier Courier indicates examples of source code and system output.

Courier Bold Courier Bold In examples, courier bold indicates characters that the

user types or keys (for example, <Return>).

[] Brackets enclose optional items. Do not type the brackets unless indicated.

{} Braces enclose nonoptional items from which you must select at least one.

Do not type the braces.

ItemA | itemB A vertical bar separating items indicates that you can choose only one

item. Do not type the vertical bar.

. . . Three periods indicate that more of the same type of item can optionally

follow.

⇒ A right arrow between menu options indicates you should choose each

option in sequence. For example, “Choose File ⇒⇒⇒⇒ Exit ” means you should

choose File from the menu bar, and then choose Exit from the File pull-

down menu.

 2

 Syntax definitions and examples are indented for ease in reading.

 All punctuation marks included in the syntax—for example, commas, parentheses, or

quotation marks—are required unless otherwise indicated.

 Syntax lines that do not fit on one line in this manual are continued on subsequent lines.

The continuation lines are indented. When entering syntax, type the entire syntax entry,

including the continuation lines, on the same input line.

 3

Preface
This manual is a comprehensive reference for jBASE BASIC and is intended for experienced

programmers. The guide includes explanations of all jBASE BASIC statements and functions

supported by jBASE and descriptive information regarding the use of jBASE BASIC in the UNIX

environment.

If you have never used jBASE BASIC, read this manual before using any statements or functions.

Organization of this manual

This manual contains statements and functions in alphabetical order, each beginning on a new page. At

the top of each page is the syntax for the statement or function, followed by a detailed description of its

use, often including references to other statements or functions that can be used with it or are helpful to

know about. Examples illustrate the application of the statement or function in a program.

jBASE BASIC Language Overview

• is a UNIX resident programming language supported by the jBASE Database Independent

Management Engine

• can access database files of any UNIX resident, Open Systems database

• is aimed primarily at writing business applications, and contains all the constructs needed to access

and modify files and their data efficiently

• is a sophisticated superset of Dartmouth BASIC supporting structured programming techniques

• is a flexible and user extendible language

• contains the functionality needed to write efficient UNIX applications. It can spawn child

processes, access environment variables and interface to other UNIX programs

• programs can call external functions written in C or jBASE BASIC. C programs can be made to

call functions written in jBASE BASIC

• programs can mix with Embedded SQL statements written allowing queries and updates on any

SQL Database

• object code is link compatible with C and so a programmer has the tools of both available to him

to produce the most efficient code for his application

• Allows the application programmer working in a UNIX environment to write code without

needing to consider memory management, variable typing or floating-point arithmetic corrections:

all of which need to be dealt with when using 'C'

• Has other advantages over C such as the in-built debugger and easy file I/O;

• Programs may declare external functions, which are linked into the application by the UNIX

linker-loader. This means that jBASE BASIC offers access to specialized functions written in C or

any language that is link compatible with C

 4

Features of jBASE BASIC

• Optional statement labels

• Multiple statements on one line

• Local subroutine calls

• Branching on result of complex value testing

• String handling with variable lengths

• External calls to 'C' libraries

• External subroutine calls

• Direct and indirect calls

• Magnetic tape input and output

• String, number, and date data conversion capability;

• File access and update capability for any UNIX resident file, such as j-files or C-ISAM)

• File and record level locking capability

• Pattern matching capability

• Capability of processing file records in any format

• Sophisticated jBASE BASIC debugger

• Ability to EXECUTE any jBASE system or database enquiry command

• The standard UNIX command set is available to manage code libraries

• Support for networking and inter-process communication.

Benefits of using jBASE BASIC

• Applications are running on an Open Systems platform:

• Applications are very efficient as the execution speed of jBASE BASIC code is close to that of

hand crafted 'C'

• Applications are portable between binary compatible environments, however moving applications

to an alternative operating system requires that the application be recompiled on the target system.

No modifications to the application source are required as any operating specific modifications

will have been implemented by jBASE in the runtime libraries.

• Applications integrate easily with other UNIX systems

• Applications benefit from the steady improvements made in compiler optimization.

• Use of jBASE BASIC offers tremendous productivity improvements over 'C'

• The close compatibility with UNIX allows the jBASE BASIC developer to produce libraries of

standard subroutines or function calls, which any program can use

• The standard UNIX command set is available to manage code libraries

• The provision of Database access is to applications through generic read/write/lock statements that

divorce the application from the database itself. Locks are maintained across remote systems and

communication links thus allowing the application programmer to concentrate on the application

not the database or its location

 5

• JBASE BASIC will import and compile BASIC code from Open Systems RDBMS systems with

little or no modification

• Applications ported from PICK or Reality run as 'C' applications with all the related performance

and seamless inter-operability advantages over running on an emulation type implementation

written in C

• Investments in existing jBASE BASIC applications and development and programming skills in

BASIC are fully retained

• No need for costly retraining of programmers to 'C', which can also be freely used within the

application system, thus allowing more flexibility

• JBASE BASIC provides connection to external devices and external databases in a manner that is

transparent to existing applications

jBASE BASIC Environment

• jBASE BASIC will run on any standard UNIX system and with any standard shell or editor. Also

provided is an easy to use jSHELL.

• jBASE BASIC allows the programmer to choose his working environment to suit. It works equally

with the Bourne, C or Korn shell. Kernel configuration is not required to use the jBASE BASIC-

programming environment.

• You can write jBASE BASIC programs using any UNIX editor using the provided context

sensitive screen editor (jED), designed specifically for jBASE BASIC programmers and jBASE

users.

• Utilities are supplied to access database files created under jBASE.

• The final size of executable code is minimized, and duplication avoided, by sharing external object

libraries between all application programs.

• Specify a file or directory to hold the entire jBASE BASIC source; you can hold the finished

executables in a different file or directory if required.

• Use a global user library to hold globally accessible user routines.

jBASE BASIC Programming

• You can write the jBASE BASIC source code using any system editor. Users unfamiliar with

UNIX editors may wish to use the jED editor

• Use the jBASE BASIC compiler to produce intermediate object code or a UNIX executable file;

use Makefiles to simplify the compilation process, especially if many files are involved. Their use

will also make upgrading and software maintenance an easier task

• If the system allows, use should be made of linked libraries when calling subroutines and

functions. This will reduce the size of the compiled code that would otherwise be produced

• Applications accessing jBASE files should make use of the existing routines held in the

/usr/jBASE BASIC/lib directory.

 6

 7

jBASE BASIC Comparisons

With BASIC

Derived from Dartmouth Basic jBASE BASIC is an enhanced variant of BASIC, which contains all the

commands and constructs necessary for compatibility with other versions of BASIC. It also provides

full interaction with UNIX system and database files. You can modify jBASE BASIC quickly to retain

compatibility with any future enhancements to the BASIC language or its derivatives

On UNIX systems, the jBASE BASIC compiler produces code that runs many times faster than the

same BASIC code compiled and run on any other UNIX based RDBMS environment. jBASE BASIC

can access jBASE, C-ISAM, and UNIX files as well as records and files of other databases The jBASE

BASIC debug facilities are greatly superior to those provided with other versions of BASIC

With 'C'

The jBASE BASIC compiler uses all the features of the cc compiler and can compile 'C' source and

object files, as well as jBASE BASIC source code. You can halt the source compilation at any stage, to

examine the resultant code:

External 'C', and jBASE library access is available

The executables produced by the jBASE BASIC compiler and cc is identical

• jBASE BASIC has a sophisticated debugger available as standard

• jBASE BASIC is able to provide full and easy access to UNIX or any third party database files

• jBASE BASIC has the tools to provide sophisticated string handling

• jBASE BASIC handles system signals and events automatically

File and Directory Organization

To run jBASE BASIC on a UNIX system, there are several directories and files already set up, which

ensure the smooth and efficient use of the jBASE BASIC programming environment; all the jBASE

BASIC files are held under the UNIX /opt/jBASIC directory.

The main body of the jBASE BASIC program and library files are held in the /opt/jBASIC directory,

which contains all the run-time code, error and library files, as well as default system and terminal set-

up limit.

 8

XML Functions and Statements
JBASE is incorporating new XML capabilities built into jBASE BASIC based on the Xalan and Xerces

libraries.

XML Functions

DYNTOXML

XMLTODYN

XMLTOXML

XML Statements

READXML

WRITEXML

 9

jBASE Funtions and Statement @ Variables

@

Use the @ function to position the cursor to a specific point on the terminal screen

COMMAND SYNTAX

@ (col{, row})

SYNTAX ELEMENTS

col and row can be any expression that evaluates to a numeric value.

col specifies, to which column on the screen the cursor should be moved.

row specifies which row (line) on the screen to position the cursor.

Specifying col on its own will locate the cursor to the required column on whichever row it currently

occupies.

NOTES

When specified values exceed either of the physical limits of the current terminal, then unpredictable

results will occur.

The terminal address starts at (0,0), that being the top left hand corner of the screen.

Cursor addressing will not normally work when directed at a printer. If you wish to build printer

independence into your programs, achieve this by accessing the terminfo database through the

SYSTEM () function.

EXAMPLES

FOR I = 1 TO 5

CRT @(5, I):"*":

NEXT I

Home = @(0,0) ;* Remember the cursor home position

CRT Home:"Hi honey, I’m HOME!":

 10

@ (SCREENCODE)

Use @(SCREENCODE) to output control sequences according to the capabilities of the terminal

COMMAND SYNTAX

@ (ScreenCode)

SYNTAX ELEMENTS

Control sequences for special capabilities of the terminal are achieved by passing a negative number as

its argument. ScreenCode is therefore any expression that evaluates to a negative argument.

NOTES

The design of jBASE allows you to import code from many older systems. As these systems have

traditionally not co-ordinated the development of this function they expect different functionality in

many instances. In the following table, you should note that different settings of the

JBASICEMULATE environment variable would elicit different functionality from this function.

Where the emulate code is printed with strikethrough it indicates that the functionality is denied to this

emulation.

Emulation Code Function

all -1 clear the screen and home the cursor

all -2 home the cursor

all -3 clear screen from the cursor to the end of the screen

all -4 clear screen from cursor to the end of the current screen line

ros -5 turn on character blinking

ros -6 turn off character blinking

ros -7 turn on protected field mode

ros -8 turn off protected field mode

all -9 move the cursor one character to the left

all -10 move the cursor one row up the screen

ros -11 turn on the cursor (visible)

ros -11 enable protect mode

ros -12 turn off the cursor (invisible)

ros -12 disable protect mode

ros -13 status line on

ros -13 turn on reverse video mode

ros -14 status line off

ros -14 turn off reverse video mode

ros -15 move cursor forward one character

ros -15 turn on underline mode

ros -16 move cursor one row down the screen

ros -16 turn off underline mode

 11

Emulation Code Function

all -17 turn on the slave (printer) port

all -18 turn off the slave (printer) port

ros -19 dump the screen to the slave port

ros -19 move the cursor right one character

ros -20 move the cursor down one character

ros -311 turn on the cursor (visible)

ros -312 turn off the cursor (invisible)

ros -313 turn on the status line

ros -314 turn off the status line

If a color terminal is in use, -33 to -64 will control colors.

The codes from -128 to -191 control screen attributes. Where Bit 0 is least significant, you may

calculate the desired code by setting Bit 7 and Bits 0-4:

Bit 0 dimmed mode when set to 1

Bit 1 flashing mode when set to 1

Bit 2 reverse mode when set to 1

Bit 3 blanked mode when set to 1

Bit 4 underline mode when set to 1

Bit 5 bold mode when set to 1

Bit 7 always set to 1

Thus, Reverse and Flashing mode is -134.

To turn off all effects use -128

EXAMPLE

CRT @ (-1):@(30):@(132):"jBASE Heading":@(-128):

CRT @ (5,5):@(-4):"Prompt: ": ; INPUT Answer

 12

@APPLICATION.ID

@ID Dataname used to reference the record-id in a query language

statement:

SORT STOCK BY-DSND @ID

LIST STOCK WITH @ID = "1000"

LIST STOCK WITH @ID LIKE AB...

@CALLSTACK Returns current space information for DEBUG purposes

@CODEPAGE Returns cuurnt codepage config jbase_codepage

@DATA Data statements used in conjunction with INPUT statements are

stored in a data stack or input queue. This stack is accessible in the

@DATA variable

@DATE internal date returns the internal date – on some systems, this differs

from the DATE function in that the variable is set when program

execution starts, whereas the function reflects the current date

@DAY Day of month from @DATE

@EOF End of File character from TTY characteristics

@FILENAME Current filename

@FOOTER.BREAK For B options in heading

@HEADER.BREAK For B options in heading

@LEVEL The nesting level of execution statements – non stacked

@LOCALE Returns current Locale as jbase_locale

@LPTRHIGH Number of lines on the device to which you are printing (that is,

terminal or printer).

@MONTH Current Month

@PARASENTENCE The last sentence or paragraph that invoked the current process.

@PATH Pathname of the current account

@PID Returns current process ID

@RECORD Entire current record

 13

@SELECTED Number of elements from the last select list – Non stacked

@TERMTYPE The Terminal type

@TIME Returns the internal time – on some systems, this differs from the

TIME function in that the variable is set when program execution

starts, whereas the function reflects the current time

@TIMEZONE As per jBASE Timezone

@TTY Returns the terminal port name.

@UID Returns information from ROOT.THREAD for port @user

@USER.ROOT The use of the @USER.ROOT command allows a jBASE BASIC

program to store and retrieve a string of up to 63 bytes that is unique

to that user. The intention is to really "publish" information that

other programs can find.

For example

 @USER.ROOT = "Temenos T24 Financials"

 PRINT "root user declaration is " : @USER.ROOT

See attribute <28> , USER_PROC_USER_ROOT, in the section

"Layout of user record"

The @USER.THREAD is similar except a value exists for each

PERFORM level. So one program can set/retrieve it but if the

program does a PERFORM of a second program then the second

program gets a different set of values.

See attribute <52> , USER_PROC_USER_THREAD, in the section

"Layout of user record"

The @USERSTATS allows a program to retrieve all sorts of

miscellanous information about itself. For example if a program

wants to find out how many database I/O's it performed it could do

this ...

 INCLUDE JBC.h

 info1 = @USERSTATS

 14

 read1 = info1<USER_PROC_STATS_READ>

 EXECUTE 'COUNT fb1 WITH *A1 EQ "x"'

 info2 = @USERSTATS

 read2 = info2<USER_PROC_STATS_READ>

 PRINT "The COUNT command took ":(read2-read1):" READ's

from the database"

So a program can set a user-definable string to whatever value it

likes , up to 63 bytes, and other programs can use various methods

(see "User Information Retrieval" below) to access this data.

User Information Retrieval

There are 3 ways of finding information about one or more users on

a jBASE system

1. Using the @USER.ROOT, @USER.THREAD and

@USERSTATS variables in your jBASE BASIC code you can find

information about yourself. You cannot find information about

other users.

2. The "WHERE (V)" command can be used to display the

@USER.ROOT and @USER.THREAD data for specified users.

3. Using some jBASE BASIC code you can find out lots of

information about each user on the system. This is exactly the

mechanism that the WHERE command uses. For example to display

all users logged on you could write this.

*

* Open the special jEDI file to access the user information.

*OPEN SYSTEM(1027) TO PROC ELSE STOP

201,SYSTEM(1027)

*

* For each user logged on read in their user information

*

 SELECT PROC

 15

 LOOP WHILE READNEXT key DO

 READ rec FROM PROC,key THEN

*

 PRINT "Port ":rec<USER_PROC_PORT_NUMBER>:" is

logged on by user ":rec<USER_PROC_ACCOUNT>

*

 END

 REPEAT

Layout of user record

The information retrieved by either the READ in the above example

or the @USERSTATS is the same and is as follows.

The first 40 attributes are data attributes that correlate to the entire

user. Attributes 41 onwards are multi-valued and have one value per

program being PERFORM'ed by that user

All the numbers below can be replaced by symbolic references in

JBC.h , look for those that begin USER_PROC_

<1> The port number

<2> The number of programs running in this port.

<3> Time the user started in Universal Co-ordinated Time or UTC

(not a dyslexic mistake). This is raw UNIX time. You can convert

this to jBASE internal time format using the U0FF0 conversion or

to internal date format using the U0FF1 conversion.

<4> The process ID

<5> Account name

<6> User name. Normally the operating system name.

<7> Terminal name in jBASE format

<8> Terminal name in Operating system format.

<9> Database name

 16

<10> TTY device name

<11> Language name.

<12> Time in UTC the listening thread last found the thread alive.

<13> Amount of heap space memory in free space chain on a

process wide basis. Not real-time, only updated every 15 seconds.

<14> Amount of heap space memory in use on a process wide basis.

Not real-time , only updated every 15 seconds

<15> Thread type as an internal integer.

<16> Type of thread as a text string.

<17> License counters

<18> Number of OPEN’s performed.

<19> Number of READ’s performed.

<20> Number of WRITE's performed.

<21> Number of DELETE's performed

<22> Number of CLEARFILE's performed

<23> Number of PERFORM/EXECUTE's performed.

<24> Number of INPUT's performed.

<25> Not used.

<26> Number of jBASE files the application thinks it has open at

the moment.

<27> Number of jBASE files actually opened by the operating

system at the moment.

<28> Any data set by the application using @USER.ROOT

<29> Process Identifier. A string created by the operating system to

identify the process. It is O/S specific. Currenly on IBM i-series

platform only.

<30> to <40> Reserved.

 17

Attributes 41 onward are multi-valued, one value per perform level,

and there are <2> perform levels active.

<41,n> Program name and command line arguments.

<42,n> The line number in jBASE BASIC the program is currently

executing.

<43,n> The source name in jBASE BASIC the program is currently

executing.

<44,n> Not used.

<45,n> Not used.

<46,n> Status of program execution as a readable text string.

<47,n> Status of program execution as an internal integer.

<48,n> User CPU time . Depending upon the hardware this will be

either for the entire process or just the single thread.

<49,n> System CPU time.Depending upon the hardware this will be

either for the entire process or just the single thread.

<50,n> User CPU time used by any external child processes it

might have spawned.

<51,n> System CPU time used by any external child processes it

might have spawned.

<52,n> Any data set by the application using @USER.THREAD

@USERSTATS The @USERSTATS allows a program to retrieve miscellaneous

information about itself. For example if a program wants to find out

how many database I/O's it performed it could do this

 info1 = @USERSTATS

 read1 = info1<19>

 EXECUTE 'COUNT fb1 WITH *A1 EQ "x"'

 info2 = @USERSTATS

 read2 = info2<19>

 PRINT "The COUNT command took ":(read2-read1):" READ's

 18

from the database"

The following definitions have been added to JBC.h file which

defines the layout of data returned either through the

@USERSTATS variable or by opening file SYSTEM(1027) and

reading the items in like that.

* Definitions for the data returned from the @USERSTATS

variable or from

* the record read in from the PROC file (using SYSTEM(1027) as

file name)

*

EQUATE USER_PROC_PORT_NUMBER TO 1;* The port

number

EQUATE USER_PROC_NUM_PROGRAMS TO 2;* Number of

programs running in this port

EQUATE USER_PROC_START_TIME TO 3;* Time user started

in UTC format

EQUATE USER_PROC_PID TO 4 ;* Process ID

EQUATE USER_PROC_ACCOUNT TO 5;* Name of the account

EQUATE USER_PROC_USER TO 6 ;* Name of the user

EQUATE USER_PROC_TERMINAL_JBASE TO 7;* Name of

terminal according to jBASE

EQUATE USER_PROC_TERMINAL_OS TO 8;* Name of

terminal as seen by OS

EQUATE USER_PROC_DATABASE TO 9;* Name of database

connected to

EQUATE USER_PROC_TTY TO 10;* Name of TTY device

EQUATE USER_PROC_LANGUAGE TO 11;* Language

EQUATE USER_PROC_LISTENING_TIME TO 12;* Time in

UTC the listening thread last worked

EQUATE USER_PROC_MEM_FREE TO 13;* Amount of

 19

memory in heap space free chain

EQUATE USER_PROC_MEM_USED TO 14;* Amount of heap

space memory in use

EQUATE USER_PROC_THREAD_TYPE_INT TO 15;* Thread

type expressed as an integer

EQUATE USER_PROC_THREAD_TYPE_TXT TO 16;* Thread

type expressed as a text string

EQUATE USER_PROC_LICENSE TO 17;* License counters

EQUATE USER_PROC_STATS_OPEN TO 18;* Number of

OPEN's performed.

EQUATE USER_PROC_STATS_READ TO 19;* Number of

READ's performed.

EQUATE USER_PROC_STATS_WRITE TO 20;* Number of

WRITE's performed.

EQUATE USER_PROC_STATS_DELETE TO 21;* Number of

DELETE's performed.

EQUATE USER_PROC_STATS_CLEARFILE TO 22;* Number

of CLEARFILE's performed.

EQUATE USER_PROC_STATS_PERFORM TO 23;* Number of

PERFORM's / EXECUTE's performed.

EQUATE USER_PROC_STATS_INPUT TO 24;* Number of

INPUT's performed.

EQUATE USER_PROC_UNUSED_1 TO 25;* Unused

EQUATE USER_PROC_OPEN_FILES_VIRTUAL TO 26

;* Number of files application thinks open

EQUATE USER_PROC_OPEN_FILES_REAL TO 27 ;* Number

of files really open by OS

EQUATE USER_PROC_USER_ROOT TO 28;* Application data

set by @USER.ROOT

EQUATE USER_PROC_PROCESS_TXT TO 29;* Text string to

 20

identify process

EQUATE USER_PROC_PROGRAM TO 41;* Program name and

command line arguments

EQUATE USER_PROC_LINE_NUMBER TO 42;* Line number

currently being executed.

EQUATE USER_PROC_SOURCE_NAME TO 43;* Name of

source currently being executed.

EQUATE USER_PROC_UNUSED_2 TO 44;* Unused

EQUATE USER_PROC_UNUSED_3 TO 45;* Unused

EQUATE USER_PROC_STATUS_TXT TO 46;* Status of

program as a readable text

EQUATE USER_PROC_STATUS_INT TO 47;* Status of

program as an integer

EQUATE USER_PROC_CPU_USR TO 48;* User CPU time

EQUATE USER_PROC_CPU_SYS TO 49;* System CPU time

EQUATE USER_PROC_CPU_USR_CHILD TO 50;* User CPU

time used by child processes

EQUATE USER_PROC_CPU_SYS_CHILD TO 51;* System

CPU time used by child processes

EQUATE USER_PROC_USER_THREAD TO 52;* Application

data set by @USER.THREAD

1=PORT 2=count of

programs on

this port

3=Start time in UTC 4=Process

ID

5=Account name

6=user name 7=terminal

name 9Jbase)

8=terminal name (OS) 9=database

name

10=tty device name

11=Language 12=time in

UTC last

found alive

13=free heap space (15

secs)

14heap

space used

(15 secs)

15=thread type

16=thread 17=license 18=count of opens 19=count of 20=count of writes

 21

type (string) counters reads

21= count of

DELETES

22=count of

Clear Files

23=count of

PERFORMS/EXECUTES

24=count of

INPUTS

25=NOT USED

26=number of

files open

(jBASE)

27=number

of files

open(Actual)

28-@USER.ROOT 29=Process

identifier

30-40 reserved

41=program

name and

sentence

42=Current

line number

42=source name 46=status

of program

text

47=status of program

(flag)

48=USER

CPU time

49=System

CPU time

50=USER CPU from

child processes

51=System

CPU time

from child

procs

52=@USER.THREAD

@USER.THREAD A value exists for each PERFORM level. So one program can

set/retrieve it but if the program does a PERFORM of a second

program then the second program gets a different set of values.

Allows an application to store simple statistical information about

the thread level part of their data.

 22

jBASE BASIC Functions and Statements A - X
The following pages show the syntax of every statement and function in the language together with

examples of their use.

 23

ABORT

The ABORT statement terminates the current running program and the program that called it.

COMMAND SYNTAX

ABORT {message.number{, expression ...}}

SYNTAX ELEMENTS

The optional message.number provided with the statement must be a numeric value, which corresponds

to a record key in the jBASE error message file.

A single expression or a list of expression(s) may follow the message.number. Where more than one

expression is listed, they must be delimited by the use of the comma character. The expression(s)

correspond to the parameters that need passing to the error file record to print it.

The optional message.number and expression(s) given with the command are parameters or resultants

provided as variables, literal strings, expressions, or functions.

NOTES

Use this statement to terminate the execution of a jBASE BASIC program together with any calling

program. It will then optionally display a message, and return to the shell prompt.

The error file holds the optional message displayed on terminating the program. For successful printing

of the message, parameters such as linefeeds, clearscreen, date and literal strings may also be required.

Setting the Command Level Restart option can alter operation of this command.

EXAMPLE

CRT "CONTINUE (Y/N) ?":; INPUT ANSIF ANS NE "Y" THE N ABORT 66,

"Aborted"

This will terminate the program and print error message 66 passing to it the string "Aborted", which

will be printed as part of error message 66.

 24

ABS

ABS returns the mathematical absolute of the ()expression

COMMAND SYNTAX

ABS (expression)

SYNTAX ELEMENTS

expression can be of any form that should evaluate to a numeric. The ABS function will then return the

mathematical absolute of the expression. This will convert any negative number into a positive result.

NOTES

express this as: value < 0 ? 0 - value : value

EXAMPLES

CRT ABS (10-15)

Displays the value 5

PositiveVar = ABS (100-200)

Assigns the value 100 to the variable PositiveVar

 25

ABSS

Use the ABSS function to return the absolute values of all the elements in a dynamic array. If an

element in the dynamic array is null, it returns null for that element.

COMMAND SYNTAX

ABSS (dynamic.array)

EXAMPLE

Y = REUSE(300)

Z = 500:@VM:400:@VM:300:@SM:200:@SM:100

A = SUBS (Z,Y)

PRINT A

PRINT ABSS (A)

The output of this program is:

200]100]0\-100\-200

200]100]0\100\200

 26

ADDS

Use ADDS to create a dynamic array of the element-by-element addition of two dynamic arrays.

Added to each element of array1 is the corresponding element of array2, which returns the result in the

corresponding element of a new dynamic array. If an element of one array has no corresponding

element in the other array, it returns the existing element. If an element of one array is the null value, it

returns null for the sum of the corresponding elements.

COMMAND SYNTAX

ADDS (array1, array2)

EXAMPLE

A=2:@VM:4:@VM:6:@SM:10

B=1:@VM:2:@VM:3:@VM:4

PRINTADDS (A,B)

The output of this program is:

3]6]9\10]4

 27

ALPHA

The ALPHA function will check that the expression consists entirely of alphabetic characters.

COMMAND SYNTAX

ALPHA (expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ALPHA function will then return TRUE (1) if the

expression consists entirely of alphabetic characters else returns false (0) if any character in expression

is non alphabetic.

INTERNATIONAL MODE

When using the ALPHA function in International Mode it determines the properties of each character

in the expression according to the Unicode Standard, which in turn describes whether the character is

alphabetic or not.

NOTES

Alphabetic characters are in the set a-z and A-Z

EXAMPLE

Abc = "ABC"

IF ALPHA (Abc) THEN CRT "alphabetic"

Abc = "123"

IF NOT (ALPHA(Abc)) THEN CRT "non alphabetic"

Displays:

alphabetic

non alphabetic

 28

ANDS

Use the ANDS function to create a dynamic array of the logical AND of corresponding elements of

two dynamic arrays.

Each element of the new dynamic array is the logical AND of the corresponding elements of array1

and array2. If an element of one dynamic array has no corresponding element in the other dynamic

array, it returns a false (0) for that element.

If both corresponding elements of array1 and array2 are null, it returns null for those elements. If one

element is the null value and the other is zero or an empty string, it returns false for those elements.

COMMAND SYNTAX

ANDS (array1, array2)

EXAMPLE

A = 1:@SM:4:@VM:4:@SM:1

B = 1:@SM:1-1:@VM:2

PRINT ANDS (A,B)

The output of this program is: 1\0]1\0

 29

ASCII

The ASCII function converts all the characters in the expression from the EBCDIC character set to the

ASCII character set.

COMMAND SYNTAX

ASCII (expression)

SYNTAX ELEMENTS

The expression may return a data string of any form. The function will then assume that the characters

are all members of the EBCDIC character set and translate them using a character map. The original

expression is unchanged while the returned result of the function is now the ASCII equivalent.

EXAMPLES

READT EbcdicBlock ELSE CRT "Tape failed!"; STOP

AsciiBlock = ASCII (EbcdicBlock) ;* convert to ASCI I

 30

ASSIGNED

The ASSIGNED function returns a Boolean TRUE or FALSE result depending on whether or not a

variable has an assigned value.

COMMAND SYNTAX

ASSIGNED (variable)

SYNTAX ELEMENTS

ASSIGNED returns TRUE if the variable named has an assigned value before the execution of this

statement. If the variable has no assigned value then the function returns FALSE.

NOTES

Provision of this function is due to its implementation in older versions of the language. You are

advised to program in such a way, to avoid using this statement.

See also: UNASSIGNED.

EXAMPLES

IF ASSIGNED (Var1) THEN

 CRT "Var1 has been assigned a value"

END

 31

BITAND

Use the BITAND function to perform the bitwise AND comparison of two integers specified by

numeric expressions.

SYNTAX

BITAND (expression1, expression2)

DESCRIPTION

The bitwise AND operation compares two integers bit by bit. It returns a bit of 1 if both bits are 1; else,

it returns a bit of 0.

If either expression1 or expression2 evaluates to the null value, null is returned.

Non integer values are truncated before the operation is performed.

The BITAND operation is performed on a 32-bit twos-complement word.

NOTE: Differences in hardware architecture can make the use of the high-order bit non portable.

EXAMPLE

PRINT BITAND(6,12)

* The binary value of 6 = 0110

* The binary value of 12 = 1100

This results in 0100, and the following output is displayed:

4

 32

BITCHANGE

BITCHANGE toggles the state of a specified bit in the local bit table, and returns the original value of

the bit.

COMMAND SYNTAX

BITCHANGE (table_no)

SYNTAX ELEMENTS

table_no specifies the position in the table of the bit to be changed.

NOTES

For each process, it maintains a unique table of 128 bits (numbered 1 to 128) and treats each bit in the

table as a two-state flag - the value returned will always be zero or one.

BITCHANGE returns the value of the bit before it was changed. You can therefore check and set (or

reset) a flag in one step.

BITCHANGE also provides some special functions if you use one of the following table_no values:

-1 toggles (enables/disables) the BREAK key Inhibit bit.

-2 toggles (enables/disables) the Command Level Restart feature.

-3 toggles (enables/disables) the Break/End Restart feature.

EXAMPLE

OLD.VAL = BITCHANGE (100)

CRT OLD.VAL

If bit 100 in the table is zero, it sets to one and displays zero; the reverse will apply if set to one..

 33

BITCHECK

BITCHECK returns the current value of a specified bit from the local bit table.

COMMAND SYNTAX

BITCHECK (table_no)

SYNTAX ELEMENTS

table_no specifies the position in the table of the bit for checking.

NOTES

For each process, it maintains a unique table of 128 bits (numbered 1 to 128) and treats each bit in the

table as a two-state flag - the value returned will always be zero or one.

BITCHECK also provides some special functions if you use one of the following table_no values:

-1 returns the setting of the BREAK key Inhibit bit

-2 returns the setting of the Command Level Restart feature

-3 returns the setting of the Break/End Restart feature

EXAMPLE

BIT.VAL = BITCHANGE (100)

CRT BIT.VAL

If bit 100 in the table is zero, it displays zero; if set to one, it displays one.

 34

BITLOAD

BITLOAD assigns all values in the local bit table, or retrieves all the values.

COMMAND SYNTAX

BITLOAD({bit-string})

SYNTAX ELEMENTS

bit-string is an ASCII string of characters, which represent a hexadecimal value. It is interpreted as a

bit pattern and used to assign values to the table from left to right. Assignment stops at the end of the

string or when a non-hexadecimal character is found.

If the string represents less than 128 bits, the remaining bits in the table are reset to 0 (zero).

If bit-string is omitted or evaluates to null, an ASCII hex character string is returned, which defines the

value of the table. Trailing zeroes in the string are truncated.

NOTES

A unique table of 128 bits (numbered 1 to 128) is maintained for each process. Each bit in the table is

treated as a two-state flag - the value will always be 0 (zero) or 1.

 EXAMPLE 1

NEW.VALUE = "0123456789ABCDEF"

OLD.VALUE = BITLOAD(X)

Loads the bit table with the value of ASCII hex str ing NEW.VALUE

After assignment, the contents of the bit table is:

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

NOTE: that all values beyond the 64th bit have been reset to 0 (zero).

 EXAMPLE 2

TABLE.VALUE = BITLOAD()

Loads variable TABLE.VALUE with the hexadecimal values of the bit table

 35

BITNOT

Use the BITNOT function to return the bitwise negation of an integer specified by any numeric

expression.

COMMAND SYNTAX

BITNOT (expression ,bit#)

DESCRIPTION

bit# is an expression that evaluates to the number of the bit to invert. If bit# is unspecified, BITNOT

inverts each bit. It changes each bit of 1 to a bit of 0 and each

bit of 0 to a bit of 1. This is equivalent to returning a value equal to the following: (expression)1

If expression evaluates to the null value, null is returned. If bit# evaluates to the null value, the

BITNOT function fails and the program terminates with a run-time error message.

Non integer values are truncated before the operation is performed.

The BITNOT operation is performed on a 32-bit twos-complement word.

NOTE: Differences in hardware architecture can make the use of the high-order bit non portable.

EXAMPLE

PRINT BITNOT(6),BITNOT(15,0),BITNOT(15,1),BITNOT(15,2)

This is the program output:

7 14 13 11

 36

BITOR

Use the BITOR function to perform the bitwise OR comparison of two integers specified by numeric

expressions.

COMMAND SYNTAX

BITOR (expression1, expression2)

DESCRIPTION

The bitwise OR operation compares two integers bit by bit. It returns the bit 1 if the bit in either or both

numbers is 1; else, it returns the bit 0.

If either expression1 or expression2 evaluates to the null value, null is returned.

Non integer values are truncated before the operation is performed.

The BITOR operation is performed on a 32-bit twos-complement word.

NOTE: Differences in hardware architecture can make the use of the high-order bit non portable.

EXAMPLE

PRINT BITOR(6,12)

* Binary value of 6 = 0110

* Binary value of 12 = 1100

This results in 1110, and the following output is displayed:

14

 37

BITRESET

BITRESET resets the value of a specified bit in the local bit table to zero and returns the previous value

of the bit.

COMMAND SYNTAX

BITRESET (table_no)

SYNTAX ELEMENTS

table_no specifies the position in the table of the bit for reset. If table_no evaluates to zero, it resets all

elements in the table to zero and returns the value zero.

NOTES

For each process, it maintains a unique table of 128 bits (numbered 1 to 128) and treats each bit in the

table as a two-state flag - the value returned will always be zero or one.

BITRESET returns the previous value of the bit – you can reset and check a flag in one step.

BITRESET also provides some special functions if you use one of the following table_no values:

-1 resets the BREAK key Inhibit bit

-2 resets the Command Level Restart feature

-3 resets the Break/End Restart feature

See also: BITSET.

EXAMPLE

OLD.VALUE = BITRESET (112)

PRINT OLD.VALUE

If table entry 112 is one, it returns a value of one, resets bit 112 to 0, and prints one. If table entry 112

is zero, returns a value of 0, and prints 0.

 38

BITSET

BITSET sets the value of a specified bit in the bit table to one and returns the value of the bit before it

was changed.

COMMAND SYNTAX

BITSET (table_no)

SYNTAX ELEMENTS

table_no specifies the bit to be SET. If table_no evaluates to zero, it sets all elements in the table to one

and the returned value is one.

NOTES

For each purpose, it maintains a unique table of 128 bits (numbered 1 to 128) and treats each bit in the

table as a two-state flag - the value returned will always be zero or one.

BITSET returns the previous value of the bit - you can check and set a flag in one step.

BITSET also provides some special functions if you use one of the following table_no values:

-1 sets the BREAK key Inhibit bit

-2 sets the Command Level Restart feature

-3 sets the Break/End Restart feature

See also: BITRESET.

EXAMPLE

OLD.VALUE = BITSET (112)

PRINT OLD.VALUE

If table entry 112 is zero, returns a value of zero, sets bit 112 to one, and prints zero. If table entry 112

is one, returns a value of one, and prints one.

 39

BITTEST

Use the BITTEST function to test the bit number of the integer specified by expression.

COMMAND SYNTAX

BITTEST (expression, bit#)

DESCRIPTION

The function returns 1 if the bit is set; it returns 0 if it is not; Bits are counted from right to left. The

number of the rightmost bit is 0.

If expression evaluates to the null value, null is returned. If bit# evaluates to null, the BITTEST

function fails and the program terminates with a run-time error message.

Non integer values are truncated before the operation is performed.

EXAMPLE

PRINT BITTEST(11,0),BITTEST(11,1),BITTEST(11,2),BITTEST(11,3)

* The binary value of 11 = 1011

This is the program output:

1 1 0 1

 40

BITXOR

Use the BITXOR function to perform the bitwise XOR comparison of two integers specified by

numeric expressions. The bitwise XOR operation compares two integers bit by bit. It returns a bit 1 if

only one of the two bits is 1; else, it returns a bit 0.

COMMAND SYNTAX

BITXOR (expression1, expression2)

DESCRIPTION

If either expression1 or expression2 evaluates to the null value, null is returned.

Non integer values are truncated before the operation is performed.

The BITXOR operation is performed on a 32-bit twos-complement word.

NOTE: Differences in hardware architecture can make the use of the high-order bit nonportable.

EXAMPLE

PRINT BITXOR(6,12)

* Binary value of 6 = 0110

* Binary value of 12 = 1100

This results in 1010, and the following output is displayed:

10

 41

BREAK

Allows configuration of the BREAK statement

COMMAND SYNTAX

BREAK / BREAK ON / BREAK OFF / BREAK expression

SYNTAX ELEMENTS

When used with an expression or the keywords ON or OFF the BREAK statement enables or disables

the BREAK key for the current process. In UNIX terms, the BREAK key is known more commonly as

the interrupt sequence intr defined by the stty command.

Used as a standalone statement, BREAK will terminate the currently executing loop. The EXIT

statement is functionally equivalent to the BREAK statement used without arguments.

NOTES

The use of BREAK is to terminate the innermost loop, which it ignores if used outside a loop construct.

The compiler will issue warning message 44, and ignore the statement.

EXAMPLES

LOOP

 READNEXT KEY FROM LIST1 ELSE BREAK

......

REPEAT

* Program resumes here after BREAK

 42

BYTELEN

The BYTELEN function will return the length of the expression as the number of bytes rather than the

number of characters.

COMMAND SYNTAX

 BYTELEN (expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The BYTELEN function will then return the byte count

of the expression.

NOTES

The BYTELEN function will always return the actual byte count for the expression; irrespective of the

International Mode in operation at the time. This compares with the LEN function, which will return a

character count. The character count may differ from the byte count when processing in International

Mode.

 43

CALL

The CALL statement transfers program execution to an external subroutine.

COMMAND SYNTAX

CALL {@}subroutine.name {(argument {, argument ... })}

SYNTAX ELEMENTS

The CALL statement transfers program execution to the subroutine called subroutine.name, which can

be any valid string either quoted or unquoted. The CALL @ variant of this statement assumes that

subroutine.name is a variable that contains the name of the subroutine to call.

The CALL statement may optionally pass a number of parameters to the target subroutine. These

parameters can consist of any valid expression or variable name. If a variable name is used then the

called program may return a value to the variable by changing the value of the equivalent variable in its

own parameter list.

NOTES

When using an expression to pass a parameter to the subroutine, you cannot use the built-in functions

of jBASE BASIC (such as COUNT), within the expression.

An unlimited number of parameters can be passed to an external subroutine. The number of parameters

in the CALL statement must match exactly the number expected in the SUBROUTINE statement

declaring the external subroutine.

It is not required that the calling program and the external subroutine be compiled with the same

PRECISION. However, any changes to precision in a subroutine will not persist when control returns

to the calling program.

Variables passed, as parameters to the subroutine may not reside in any COMMON areas declared in

the program.

EXAMPLES

CALL MySub

SUBROUTINEMySub

CALL Hello("World")

SUBROUTINE Hello (Message)

CALL Complex(i, j, k)

SUBROUTINE Complex(ComplexA, ComplexB, ComplexC)

 44

CALLC

The CALLC command transfers program control to an external function (c.sub.name).

The second form of the syntax calls a function whose name is stored in a jBASE BASIC variable

(@var). The program could pass back return values in variables. CALLC arguments can be simple

variables or complex expressions, but not arrays. Use CALLC as a command or function.

COMMAND SYNTAX

CALLC c.sub.name [(argument1[,argument2]...)]

CALLC @var [(argument1[,argument2]...)]

Calling a C Program in jBASE

You must link the C program to jBASE before calling it from a BASIC program. Perform the

following procedure to prepare jBASE for CALLC:

• Write and compile the C program.

• Define the C program call interface

• Build the runtime version of jBASE (containing the linked C program).

• Write, compile, and execute the Basic program

Calling a Function in Windows NT

The CALLC implementation in jBASE for Windows NT or Windows 2000 uses the Microsoft

Windows Dynamic Link Library (DLL) facility. This facility allows separate pieces of code to call one

another without permanently binding together. Linking between the separate pieces occurs at runtime

(rather than compile time) through a DLL interface.

For CALLC, developers create a DLL and then call that DLL from jBASE.

EXAMPLES

In the following example, the called subroutine draws a circle with its center at the twelfth row and

twelfth column and a radius of 3:

RADIUS = 3

CENTER = "12,12"

CALLC DRAW.CIRCLE(RADIUS,CENTER)

In the next example, the subroutine name is stored in the variable SUB.NAME, and is indirectly called:

SUB.NAME = DRAW.CIRCLE

CALLC @SUB.NAME(RADIUS,CENTER)

The next example uses, CALLC as a function, assigning the return value of the subroutine

 45

PROGRAM.STATUS in the variable RESULT:

RESULT = CALLC PROGRAM.STATUS

 46

CALLdotNET

The CALLdotNET command allows BASIC to call any .NET assembly and is useful when using third

party applications.

COMMAND SYNTAX

CALLdotNET NameSpaceAndClassName, methodName, param SETTING ret [ON ERROR

errStatment]

In order to use CALLdotNET, you need:

The .NET Framework

The dotNETWrapper.dll installed somewhere to where your PATH points.

NOTE:

The dotNETWrapper is loaded dynamically at runtime; therefore, a compiled basic application has no

dependencies on the .NET Framework. Loading the framework takes between (~5 –7 sec.). However,

this only occurs when calling the .NET method for the first time.

SYNTAX ELEMENTS

NameSpaceAndClassName The “full” NameSpace (e.g., myNameSpace.myClass)

methodName The name of the .NET in this class (e.g., “myMethod”)

Param Any parameter (eg DynArray)

EXAMPLE

In C#:

using System;

using System.Windows.Forms;

namespace myNameSpace

{

 public class Class1

 {

 public string sayHello(string str)

 {

 return “Thank you, I received : “ + str;

 }

 public Class1(){}

 }

 47

}

In VB.NET:

Namespace myNameSpace

 Public Class Class1

 Public Function sayHello(ByVal str As String) As String

 Dim sAnswer As String

 sAnswer = InputBox(str)

 sayHello = sAnswer

 End Function

 End Class

End Namespace

Note: Create the .NET project as a ‘Class Library’.

If using the visual studio IDE, this option is on selected when creating a new project:

If using .NET SDK (instead of the IDE) to

compile class libraries into a ‘DLL’ file,

the ‘csc’ (C# Compiler) or ‘vbc’ (Visual

Basic .NET compiler) command can be

used from the command line:

csc /out:myNameSpace.dll /target:library

sourcefile.cs

The name of the ‘.DLL’ created must be

the same as the ‘namespace’ as used in the class library t locate the ‘dotNetWrapper.dll’ library:

After creating the library, place it in the same private directory as the application. (i.e. the same

directory as the jBASE BASIC executable that will call the class) This is a requirement of the .NET

paradigm and not jBASE. The directory should also be in the PATH environment variable.

 48

To call these methods from Basic:

CALLdotNET "myNameSpace.Class1","mymethod", p SETTING ret

CRT ret

ON ERROR

You can manage any errors, which occur during the call, at the BASIC level by getting the

SYSTEM(0) variable.

This variable can have the following values:

1. Not a Windows platform.

2. Cannot load the dotNETWrapper

3. Cannot get assembly

4. Cannot get Class

5. Cannot get Method

6. Cannot Create Instance

7. Unhandled Error in the .NET library

EXAMPLE

BASIC code using the ON ERROR would look like this:

PROGRAM testCALLdotNET

 ns.className = ''

 methodName = ''

 param = ''

 CRT "Please enter NameSpace.ClassName : "

 INPUT ns.className

 CRT "Please enter a Method Name : "

 INPUT methodName

 CRT "Please enter a Parameter : "

 INPUT param

 CALLdotNET ns.className, methodName, param SETTING ret ON ERROR

GOSUB errHandler

 CRT "Received back from .NET : " : ret

 49

 STOP

errHandler:

 err = SYSTEM(0)

 BEGIN CASE

 CASE err = 2

 CRT "Cannot find dotNETWrapper.dll”

 CASE err = 3

 CRT "Class " : className : "doesn't exist !"

 CASE err = 5

 CRT "Method " : methodName : "doesn't exist !"

 END CASE

 RETURN

 50

CALLJ

The CALLJ command allows BASIC to call a Java method. CALLJ is useful when using third party

applications offering a Java API (for example, publish and subscribe, messaging, etc.)

COMMAND SYNTAX

CALLJ packageAndClassName, [$]methodName, param SET TING ret [ON

ERROR] errStatment

In order to use CALLJ, you need:

• A Java virtual machine

• CLASSPATH environment variable set to point on the class you want to invoke

NOTES

The Java virtual machine is loaded dynamically at runtime, so a compiled basic application has no

dependencies on any Java virtual machine. By default, the program will search for:

jvm.dll on Windows platforms

libjvm.sl on HP UNIX

libjvm.so for other platforms

Although it is not usually necessary, it is possible to specify a Java library by setting the JBCJVMLIB

environment variable:

set JBCJVMLIB= C:\jdk1.3.1\jre\bin\classic\jvm.dll

PERFORMANCE CONSIDERATIONS

The first call to CALLJ carries the overhead of loading the Java Virtual Machine into memory.

Susequent calls do not have this overhead and it is recommended that programs are structured in such a

way that the Java Virtual Machine is only loaded once.

In addition, calls to non static methods carry the overhead of calling the constructor for the class.

Wherever possible, static methods should be used.:

SYNTAX ELEMENTS

packageAndClassName The “full” class name (e.g., com.jbase.util.utilClass)

methodName The name of the Java method in this class (e.g., “myMethod”)

NOTE: If the method is static, you must append a ‘$’ before the name. This ‘$’ will be removed from

the method name before calling it.

Param Any parameter (eg DynArray)

EXAMPLE

In Java:

 51

package mypackage;

public class mytestclass {

 static int i = 0;

 private mytestclass() {

 }

 public String mymethod(String s){

 return (“Java Received : “ + s) ;

 }

 public static String mystaticmethod(String s){

 i++;

 return s + " " + i;

 }

}

To call these methods from jBASE BASIC:

CALLJ "mypackage.mytestclass","mymethod", p SETTING ret

CRT ret

CALLJ "mypackage/mytestclass","$mystaticmethod",p S ETTING ret

CRT ret

ON ERROR

Use the SYSTEM(0) variable to manage any errors at the BASIC level, which occur during the call.

This variable can have the following values:

1 Fatal error creating thread

2 Cannot create JVM

3 Cannot find class

4 Unicode conversion error

5 Cannot find method

6 Cannot find object constructor

 52

7 Cannot instantiate object

EXAMPLE

jBASE BASIC code using the ON ERROR will look like this:

PROGRAM testcallj

 className = ''

 methodName = ''

 param = ''

 CRT "Please enter a Class Name : " INPUT className

 CRT "Please enter a Method Name : " INPUT methodNa me

 CRT "Please enter a Parameter : " INPUT param

 CALLJ className,methodName, param SETTING ret ON E RROR GOTO

errHandler

 CRT "Received batch from Java : " : ret

RETURN

errHandler:

 err = SYSTEM(0)

 IF err = 2 THEN

 CRT "Cannot find the JVM.dll !"

 RETURN

 END

 IF err = 3 THEN

 CRT "Class " : className : "doesn't exist !"

 RETURN

 END

 IF err = 5 THEN

 53

 CRT "Method " : methodName : "doesn't exist !"

 RETURN

 END

END

The CALLJ function provides access to a JavaVM from within the BASIC environment. For it to be

able to start a JavaVM (JVM) the environment needs to know where the JVM is located. Specifically it

needs to know where certain libraries are located.

WINDOWS

Windows: looking for 'jvm.dll'

Add "c:\jdk1.3.1_07\jre\bin\server" to the PATH environment variable.

A generic format might be %JDKDIR%\jre\bin\server.

UNIX

For UNIX it is possible to configure generic symbolic links to make profiles portable.

 Location of JDK export JDKDIR=/opt/java1.3

 Symbolic link for JRE libs /opt/java1.3/jrelib

 Symbolic link for JVM library /opt/java1.3/jvmlib

Linux

 /opt/java1.3/jrelib -> /opt/java1.3/jre/lib/i386

 /opt/java1.3/jvmlib -> /opt/java1.3/jre/lib/i386/server

 .profile:

Add “/opt/java1.3/jrelib:/opt/java1.3/jvmlib” to the LD_LIBRARY_PATH

HP-UX

 /opt/java1.3/jrelib -> /opt/java1.3/jre/lib/PA_RISC2.0

 /opt/java1.3/jvmlib -> /opt/java1.3/jre/lib/PA_RISC2.0/server

 .profile:

Add “/opt/java1.3/jrelib:/opt/java1.3/jvmlib” to the SHLIB_PATH

AIX -- (IBM JDK)

 /opt/java1.3/jrelib -> /opt/java1.3/jre/bin

 /opt/java1.3/jvmlib -> /opt/java1.3/jre/bin/classic

 54

 .profile:

Add “/opt/java1.3/jrelib:/opt/java1.3/jvmlib” to the LIBPATH

 Solaris

 /opt/java1.3/jrelib -> /opt/java1.3/jre/lib/sparc

 /opt/java1.3/jvmlib -> /opt/java1.3/jre/lib/sparc/server

 .profile:

Add “opt/java1.3/jrelib:/opt/java1.3/jvmlib” to the LD_LIBRARY_PATH

Examples using JVM WITHOUT symbolic links as above:

Linux: looking for 'libjvm.so'

Add 2 directories to LD_LIBRARY_PATH.

/opt/java1.3/jre/lib/i386/server:/opt/java1.3/jre/lib/i386

Solaris: looking for 'libjvm.so'

Add 2 directories to LD_LIBRARY_PATH.

/opt/java1.3/jre/lib/sparc/server:/opt/java1.3/jre/lib/sparc

HP-UX 11: looking for 'libjvm.sl'

Add 2 directories to SHLIB_PATH.

/opt/java1.3/jre/lib/PA_RISC2.0/server:/opt/java1.3/jre/lib/PA_RISC2.0

OPTIONS:

JBCJVMLIB

If the searched for library appears incorrect for your platform, then you can override it by setting the

JBCJVMLIB environment variable.

e.g. "export JBCJVMLIB=jvm.shared_lib"

and then CALLJ will try to locate the library 'jvm.shared_lib' at runtime.

JBCJVMPOLICYFILE

You can specify a policy file for the JMV. The policy for a Java application environment (specifying

which permissions are available for code from various sources) is represented by a Policy object. More

 55

specifically, it is represented by a Policy subclass providing an implementation of the abstract

methods in the Policy class (which is in the java.security package). You can override it by

setting the JBCJVMPOLICYFILE environment variable.

The source location for the default policy information is

WINDOWS

 %JBASERELEASEDIR%\config\policy.all

UNIX

 $JBASERELEASEDIR/config/policy.all

e.g. "export JBCJVMPOLICYFILE =/usr/jbase/mypolicy.all"

JBCJVMENCODING

Internally, the Java virtual machine always operates with data in Unicode. However, as data transfers to

or from the Java virtual machine, the Java virtual machine converts the data to other encodings. If the

you want to change the default encoding of the JVM on your platform, then you can override it by

setting the JBCJVMENCODING environment variable.

e.g. "export JBCJVMENCODING = Cp1257"

JBCJVMNOOPTS

Internally, the CALLJ is optimum to start the JVM with options (see below the table). If the you don’t

want to pass these options for the JVM, then you can override it by setting the JBCJVMNOOPTS

environment variable. In this case no more options will be pass to the JVM.

DEFAULT OPTIONS

Win32: -Xrs

TRUE64: -Xcheck:jni

Solaris: -XX:+AllowUserSignalHandlers

Linux: -Xrs -XX:+AllowUserSignalHandlers

AIX 32 bits: -Xrs -Xnocatch

AIX 64 bits: -Xrs -d64

HPUX 32 bits:

HPUX 64 bits: -Xrs -XX:+AllowUserSignalHandlers

JBCJVMOPT[1..5]

If the you want to pass some options for the JVM, then you can set by setting the JBCJVMOPT[1..5]

environment variable

e.g. "export JBCJVMOPT1=-Xrs "

 56

KNOWN LIMITATIONS

HP-UX

There is a problem with HP-UX due to it's dynamic loader. See man dlopen(3C) for detail of the TLS

limitation.

This means that the JVM library must be linked against the calling program, there are no known

problems caused by this.

 'ldd progname' lists current external library references and we need to add libjvm.

The result looks like this:

 JVM: dl_error [Can't dlopen() a library containing Thread Local Storage: libjvm.sl]

If the program is built with the required link as below then it works.

 jbc –Jo callj.b -ljvm -L/opt/java1.3/jre/lib/PA_RISC2.0/server

If the CALLJ statement is inside a subroutine, then the program that calls the subroutine must be built

as above.

Examples using JVM WITHOUT symbolic links as above:

Linux: searching for 'libjvm.so'

Add 2 directories to LD_LIBRARY_PATH.

/opt/java1.3/jre/lib/i386/server:/opt/java1.3/jre/l ib/i386

Solaris: searching for 'libjvm.so'

Add 2 directories to LD_LIBRARY_PATH.

/opt/java1.3/jre/lib/sparc/server:/opt/java1.3/jre/ lib/sparc

HP-UX 11: searching for 'libjvm.sl'

Add 2 directories to SHLIB_PATH.

/opt/java1.3/jre/lib/PA_RISC2.0/server:/opt/java1.3 /jre/lib/PA_RISC2.

0

 57

OPTIONS

JBCJVMLIB

If the search for the library appears incorrect for your platform, then you can override it by setting the

JBCJVMLIB environment variable.

e.g. "export JBCJVMLIB=jvm.shared_lib "

and then CALLJ will try to locate the library 'jvm.shared_lib' at runtime.

JBCJVMPOLICYFILE

You can specify a policy file for the JMV. The policy for a Java application environment (specifying

which permissions are available for code from various sources) is represented by a Policy object. More

specifically, it is represented by a Policy subclass providing an implementation of the abstract methods

in the Policy class (which is in the java.security package). You can override it by setting the

JBCJVMPOLICYFILE environment variable.

The source location for the default policy information is:

WINDOWS

%JBASERELEASEDIR%\config\policy.all

UNIX

$JBASERELEASEDIR/config/policy.all

e.g. "export JBCJVMPOLICYFILE =/usr/jbase/mypolicy.all"

JBCJVMENCODING

Internally, the Java virtual machine always operates with data in Unicode. However, as data transfers to

or from the Java virtual machine, the Java virtual machine converts the data to other encodings. If the

you want to change the default encoding of the JVM on your platform, then you can override it by

setting the JBCJVMENCODING environment variable.

e.g. "export JBCJVMENCODING = Cp1257"

JBCJVMNOOPTS

 58

Internally, CALLJ is optimized to start the JVM with options (see the table below). If you don’t want

to pass these options for the JVM, then you can override it by setting the JBCJVMNOOPTS

environment variable. In this case no more options will be passed to the JVM.

DEFAULT OPTIONS :

Win32: -Xrs

TRUE64: -Xcheck:jni

Solaris: -XX:+AllowUserSignalHandlers

Linux: -Xrs -XX:+AllowUserSignalHandlers

AIX 32 bits: -Xrs -Xnocatch

AIX 64 bits: -Xrs -d64

HPUX 32 bits:

HPUX 64 bits: -Xrs -XX:+AllowUserSignalHandlers

JBCJVMOPT[1..5]

If the you want to pass some options for the JVM, then set the JBCJVMOPT[1..5] environment

variable

e.g. "export JBCJVMOPT1=-Xrs "

KNOWN LIMITATIONS

HP-UX

There is a problem with HP-UX due to its dynamic loader. See man dlopen(3C) for detail of the TLS

limitation.

This means that the JVM library must be linked against the calling program, there are no known

problems caused by this.

 'ldd progname' lists current external library references and we need to add libjvm.

The symptom looks like this:

 JVM: dl_error [Can't dlopen() a library containing Thread Local Storage: libjvm.sl]

If the program is built with the required link as below then it works.

 59

 jbc –Jo callj.b -ljvm -L/opt/java1.3/jre/lib/PA_RISC2.0/server

If the CALLJ statement is inside a subroutine, then the program that calls the subroutine must be built

as above.

 60

CALLONEXIT

The CALLONEXIT function call allows you to specify the name of a SUBROUTINE to call when the

program terminates.

COMMAND SYNTAX

 rc = CALLONEXIT("ErrorExit")

The subroutine definition would look like this

 SUBROUTINE CALLONEXIT(parm1)

You can add parameters to the error subroutine by adding multi-values to the parameter to

CALLONEXIT, which are passed to the called subroutine in the first parameter.

If you execute CALLONEXIT multiple times with the same subroutine name, it discards other calls.

If you execute CALLONEXIT multiple times with a different subroutine name, then upon exit multiple

subroutines will be called in the order that CALLONEXIT was called.

EXAMPLES

For example, consider the simple programs below. The program enters the debugger. If at this point the

login session terminates for any reason (the line drops, the program is killed, the user enters 'off' at the

debugger prompt) , the two specified subroutines (ErrorExit and EndProgram) will still be called just as

they would if the program were allowed to terminate normally.

 PROGRAM PROG1

 rc = CALLONEXIT("ErrorExit")

 EXECUTE "PROG2"

 PROGRAM PROG2

 rc = CALLONEXIT("EndProgram")

 DEBUG

All efforts are made to call the subroutine under all circumstances. However, if a SIGKILL (signal 9)

terminates the program, which cannot be trapped, it does not call the subroutine. This is a feature of

operating systems, not a limitation. In addition, if the program terminates due to say a memory error,

then calling the subroutines depends upon how badly the memory error has corrupted the memory.

 61

CASE

The CASE statement allows the programmer to execute a particular sequence of instructions based

upon the results of a series of test expressions.

COMMAND SYNTAX

BEGIN CASE

CASE expression statement(s)

CASE expression

statement(s)

. . .

END CASE

SYNTAX ELEMENTS

The BEGIN CASE and END CASE statements bound the CASE structure. Within this block, an

arbitrary number of CASE expression statements may exist followed by any number of jBASE BASIC

statements. The expression should evaluate to a TRUE or FALSE result. The evaluation of each

expression at execution time is in order. If the expression returns a TRUE result, it then executes the

statements below. On completion of the associated statements, execution will resume at the first

statement following the END CASE.

NOTES: A default action (to trap error conditions for instance) may be introduced by using an

expression that is always TRUE, such as CASE one. This should always be the last expression in the

CASE block.

EXAMPLE

BEGIN CASE

CASE A = 1

 CRT "You won!"

CASE 1

 CRT "You came nowhere"

END CASE

A single comment is printed depending on the value of A.

NOTE: that if A is not 1 then the default CASE 1 rule will be executed as a "catch all".

 62

CATALOG Command

Cataloging and Running your Programs

Use the CATALOG command to create UNIX executables and shared libraries from the application

source code. Once you have cataloged your programs, you can run them like any other command on

the system.

The RUN command which is sometimes used to execute compiled jBASE BASIC programs without

cataloging them can still be used but is really only maintained for compatibility. Whenever possible,

you should catalog your programs rather than RUN them.

The CATALOG command should be executed from the application directory rather than using link

names and the application id should be used. The reasons for executing the CATALOG command from

the application directory and application id are that the .profile script will have set up the required

environment variables correctly and that the correct file permission will be used when creating and

deleting UNIX executables and directories.

The format of the CATALOG command is as follows.

CATALOG SourceFilename Itemlist

When first invoked the CATALOG command will create a $HOME/bin directory into which the UNIX

executables will be placed. A $HOME/lib directory will also be created into which any subroutines will

be placed. The lib directory contains a jLibDefinition file, which describes how to build the subroutines

into shared libraries. The entries in the jLibDefinition file are described below:

libname naming convention for shared object files.

exportname export list of shared objects. Used as cross reference to find subroutine functions.

maxsize maximum size of a shared object library before creating another.

When the maximum size of a shared library object is reached then a new shared library object will be

created by the CATALOG command. The new shared library objects are named according to the

definition of libname and are numbered sequentially. For example:

libname=lib%a%n.so

where

%a = account or directory name

%n = number in sequence.

If subroutines were cataloged in the user account name, fred then the shared object libraries produced

would be named, libfred0.so libfred1.so libfred2.so and so on.

 63

Note: To guard against libraries being cataloged incorrectly, perhaps under the wrong user account

name, the definition of libname should be changed to libfred%n.so. This will ensure that any shared

objects are created using the proper user account name.

The shared library objects, .so files, contain the UNIX executables for subroutine source code. The

shared library objects are linked at runtime by the jBASE call function, which utilises the dynamic

linker programming interface. The dynamic linker will link shared libraries at the start of program

execution time, or when requested by the jBASE call function. For example, each executable created

using the jBASE compiler will be linked with the jBASE jEDI library functions, libjedi.so, at

compilation time. This shared library enables database record retrieval and update and will be loaded

into memory by the dynamic linker when an application executable starts execution. However the

shared library containing any subroutines required by the executing program will only be loaded into

memory when initially requested by the subroutine call. Only one copy of any shared library is required

in memory at any time, thus reducing program memory requirements.

The $HOME/lib directory also contains a directory where all the subroutine objects, .o files, are held.

These are required for making the shared library, .so files.

The $HOME/lib directory also contains an export list, .el file, built by the CATALOG command,

which is used as a cross reference when dynamically linking shared objects at run time.

The main application program executables are placed into the $HOME/bin directory.

To enable the application executables to be found the $HOME/bin path should be added to the PATH

environment variable.

To enable the executing application to call the correct application subroutines the JBCOBJECTLIST or

LD_LIBRARY_PATH environment variable should be assigned to the application shared library path,

$HOME/lib. If the main application program or any subroutine programs make calls to subroutines in

other directories then the path of the shared library directories should also be added to the

JBCOBJECTLIST or LD_LIBRARY_PATH environment variable.

It is recommended that executables or subroutines of the same name are not available from different

directories. This can make application execution very confusing and is reliant on assigning the lib or

bin directories to the environment variable in the correct sequence. The assignment of the environment

variables should be included and exported in the .profile script file.

Executables and shared library objects can be removed from the bin and lib directories by using the

DECATALOG command.

 64

CATS

The CATS function concatenates the corresponding elements in two dynamic arrays.

COMMAND SYNTAX

CATS (DynArr1, DynArr2)

SYNTAX ELEMENTS

DynArr1 and DynArr2 represent dynamic arrays.

NOTES

If one dynamic array supplied to the CATS function is null then the result of the CATS function is the

non-null dynamic array.

EXAMPLES

X = "a" : @VM : "b" : @VM : "c"

B = 1 : @VM : 2 : @VM : 3

Z = CATS(X, Y)

The assigned value to variable Z is:

a1 : @VM : b2 : @VM : c3

A = "a" : @SVM : "b" : @VM : "c": @VM : "d"

B = "x" : @VM : "y" : @SVM : "z"

C = CATS(A, B)

The assigned value to variable C is:

ax : @SVM : b : @VM : cy : @SVM : z : @VM : d

 65

CHAIN

The CHAIN statement exits the current program and transfers process control to the program defined

by the expression. Process control will never return to the originating program.

COMMAND SYNTAX

CHAIN expression

SYNTAX ELEMENTS

The expression should evaluate to a valid UNIX or Windows command (this may be another jBASE

BASIC program). The command string may be suffixed with the (I option, which will cause any

COMMON variables in the current program to be inherited by the new program (providing it is a

jBASE BASIC program).

NOTES

There are no restrictions to the CHAIN statement and you may CHAIN from anywhere to anywhere.

However, it is advisable that your program follows a logical path easily seen by another programmer.

If the program, which contains the CHAIN command (the current program) was called from a JCL

program, and the program to be executed (the target program) is another jBASE BASIC program,

control will return to the original JCL program when the target program terminates. If the target

program is a JCL program, control will return to the command shell when the JCL program terminates.

EXAMPLES

CHAIN "OFF" ;* exit via the OFF command

! Prog1

COMMON A,B

A = 50; B = 100

CHAIN "NEWPROG (I"

! NEWPROG

COMMON I,J

! I and J inherited

CRT I,J

 66

CHANGE

The CHANGE statement operates on a variable and replaces all occurrences of one string with another.

COMMAND SYNTAX

CHANGE expression1 TO expression2 IN variable

SYNTAX ELEMENTS

expression1 - may evaluate to any result and is the string of characters that will be replaced.

expression2 - may also evaluate to any result and is the string of characters that will replace

expression1 - The variable may be any previously assigned variable in the program.

NOTES

There is no requirement that strings be of the same length. The jBASE BASIC language also supports

the CHANGE function for compatibility with older systems.

EXAMPLES

String1 = "Jim"

String2 = "James"

Variable = "Pick up the tab Jim"

CHANGE String1 TO String2 IN Variable

CHANGE "tab" TO "check" IN Variable

 67

CHANGETIMESTAMP

Use CHANGETIMESTAMP to adjust existing timestamp to return new timestamp value.

COMMAND SYNTAX

CHANGETIMESTAMP (Timestamp, Array)

SYNTAX ELEMENTS

The CHANGETIMESTAMP function generates a new timestamp by adjusting an existing timestamp

value using the elements specified in the dynamic array.

The format of the adjustment array is as follows:

Years^Months^Weeks^Days^Hours^Minutes^Seconds^Milliseconds

 68

CHAR

The CHAR function returns the ASCII character specified by the expression.

COMMAND SYNTAX

CHAR (expression)

SYNTAX ELEMENTS

The expression must evaluate to a numeric argument in the range 0-255, which is the entire ASCII

character set.

INTERNATIONAL MODE

The CHAR function will return Unicode values encoded as UTF-8 byte sequences as follows:

Expression values 0 – 127 return UTF-8 single byte characters equivalent to ASCII.

Expression values 127 – 248 return UTF-8 double byte character sequences.

Expression values 249 – 255 return system delimiters 0xf8 – 0xff

Expression values > 255 return UTF-8 multi byte character sequences

When system delimiter values are not specifically required, generate UTF-8 byte sequences using the

UTF8 function. i.e. X = UTF8(@AM) will generate a UTF-8 byte sequence in variable X for the

system delimiter equating to Unicode value 0x000000fe.

NOTES

jBASE BASIC variables can contain any of the ASCII characters 0-255, thus there are no restrictions

on this function.

Use this function to insert field delimiters within a variable or string; these are commonly equated to

AM, VM, SV in a program.

See also: CHARS

EXAMPLES

EQUATE AM TO CHAR (254) ;* field Mark

EQUATE VM TO CHAR(253) ;* value Mark

EQUATE SV TO CHAR(252) ;* sub Value mark

CRT CHAR (7): ;* ring the bell

CHARS

The CHARS function accepts a dynamic array of numeric expressions and returns a dynamic array of

the corresponding ASCII characters.

COMMAND SYNTAX

 69

CHARS (DynArr)

SYNTAX ELEMENTS

Each element of DynArr must evaluate to a numeric argument in the range 0-255.

NOTES

If any of the dynamic array elements are non-numeric, a run-time error will occur.

See also: CHAR ().

EXAMPLE

y = 58 : @AM : 45 : @AM : 41

z = CHARS (y)

FOR i = 1 TO 3

 CRT z<i>:

NEXT i

This code displays: :-)

 70

CHDIR

The CHDIR function allows the current working directory, as seen by the process environment, to be

changed.

COMMAND SYNTAX

CHDIR (expression)

SYNTAX ELEMENTS

The expression should evaluate to a valid path name within the file system. The function returns a

Boolean TRUE result if the CHDIR succeeded and a Boolean FALSE result if it failed.

EXAMPLES

IF CHDIR ("/usr/jBASIC/src") THEN

 CRT "jBASE development system INSTALLED"

END

IF GETENV("JBASICGLOBALDIR", jgdir) THEN

 IF CHDIR (jgdir:"\config") ELSE

 CRT "jBASE configuration cannot be found."

 ABORT

 END

END

 71

CHECKSUM

The CHECKSUM function returns a simple numeric checksum of a character string.

COMMAND SYNTAX

CHECKSUM(expression)

SYNTAX ELEMENTS

The expression may evaluate to any result but will usually be a string. The function then scans every

character in the string and returns a numeric addition of the characters within the string.

NOTES

The function calculates the checksum by summing the product of the ASCII value of each character

and its position within the string.

EXAMPLES

INPUT DataBlock,128:

IF CHECKSUM(DataBlock) = ExpectedChk THEN

 CRT AckChar:

END

ELSE

......

 72

CLEAR

The CLEAR statement will initialize all the variables to numeric 0.

COMMAND SYNTAX

CLEAR

NOTES

Use CLEAR at any time during the execution of the program.

EXAMPLES

Var1 = 99

Var2 = 50

CLEAR

 73

CLEARCOMMON

The CLEARCOMMON statement initializes all unnamed common variables to a value of zero.

COMMAND SYNTAX

CLEARCOMMON

SYNTAX ELEMENTS

None

 74

CLEARDATA

The CLEARDATA statement clears data stacked by the DATA statement.

COMMAND SYNTAX

CLEARDATA

SYNTAX ELEMENTS

None

 75

CLEARFILE

Use the CLEARFILE statement to clear all the data from a file previously opened with the OPEN

statement.

COMMAND SYNTAX

CLEARFILE {variable} {SETTING setvar} {ON ERROR statements}

SYNTAX ELEMENTS

The variable should be the subject of an OPEN statement before the execution of CLEARFILE upon it.

If the variable is omitted from the CLEARFILE statement, it assumes the default file variable as per the

OPEN statement.

NOTES

The CLEARFILE statement will remove every database record on the file against which it is executed,

therefore, use with caution.

If the variable argument does not describe a previously opened file, the program will enter the

debugger with an appropriate message.

If the SETTING clause is specified and the CLEARFILE fails, it sets setvar to one of the following

values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

EXAMPLES

OPEN "DATAFILE" ELSE ABORT 201, "DATAFILE"

OPEN "PROGFILE" TO FILEVAR ELSE ABORT 201, "PROGFIL E"

CLEARFILE

CLEARFILE FILEVAR

 76

CLEARINPUT

The CLEARINPUT command clears the terminal type-ahead buffer to allow the next INPUT statement

to force a response from the user.

COMMAND SYNTAX

CLEARINPUT

EXAMPLE

In the following example, the CLEARINPUT statement clears the terminal type-ahead buffer to

provoke a response from the user to the prompt:

CLEARINPUT

PRINT "DO YOU WANT TO DELETE THIS FILE?(Y OR N)"; I NPUT X,1

NOTE: The CLEARINPUT command is synonymous with INPUTCLEAR.

 77

CLEARSELECT

Use the CLEARSELECT statement to clear active select lists.

COMMAND SYNTAX

CLEARSELECT {ListName | ListNumber}

SYNTAX ELEMENTS

ListName must evaluate to a jBASE BASIC list variable. ListNumber is one of the numbered lists in

the range 0 to 11. If neither ListName nor ListNumber are specified then it clears the default list (0).

EXAMPLE

A = "good" : @AM : "bad" : @AM : "ugly"

B = "night" : @AM : "day"

SELECT A TO 3

SELECT B TO blist

adone = 0; bdone = 0

LOOP

 READNEXT Ael FROM 3 ELSE adone = 1

 READNEXT Bel FROM blist ELSE bdone = 1

UNTIL adone AND bdone DO

 CRT Ael, Bel

 CLEARSELECT 3

 CLEARSELECT blist

REPEAT

This program displays: good night

 78

CLOSE

Use the CLOSE statement to CLOSE an opened file, which is no longer required

COMMAND SYNTAX

CLOSE variable{, variable ...}

SYNTAX ELEMENTS

The variable list should contain a list of previously opened file variables that are no longer needed. The

variables will be cleared and may be reused as ordinary variables.

NOTES: You can open an unlimited amount of files within jBASE BASIC; however leaving them

open consumes valuable system resources.

Use good practice to hold open only those file descriptors to which you have constant access.

EXAMPLES

OPEN "DATAFILE" TO FILEVAR ELSE ABORT 201, "DATAFIL E"

.....

CLOSE FILEVAR

 79

CLOSESEQ

CLOSESEQ closes the file previously opened for sequential access.

COMMAND SYNTAX

CLOSESEQ FileVar

SYNTAX ELEMENTS

FileVar contains the file descriptor of the previously opened sequential file

 80

COL1 and COL2

Use these functions in conjunction with the FIELD function to determine the character positions 1

position before and 1 position after the location of the last field.

COMMAND SYNTAX

COL1() / COL2()

NOTES

When a field has been located in a string, it is sometimes useful to know its exact position within the

string to manipulate either it, or the rest of the string. COL1() will return the position of the character

immediately before the last field located. COL2() will return the position of the character immediately

after the end of the last field located. Use them to manipulate the string.

EXAMPLES

A = "A,B,C,D,E"

Fld = FIELD(A, ",", 2)

CRT COL1()

CRT COL2()

Displays the values 2 and 4

 81

COLLECTDATA

Use the COLLECTDATA statement to retrieve data passed from the PASSDATA clause of an

EXECUTE statement.

COMMAND SYNTAX

COLLECTDATAvariable

SYNTAX ELEMENTS

variable is the name of the variable, which is to store the retrieved data.

NOTES

Use the COLLECTDATA statement in any program, which is EXECUTEd (or PERFORMed) by

another program where the calling program uses a PASSDATA clause. The EXECUTEd program uses

a COLLECTDATA statement to retrieve the passed data.

If a PASSDATA clause is not in effect, variable will be assigned a value of null.

EXAMPLE

FIRST

001 EXECUTE "RUN JBASIC_PROGS SECOND" PASSDATA "Han dover"

SECOND

001 COLLECTDATA PassedMessage

002 CRT PassedMessage

In the above example, program FIRST will EXECUTE program SECOND and will pass the string

"Handover" in the PASSDATA clause. Program SECOND retrieves the string to a variable

PassedMessage and prints the string on the Terminal screen.

 82

COMMON

The COMMON statement declares a list of variables and matrices that can be shared among various

programs. There can be many common areas including a default, unnamed common area.

COMMAND SYNTAX

COMMON {/CommonName/} variable{, variable ... }

SYNTAX ELEMENTS

The list of variables should not have been declared or referenced previously in the program file. The

compiler will detect any bad declarations and display suitable warning or error messages. If the

common area declared with the statement is to be named then the first entry in the list should be a

string, delimited by the / character.

NOTES

The compiler will not, by default, check that variables declared in COMMON statements are initialized

before they have been used as this may be beyond the scope of this single source code check. The -JCi

option, when specified to the jBASE BASIC compiler, will force this check to be applied to common

variables as well. The initialization of named common is controlled in the Config_EMULATE file.

Variables declared without naming the common area may only be shared between the program and its

subroutines (unless CHAIN is used). Variables declared in a named common area may be shared across

program boundaries. When any common area is shared, all programs using it should have declared the

same number of variables within it.

Dimensioned arrays are declared and dimensioned within the COMMON statement.

EXAMPLES

COMMON A, B(2, 6, 10), c

COMMON/Common1/ A, D, Array(10, 10)

 83

COMPARE

The COMPARE function compares two strings and returns a value indicating whether or not they are

equal.

COMMAND SYNTAX

COMPARE(expression1, expression2{, justification})

SYNTAX ELEMENTS

expression1 is the first string for comparison

expression2 is the second string for comparison

 justification specifies how the strings are to be compared. "L" indicates a left justified comparison.

"R" indicates a right justified comparison. The default is left justification.

The function returns one of the following values:

-1 The first string is less than the second

0 The strings are equal

1 The first string is greater than the second

 EXAMPLE

A = "XY999"

B = "XY1000"

R1 = COMPARE(A,B,"L")

R2 = COMPARE(A,B,"R")

CRT R1,R2

The code above displays 1 -1, which indicates that XY999 is greater than XY1000 in a left justified

comparison and XY999 is less than XY1000 in a right justified comparison.

INTERNATIONAL MODE

When using the COMPARE function in International Mode, the function will use the currently

configured locale to determine the rules by which each string is considered less than or greater than the

other will.

 84

CONTINUE

The CONTINUE statement is the complimentary statement to the BREAK statement without

arguments.

COMMAND SYNTAX

Use the statement within a loop to skip the remaining code in the current iteration and proceed directly

on to the next iteration.

NOTES

See also: BREAK, EXIT

The compiler will issue a warning message and ignore the statement if it is found outside an iterative

loop such as FOR...NEXT, LOOP...REPEAT.

EXAMPLES

FOR I = 1 TO 30

 IF Pattern(I) MATCHES "0N" THEN CONTINUE

 GOSUB ProcessText

NEXT I

The above example will execute the loop 30 times but will only call the subroutine ProcessText when

the current array element of Pattern is not a numeric value or null.

 85

CONVERT

The CONVERT function is the function form of the CONVERT statement. It performs exactly the

same function but may also operate on an expression rather than being restricted to variables.

COMMAND SYNTAX

CONVERT (expression1, expression2, expression3)

SYNTAX ELEMENTS

expression1 is the string to which the conversion will apply.

expression2 is the list of all characters to translate in expression1.

expression3 is the list of characters that will be converted to.

NOTE: For Prime, Universe and Unidata emulations:

expression1 is the list of all characters to translate in expression1.

expression2 is the list of characters that will be converted to.

expression3 is the string to which the conversion will apply.

 See also: the CONVERT statement.

EXAMPLES

Value = CONVERT (Value, "#.,", "$,.")

Value = CONVERT(PartCode, "abc", "ABC")

Value = CONVERT(Code, "1234567890", "0987654321")

 86

CONVERT (STATEMENT)

The CONVERT statement converts one or more characters in a string to their corresponding

replacement characters.

COMMAND SYNTAX

CONVERT expression1 TO expression2 IN expression3

SYNTAX ELEMENTS

expression1 is the list of all characters to translate in expression3

expression2 is the list of characters that will be converted to.

expression3 is the string to which the conversion will apply.

NOTES

There is a one to one correspondence between the characters in expression1 and expression2. That is,

conversion of character 1 in expression1 to character 1 in expression2, etc.

See also: the CONVERT function.

EXAMPLE

Value = 'ABCDEFGHIJ'

CRT 'Orignal: ':Value

CONVERT 'BJE' TO '^+!' IN Value

CRT 'Converted: ':Value

Orignal: ABCDEFGHIJ

Converted: A^CD!FGHI+

 87

COS

The COS function calculates the cosine of any angle using floating point arithmetic, then rounds to the

precision implied by the jBASE BASIC program, which makes it very accurate.

COMMAND SYNTAX

COS(expression)

This function calculates the cosine of an expression.

SYNTAX ELEMENTS

The expression must evaluate to a numeric result or a runtime error will occur.

NOTES

Assumes the value returned by expression is in degrees.

EXAMPLES

FOR I = 1 TO 360

 CRT COS(I) ;* print cos i for 1 to 360 degrees

NEXT I

 88

COUNT

The COUNT function returns the number of times that one string occurs in another.

COMMAND SYNTAX

COUNT(expression1, expression2)

SYNTAX ELEMENTS

Both expression1 and expression2 may evaluate to any data type but logically they will evaluate to

character strings.

NOTES

The count is made on overlapping occurrences as a pattern match from each character in expression1.

This means that the string jjj occurs 3 times in the string jjjjj.

See also:DCOUNT.

EXAMPLES

Calc = "56 * 23 / 45 * 12"

CRT "There are ":COUNT(Calc, "*"):" multiplications "

 89

COUNTS

Use the COUNTS function to count the number of times a substring is repeated in each element of a

dynamic array. The result is a new dynamic array whose elements are the counts corresponding to the

elements in the dynamic array.

COMMAND SYNTAX

COUNTS (dynamic.array, substring)

dynamic.array specifies the dynamic array whose elements are to be searched.

substring is an expression that evaluates to the substring to be counted. substring can be a character

string, a constant, or a variable. Each character in an element is matched to substring only once.

Therefore, when substring is longer than one character and a match is found, the search continues with

the character following the matched substring. No part of the matched element is recounted toward

another match. If substring does not appear in an element, a 0 value is returned. If substring is an empty

string, the number of characters in the element is returned. If substring is null, the COUNTS function

fails and the program terminates with a run-time error message. If any element in dynamic.array is null,

null is returned.

EXAMPLE

ARRAY="A":@VM:"AA":@SM:"AAAAA"

PRINT COUNTS (ARRAY, "A")

PRINT COUNTS(ARRAY, "AA")

The output of this program is:

1]2\5

0]1\2

 90

CREATE

Use the CREATE statement after an OPENSEQ statement to create a record in a jBASE directory file

or to create a UNIX or DOS file. CREATE creates the record or file if the OPENSEQ statement fails.

An OPENSEQ statement for the specified file.variable must be executed before the CREATE

statement to associate the pathname or record ID of the file to be created with the file.variable. If

file.variable is null, the CREATE statement fails and the program enters the debugger.

Use the CREATE statement when OPENSEQ cannot find a record or file to open and the next

operation is to be a READSEQ or READBLK. If the first file operation is a WRITESEQ,WRITESEQ

creates the record or file if it does not exist.

If the record or file is created, it executes the THEN statements; if no record or file is created, it

executes the ELSE statements.

COMMAND SYNTAX

CREATE file.variable {THEN statements [ELSE statements] | ELSE statements}

EXAMPLE

In the following example, RECORD does not yet exist. When OPENSEQ fails to open RECORD to the

file variable FILE, the CREATE statement creates RECORD in the type 1 file DIRFILE and opens it to

the file variable FILE.

OPENSEQ 'DIRFILE', 'RECORD' TO FILE

ELSE CREATE FILE ELSE ABORT

WEOFSEQ FILE

WRITESEQ 'SOME DATA' TO FILE ELSE STOP

 91

CRT

The CRT statement sends data directly to the terminal, even if a PRINTER ON statement is currently

active.

COMMAND SYNTAX

CRT expression {, expression..} {:}

SYNTAX ELEMENTS

An expression can evaluate to any data type. The CRT statement will convert the result to a string type

for printing. Expressions separated by commas will be sent to the screen separated by a tab character.

The CRT statement will append a newline sequence to the final expression unless it is terminated with

a colon ":" character.

NOTES

As the expression can be any valid expression, it may have output formatting applied to it.

A jBASE BASIC program is normally executed using buffered output mode. This means that data is

not flushed to the terminal screen unless a newline sequence is printed or terminal input is requested.

This makes it very efficient. However you can force output to be flushed to the terminal by printing a

null character CHAR (0). This has the same effect as a newline sequence but without affecting screen

output.

For compatibility, use DISPLAY in place of CRT.

EXAMPLES

CRT A "L#5"

CRT @ (8,20):"Shazza was here":

FOR I = 1 TO 200

 CRT @ (10,10):I:CHAR (0):

...

NEXT I

 92

DATA

The DATA statement stacks the series of expressions on a terminal input FIFO stack. Terminal input

statements will then treat this data as if entered at the keyboard.

COMMAND SYNTAX

DATA expression {, expression ...}

SYNTAX ELEMENTS

The expression may evaluate to any data type; views each comma-separated expression as one line of

terminal input.

NOTES

The data stacked for input will subsequently be treated as input by any jBASE BASIC program.

Therefore use it before PERFORM/EXECUTE, CHAIN or any other method of transferring program

execution. Use also to stack input for the currently executing program; do not use to stack input back to

an executing program.

When a jBASE BASIC program detects stacked data, it is taken as keyboard input until the stack is

exhausted. The program will then revert to the terminal device for subsequent terminal input.

Stacked data delimited by field marks (xFE) will be treated as a series of separate terminal inputs.

See also: CLEARDATA

EXAMPLES

DATA "Y", "N", "CONTINUE" ;* stack input for prog

EXECUTE "PROGRAM1" ;* execute the program

 93

DATE

The DATE() function returns the date in internal system form. This date is expressed as the number of

days since December 31, 1967.

COMMAND SYNTAX

DATE()

NOTES

The system and your own programs should manipulate date fields in internal form. They can then be

converted to a readable format of your choice using the OCONV() function and the date conversion

codes.

The year 2000 is a leap year

See also: TIMEDATE()

EXAMPLES

CRT OCONV (DATE(), "D2")

displays today's date in the form: 14 JUL 64

 94

DCOUNT

The DCOUNT() function counts the number of field elements in a string that are separated by a

specified delimiter.

COMMAND SYNTAX

DCOUNT(expression1, expression2)

SYNTAX ELEMENTS

expression1 evaluates to a string in which fields are to be counted.

expression2 evaluates to the delimiter string used to count the fields.

NOTES

The delimiter string may consist of more than one character.

If expression1 is a NULL string, the function returns a value of zero.

The delimiter string may consist of any character, including system delimiters such as field marks or

value marks.

See also: COUNT.

EXAMPLES

A = "A:B:C:D"

CRT DCOUNT(A, ":")

displays the value 4

 95

DEBUG

The DEBUG statement causes the executing program to enter the jBASE BASIC debugger.

COMMAND SYNTAX

DEBUG

NOTES

Describes the debugger here.

EXAMPLES

IF FatalError = TRUE THEN

 DEBUG ;*enter the debugger

END

 96

DECATALOG and DELETE-CATALOG Commands

The DECATALOG and DELETE-CATALOG commands are used to remove the run-time versions of

cataloged jBASE BASIC programs.

COMMAND SYNTAX

DECATALOG SourceFilename ProgramName

DECATALOG ProgramName

 97

DECRYPT

The DECRYPT function encrypts strings.

COMMAND SYNTAX

DECRYPT(string, key, method)

SYNTAX ELEMENTS

string specifies the string to be encrypted.

key is the value used to encrypt the string. Its use depends on method.

method is a value, which indicates the encryption mechanism to use (See below):

The ENCRYPT and DECRYPT functions that are part of jBASE BASIC now support the following

cipher methods (Defined in JBC.h)

JBASE_CRYPT_GENERAL General-purpose encryption scheme

JBASE_CRYPT_ROT13 Simple ROT13 algorithm. (Key not used)

JBASE_CRYPT_XOR11 XOR MOD11 algorithm. Uses the first character of a

key as a seed value.

JBASE_CRYPT_RC2 RC2 algorithm

JBASE_CRYPT_DES DES algorithm

JBASE_CRYPT_3DES Three Key, Triple DES algorithm

JBASE_CRYPT_BLOWFISH Blowfish algorithm

JBASE_CRYPT_BASE64 (See below)

BASE64 is not really an encryption method, but more of an encoding. The reason for this is that the

output of an encryption often results in a binary string. It allows binary data to be represented as a

character string. BASE64 operation is not required but is performed in addition to the primary

algorithm. e.g. JBASE_CRYPT_RC2_BASE64

ENCRYPT with this method is the same as a DECRYPT with method JBASE_CRYPT_RC2 followed

by DECRYPT with method JBASE_CRYPT_BASE64.

DECRYPT with this method is the same as a DECRYPT with method JBASE_CRYPT_BASE64

followed by DECRYPT with method JBASE_CRYPT_RC2.

JBASE_CRYPT_RC2_BASE64 RC2 algorithm

JBASE_CRYPT_DES_BASE64 DES algorithm

JBASE_CRYPT_3DES_BASE64 Triple DES algorithm

JBASE_CRYPT_BLOWFISH _BASE64 Blowfish algorithm

NOTES

See also: ENCRYPT

 98

EXAMPLES

INCLUDE JBC.h

X = DECRYPT(X, Ekey, JBASE_CRYPT_GENERAL)

IF DECRYPT("rknzcyr”,"", JBASE_CRYPT_ROT13) = "exam ple" THEN

CRT "ROT13 ok"

END

IF ENCRYPT("g{ehvkm","9", JBASE_CRYPT_XOR11) = "exa mple" THEN

CRT "XOR.MOD11 ok"

END

cipher = JBASE_CRYPT_BLOWFISH_BASE64

key = "Our Very Secret Key"

str = "String to encrypt"

enc = ENCRYPT(str, key, cipher)

CRT "Encrypted: ":enc

dec = DECRYPT(enc, key, cipher)

CRT "Decrypted: ":dec

Displays as output:

Encrypted: xuy6DXxUkD32spyfsKEvUtXrsjP7mC+R

Decrypted: String to encrypt

 99

DEFC

Use the DEFC statement to declare an external C function to the jBASE BASIC compiler, define its

arguments, and return types. The DEFC statement assumes that the C functions will need to manipulate

jBASE BASIC variables and hence will also require the thread data pointer. As such, all C functions

require recoding to include the data pointer as an argument to the C function. The location of the data

pointer argument depends upon the function return type.

COMMAND SYNTAX

DEFC {FuncType} FuncName ({ArgType {, ArgType ...}})

SYNTAX ELEMENTS

FuncType and ArgType are selected from one of INT, FLOAT or VAR. FuncType specifies the type of

result that the function will return. Assumes INT if FuncType is omitted. The optional list of ArgTypes

specifies the argument types that the C function will expect. The compiler must know this in advance,

as it will automatically perform type conversions on these arguments.

EXAMPLE

#include <jsystem.h>

#include <assert.h>

#ifdef DPSTRUCT_DEF

#define JBASEDP DPSTRUCT *dp,

#else

#define JBASEDP

#endif

VAR *MyString(VAR *Result, JBASEDP VAR *VarPtr)

{

char *Ptr;

 assert(dp != NULL);

 Ptr = (char *) CONV_SFB(VarPtr);

 printf("MyString: %s - %d\n", Ptr, strlen(Ptr));

 100

 STORE_VBI(Result, strlen(Ptr));

 return(Result);

}

INT32 MyCalc(INT32 Value1, INT32 Value2)

{

INT32 Result;

 Result = (Value1 / Value2);

 printf("MyCalc: %d\n", Result);

 return(Result);

}

NOTES

Compile a DEFC for each C function before making any reference to it else the compiler will not

recognize the function name.

The function is called in the same manner, as it would be in a C program, which means it can be used

as if it was an intrinsic function of the jBASE BASIC language and therefore returns a value. However,

specifying it as a standalone function call causes the compiler to generate code that ignores any

returned values.

When passing jBASE BASIC variables to a C function, you must utilize the predefined macros to

access the various data types it contains. C functions are particularly useful for increasing the

performance of tight loops that perform specific functions. The jBASE BASIC compiler must cater for

any eventuality within a loop (such as the controlling variable changing from integer to floating point).

A dedicated C function can ignore such events, if they are guaranteed not to happen.

The jBASE BASIC programmer may freely ignore the type of argument used when invoking the C

function, as the jBASE BASIC compiler will automatically perform type conversion.

 101

DEFCE

With jBASE 4.1 the DEFCE statement should be used, rather than the DEFC statement, for calling

external C programs, which are pure ‘C’ code and do not use the jBASE library macro’s and functions.

EXAMPLE 1

For C functions that do not require jBASE functions use the DEFCE statement, however the passing

arguments can only be of type INT, FLOAT and STRING.

DEFCE INT MYFUNC3(INT)

INT32 MYFUNC3(INT32 Count)

{

INT32 Result;

 ….

 return Result;

}

EXAMPLE 2

DEFCE INT cfunc(INT, FLOAT, VAR)

Var1 = cfunc(A, 45, B)

cfunc(34, C, J)

You can call standard UNIX functions directly by declaring them with the DEFC statement according

to their parameter requirements. You can only call them directly providing they return one of the type

int or float/double or that the return type may be ignored.

EXAMPLE 3

DEFCE INT getpid()

CRT "Process id =":getpid()

 102

DEFFUN

Use the DEFFUN statement to declare an external jBASE BASIC function to the jBASE BASIC

compiler and optionally define its arguments. Use DEFFUN in the program that calls the function.

COMMAND SYNTAX

DEFFUN FuncName ({ {MAT} Argument1, {MAT} Argument2...})

SYNTAX ELEMENTS

FuncName is the name used to define the function. It must be the same as the source file name.

Argument specifies a value passed to the function by the calling program. To pass an array, the

keyword you must use the MAT before the argument name. These parameters are optional (as

indicated in the Command Syntax) but can be specified for clarity. Note that if the arguments are not

initialized somewhere in the program you will receive a compiler warning.

NOTES

The DEFFUN statement identifies a user-written function to the jBASE BASIC compiler, which must

be present in each program that calls the function, before the function is called. A hidden argument is

passed to the function so that a value can be returned to the calling program. The return value is set in

the function using the RETURN (value) statement. If the RETURN statement specifies no value then

the function returns an empty string.

EXAMPLE 1

DEFFUN Add()

A = 10

B = 20

sum = Add(A, B)

PRINT sum

X = RND (42)

Y = RND(24

)

PRINT Add(X, Y)

FUNCTION Add(operand1, operand2)

result = operand1 + operand2

RETURN(result)

 103

Call standard UNIX functions directly by declaring them with the DEFCE statement according to their

parameter requirements. However, they may only be called directly providing they return one of the

type int or float/double or that the return type may be ignored.

EXAMPLE 2

DEFCE INT getpid()

CRT "Process id =":getpid()

 104

DEL

Use the DEL statement to remove a specified element of a dynamic array.

COMMAND SYNTAX

DEL variable<expression1{, expression2{, expression3}}>

SYNTAX ELEMENTS

The variable can be any previously assigned variable or matrix element. The expressions must evaluate

to a numeric value or a runtime error will occur.

expression1 specifies the field in the array to operate upon and must be present.

expression2 specifies the multivalue within the field to operate upon and is an optional parameter.

expression3 is optionally present when expression2 has been included. It specifies which subvalue to

delete within the specified multivalue.

NOTES

Truncates non-integer values for any of the expressions to integers

Ignores invalid numeric values for the expressions without warning

The command operates within the scope specified, i.e. if specifying only a field then it deletes the

entire field (including its multivalues and subvalues). If specifying a subvalue, then it deletes only the

subvalue leaving its parent multivalue and field intact.

EXAMPLES

FOR I = 1 TO 20

 Numbers<I> = I ;*generate numbers

NEXT I

FOR I = 19 TO 1 STEP –2

 DEL Numbers<I> ;*remove odd numbers

NEXT I

 105

DELETE

Use the DELETE statement to delete a record from a jBASE file.

COMMAND SYNTAX

DELETE {variable,} expression {SETTING setvar} {ON ERROR statements}

SYNTAX ELEMENTS

If specified, variable should have been the subject of a previous OPEN statement. If variable is omitted

then it assumes the default file variable.

The expression should evaluate to the name of a record stored in the open file.

If the SETTING clause is specified and the delete fails, it sets setvar to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

The statement will have no effect if the record name does not exist within the file.

If the program against the file record was holding a lock, it will release the lock.

EXAMPLES

OPEN "DAT1" TO DatFile1 ELSE ABORT 201, "DAT1"

DELETE DatFile1, "record1"

will delete the record "record1" from the file DAT1

 106

DELETELIST

The DELETELIST statement will delete the previously stored list named by expression.

COMMAND SYNTAX

DELETELIST expression

SYNTAX ELEMENTS

The expression should evaluate to the name of a list that has been stored with either the WRITELIST

statement or the SAVE-LIST command from the shell.

NOTES

If POINTER-FILE is accessible then it saves lists within else are saved in the jBASE work file.

EXAMPLES

List = "JobList"

DELETELIST List

Will delete the pre-saved list called JobList

 107

DELETESEQ

DELETESEQ deletes a sequential file.

COMMAND SYNTAX

DELETESEQ Expression {SETTING setvar} {ON ERROR statements} {LOCKED statements}

THEN | ELSE statements

or

DELETESEQ Expression, Filename {SETTING setvar} {ON ERROR statements} {LOCKED

statements} THEN | ELSE statements

SYNTAX ELEMENTS

Expression specifies the variable to contain next record from sequential file.

FileVar specifies the file descriptor of the file opened for sequential access.

Statements conditional jBASE BASIC statements

 108

DELETEU

Use the DELETEU statement to delete a record without releasing the update record lock set by a

previous READU statement

See also:READ statements.

Use the OPEN statement to open a file. If specifying a file variable in the OPEN statement, use it in the

DELETEU statement. You must place a comma between the file variable and the record ID expression.

If specifying no file variable in the DELETEU statement, the statement applies to the default file.

See also: OPEN statement for a description of the default file.

 109

DIMENSION

Use the DIM statement to declare arrays to the compiler before referencing.

COMMAND SYNTAX

DIM{ENSION} variable(number{, number... }){, variable(number {,number...}) ...}

SYNTAX ELEMENTS

The variable may be any valid variable name neither declared nor previously used. The numbers

define the size of each dimension and must be either constants or the subject of an EQUATE statement.

A single DIM statement may declare a number of arrays by separating their declarations with a comma.

NOTES

Declare the array before it is referenced in the program source (compilation as opposed to execution).

If using a variable as an undeclared dimensioned array the compiler will display an error message.

Do not use the array variable as a normal variable or dynamic array before dimensioning, as the

compiler will detect this as an error.

A dimension size may not be specified as one as this has no logical meaning. The compiler will detect

this as a warning.

When arrays are referenced directly as in A = Array(7), the compiler will optimize the reference as if it

was a single undimensioned variable.

See also: COMMON

EXAMPLES

EQUATE DimSize1 TO 29

DIM Array1(10,10), Array2(5, 20, 5, 8)

DIM Age(DimSize1)

 110

DIR

Use the DIR function to return information about a file.

COMMAND SYNTAX

DIR (filename)

The filename is a string argument representing the path and filename of a file. This function returns a

dynamic array with four attributes.

Attribute Description

1 File size in bytes

2 last modified date (in internal format)

3 last modified time (in internal format)

4 D if the filename is a directory, blank if the filename is a file

EXAMPLE

F = DIR(“.”)

PRINT F

“0{am}0{am}0{am}D”: is the output of this program.

 111

DIV

See also: Floating point Operations

Use the DIV function to calculate the value of the quotient after division of the dividend by the divisor.

COMMAND SYNTAX

DIV (dividend, divisor)

The dividend and divisor expressions can evaluate to any numeric value. The only exception is that the

divisor cannot be zero. If either dividend or divisor evaluates to null, it returns null.

EXAMPLE

I=400; K=200

J = DIV (I,K)

PRINT J

2: is the output of this program.

 112

DIVS

See also: Floating point Operations

Use the DIVS function to create a dynamic array containing the result of the element-by-element

division of two dynamic arrays.

COMMAND SYNTAX

DIVS (array1, array2)

The division of each element of array1 is by the corresponding element of array2, which returns the

result in the corresponding element of a new dynamic array. If elements of array1 have no

corresponding elements in array2, it pads array2 with ones and returns the array1 elements. If an

element of array2 has no corresponding element in array1, it returns zero. If an element of array2 is

zero, it prints a run-time error message and returns 0. If either element of a corresponding pair is null, it

returns null.

EXAMPLE

A=10:@VM:15:@VM:9:@SM:4

B=2:@VM:5:@VM:9:@VM:2

PRINT DIVS(A,B)

The output of this program is: 5]3]1\4]0

 113

DOWNCASE / UPCASE

DOWNCASE converts all uppercase characters in an expression to lowercase characters.

UPCASE converts all lowercase characters in an expression to uppercase characters.

COMMAND SYNTAX

DOWNCASE|LOWCASE(expression) / UPCASE (expression)

INTERNATIONAL MODE

When using the DOWNCASE or UPCASE function in International Mode the conversion from upper

case to lower case or vice versa will be determined for each character in the expression by the Unicode

standard, which describes the up or down case properties for the character.

SYNTAX ELEMENTS

expression in a string containing some alphabetic characters

NOTES

It ignores Non-alphabetic characters.

 114

DROUND

See also: Floating point Operations

The DROUND function performs double-precision rounding on a value. Double-precision rounding

uses two words to store a number, accommodating a larger number than in single-precision rounding,

which stores each number in a single word.

COMMAND SYNTAX

DROUND(val.expr [,precision.expr])

NOTE: DROUND affects the internal representation of the numeric value. It performs the rounding

without conversion to and from string variables. This increases the speed of calculation.

SYNTAX ELEMENTS

val.expr specifies the value to round.

precision.expr specifies the precision for the rounding. The valid range is 0 to 14. Default precision is

four places.

EXAMPLE

In the following example, the DROUND statement results in 18.84955596. The equation is resolved,

and rounds the result to eight decimal places.

A= DROUND((3.14159265999*2*3),8)

PRINT A

 115

DTX

The DTX function will return the hexadecimal representation of a numeric expression.

COMMAND SYNTAX

DTX(expression)

SYNTAX ELEMENTS

expression must evaluate to a decimal numeric value or a runtime error will occur.

NOTES

See also: XTD.

EXAMPLES

Decimal = 254

CRT DTX(Decimal)

displays FE

 116

DYNTOXML

COMMAND SYNTAX

DYNTOXML (array,xsl,result)

SYNTAX ELEMENTS

Convert the array to XML using the optimal xsl to transform

XML = (DYNTOXML(array,””,result)

Takes the contents of the dynamic array held in an array, and returns a generic XML representation of

that array or an error

(result=0 OK; result<>0 Bad);

EXAMPLE

a = "Tom" : @AM : "Dick" : @AM : "Harry"

 xml = DYNTOXML(a,"",result)

 CRT xml

SCREEN OUTPUT

<?xml version="1.0" encoding ="ISO-8859-1"?>

<array>

 <data attribute="1" value="1" subvalue="1">Tom</d ata>

 <data attribute="2" value="1" subvalue="1">Dick</ data>

 <data attribute="3" value="1" subvalue="1">Harry< /data>

</array>

If a style sheet is passed in the second parameter, it performs a transform to give a different format of

XML.

EXAMPLE

xml = DYNTOXML(a,xsl,result)

 CRT xml

SCREEN OUTPUT

<mycustomer>

 <firstname>Tom</firstname>

 <lastname>Dick</lastname>

 <address>Harry</address>

</mycustomer>

XSL CONTENTS

<xsl:template match="/">

<mycustomer>

 117

 <xsl:for-each select="array/data">

 <xsl:if test="@attribute=1">

 <firstname>

 <xsl:value-of select="."/>

 </firstname>

 </xsl:if>

 <xsl:if test="@attribute=2">

 <lastname>

 <xsl:value-of select="."/>

 </lastname>

 </xsl:if>

 <xsl:if test="@attribute=3">

 <address>

 <xsl:value-of select="."/>

 </address>

 </xsl:if>

 <xsl:if test="@attribute=4">

 <address2>

 <xsl:value-of select="."/>

 </address2>

 </xsl:if>

 118

EBCDIC

The EBCDIC function converts all the characters in an expression from the ASCII character set to the

EBCDIC character set.

COMMAND SYNTAX

EBCDIC(expression)

SYNTAX ELEMENTS

expression may contain a data string of any form. The function will convert it to a character string,

assume that the characters are all members of the ASCII set and translate them using a character map.

The original expression is unchanged while the returned result of the function is now the EBCDIC

equivalent.

EXAMPLE

READT AsciiBlock ELSE CRT "Tape failed!"; STOP

EbcdicBlock = EBCDIC(AsciiBlock) ;* Convert to EBCD IC

 119

ECHO

The ECHO statement will turn on or off the echoing of characters typed at the keyboard.

COMMAND SYNTAX

ECHO ON

ECHO OFF

ECHO expression

SYNTAX ELEMENTS

Use the statement with the keywords ON and OFF to specify echoing or not. If used with an

expression, then the expression should evaluate to a Boolean TRUE or FALSE result.

TRUE: echoing on

FALSE: echoing off.

NOTES

Use the SYSTEM function to determine the current state of character echoing. SYSTEM(24) returns

Boolean TRUE if enabled and returns Boolean FALSE if disabled.

EXAMPLES

ECHO OFF

CRT "Enter your password ":

INPUT Password

ECHO ON

.....

This will disable the character input echoing while typing in a password.

 120

ENCRYPT

The ENCRYPT function encrypts strings.

COMMAND SYNTAX

ENCRYPT(string, key, method)

SYNTAX ELEMENTS

string specifies the string for encryption.

key is the value used to encrypt the string. Its use depends on method.

method is a value, which indicates the encryption mechanism to use (See below):

The ENCRYPT and DECRYPT functions that are part of jBASE BASIC now support the following

cipher methods (Defined in JBC.h)

JBASE_CRYPT_GENERAL General-purpose encryption scheme

JBASE_CRYPT_ROT13 Simple ROT13 algorithm. (Key not used)

JBASE_CRYPT_XOR11 XOR MOD11 algorithm. Uses the first character of a key as a seed

value.

JBASE_CRYPT_RC2 RC2 algorithm

JBASE_CRYPT_DES DES algorithm

JBASE_CRYPT_3DES Three Key, Triple DES algorithm

JBASE_CRYPT_BLOWFISH Blowfish algorithm

JBASE_CRYPT_BASE64 (See below)

BASE64 is more of an encoding method rather than an encryption method. The reason for this is that

the output of an encryption often results in a binary string, which allows the representation of binary

data as a character string. Although not required the BASE64 operation is performed in addition to the

primary algorithm. E.g. JBASE_CRYPT_RC2_BASE64

ENCRYPT with this method is the same as an ENCRYPT with method JBASE_CRYPT_RC2

followed by ENCRYPT with method JBASE_CRYPT_BASE64.

DECRYPT with this method is the same as a DECRYPT with method JBASE_CRYPT_BASE64

followed by DECRYPT with method JBASE_CRYPT_RC2.

JBASE_CRYPT_RC2_BASE64 RC2 algorithm

JBASE_CRYPT_DES_BASE64 DES algorithm

JBASE_CRYPT_3DES_BASE64 Triple DES algorithm

JBASE_CRYPT_BLOWFISH _BASE64 Blowfish algorithm

NOTES

 121

See also: DECRYPT.

EXAMPLES

INCLUDE JBC.h

X = DECRYPT(X, Ekey, JBASE_CRYPT_GENERAL)

IF DECRYPT("rknzcyr”,"", JBASE_CRYPT_ROT13) = "exam ple" THEN

CRT "ROT13 ok"

END

IF ENCRYPT("g{ehvkm","9", JBASE_CRYPT_XOR11) = "exa mple" THEN

CRT "XOR.MOD11 ok"

END

cipher = JBASE_CRYPT_BLOWFISH_BASE64

key = "Our Very Secret Key"

str = "String to encrypt"

enc = ENCRYPT(str, key, cipher)

 CRT "Encrypted: ":enc

dec = DECRYPT(enc, key, cipher)

CRT "Decrypted: ":dec

Displays as output:

Encrypted: xuy6DXxUkD32spyfsKEvUtXrsjP7mC+R

Decrypted: String to encrypt

NOTES

See also: DECRYPT.

 122

ENTER

The ENTER statement unconditionally passes control to another executable program.

COMMAND SYNTAX

ENTER program_name

ENTER @variable_name

SYNTAX ELEMENTS

program_name is the name of the program for execution. The use of single or double quotes to

surround program_name is optional.

@ specifies that the program name is contained in a named variable.

variable_name is the name of the variable, which contains the program name.

NOTES

The jBASE BASIC COMMON data area can be passed to another jBASE BASIC program by

specifying the option "I" after the program name. Pass the COMMON data area only to another jBASE

BASIC program.

Use ENTER to execute any type of program.

If the program which contains the ENTER command (the current program) was called from a JCL

program, and the program for execution (the target program) is another jBASE BASIC program,

control will return to the original JCL program when the target program terminates. If the target

program is a JCL program, control will return to the command shell when the JCL program terminates.

EXAMPLES

ENTER "menu"

ProgName = "UPDATE"

ENTER @ ProgName

 123

EQS

Use the EQS function to test if elements of one dynamic array are equal to the elements of another

dynamic array.

COMMAND SYNTAX

EQS (array1, array2)

EQS compares each element of array1 with the corresponding element of array2 and returns, a one if

the two elements are equal in the corresponding element of a dynamic array. It returns a zero if the two

elements are not equal. It returns zero if an element of one dynamic array has no corresponding

element in the other dynamic array. If either element of a corresponding pair is null, it returns null for

that element.

EXAMPLE

A=1:@VM:45:@SM:3:@VM:"one"

B=0:@VM:45:@VM:1

PRINT EQS(A,B)

The output of this program is: 0]1\0]0

 124

EQUATE

Use EQUATE to declare a symbol equivalent to a literal, variable or simple expression.

COMMAND SYNTAX

EQU{ATE} symbol TO expression

SYNTAX ELEMENTS

symbol is the name of the symbol to use;.can be any name that would be valid for a variable.

expression can be a literal, a variable or a simple expression.

NOTES

Sensible use of EQUATEd symbols can make your program easier to maintain, easier to read, and

more efficient.

Efficiency can be enhanced because the address of an EQUATEd value is computed during

compilation and is substituted for each occurrence of the symbol name. Unlike the address of a

variable, which must be computed for each access during run time, the address of a symbol is always

known. This significantly reduces the processing overhead involved in accessing a particular value. See

also: the example for a more detailed explanation of the other benefits.

Enhance Readability by referring to say, QTY rather than INV_LINE(4). You would simply

"EQUATE QTY TO INV_LINE(4)" at an early stage in the program. This can also help with

maintenance of the program, particularly in situations where record layouts might change. For

example, if the quantity field moves to INV_LINE(6), you only have to change one line in your

program.

EXAMPLE

COMMON FLAG

EQUATE NO_CHARGE TO FLAG

EQUATE CR TO CHAR (13), TRUE TO 1, FALSE TO 0

EQUATE PRICE TO INV_LINE(7), TAX TO 0.175

EQUATE DASHES TO "-------"

IF NO_CHARGE = TRUE THEN PRICE = 0

CRT "Tax =":PRICE * TAX:CR:DASHES

 125

EREPLACE

Use the EREPLACE function to replace substring in an expression with another substring. If you do

not specify an occurrence, it replaces each occurrence of a substring.

COMMAND SYNTAX

EREPLACE (expression, substring, replacement [,occurrence [,begin]])

SYNTAX ELEMANTS

occurrence specifies the number of occurrences of substring to replace. To replace all occurrences,

specify occurrence as a number less than 1. begin specifies the first occurrence to replace. If begin is

omitted or less than one, it defaults to one. If substring is an empty string, replacement is prefixed to

expression. If replacement is an empty string, it removes all occurrences of substring. If expression

evaluates to null, it returns null. If substring, replacement, occurrence, or begin evaluates to null, the

EREPLACE function fails and the program terminates with a run-time error message. The EREPLACE

function behaves like the CHANGE function except when substring evaluates to an empty string.

EXAMPLE

A = "AAABBBCCCDDDBBB"

PRINT EREPLACE (A,"BBB","ZZZ")

PRINT EREPLACE (A,"","ZZZ")

PRINT EREPLACE (A,"BBB","")

The output of this program is:

AAAZZZCCCDDDZZZ

ZZZAAABBBCCCDDDBBB

AAACCCDDD

 126

EXECUTE

See also: Floating point Operations

The EXECUTE or PERFORM statement allows the currently executing program to pause and execute

any other UNIX/NT program, including another jBASE BASIC program or a jBASE command.

COMMAND SYNTAX

EXECUTE|PERFORM expression {CAPTURING variable} {RETURNING|SETTINGvariable}

{PASSLIST {expression}} {RTNLIST {variable}}{PASSDATA variable} {RTNDATA variable}

Passes Data, Dynamic Arrays and lists to programs written in jBASE BASIC, you can intercept screen

output and error messages from any program.

SYNTAX ELEMENTS

The PERFORMed expression can be formed from any jBASE construct. The system will not verify

that the command exists before executing it. Use a new Bourne Shell to execute a command (sh) by

default. The shell type can be changed by preceding the command with a CHAR(255) concatenated

with either "k", "c", or "s" to signify the Korn shell, C shell or Bourne Shell.

Variables used to pass data to the executed program should have been assigned to a value before using.

You can use any variable name to receive data.

CAPTURING variable

The capturing clause will capture any output that the executing program would normally send to the

terminal screen and place it in the variable specified. A field mark in the variable replaces every

newline normally sent to the terminal.

RETURNING variable or SETTING variable

The returning and setting clauses are identical. Both clauses will capture the output associated with any

error messages the executing program issues. The first field of the variable will be set to the exit code

of the program.

PASSLIST variable

The PASSLIST clause allows jBASE programs to exchange lists or dynamic arrays between them. The

variable should contain the list that the program wishes to pass to the jBASE program it is executing.

The program to be executed should be able to process lists, otherwise the list will just be ignored. If the

variable name is not specified then the clause will pass the default select list to the executing program.

RTNLIST variable

If the executed program sets up a list then use the RTNLIST clause to place that list into a specified

variable. It places the list in the default list variable if omitted.

PASSDATA variable

Passes the data in the specified variable to another jBASE BASIC program, the executing jBASE

BASIC program should retrieve the data using the COLLECTDATA statement.

RTNDATA variable

 127

The RTNDATA statement returns any data passed from an executing jBASE BASIC program in the

specified variable. The executing jBASE BASIC program should use the RTNDATA statement to pass

data back to the calling program.

NOTES

The clauses may be specified in any order within the statement but only one of each clause may exist.

EXAMPLES

OPEN "DataFile" ELSE ABORT 201, "DataFile"

SELECT

PERFORM "MyProg" SETTING ErrorList PASSLIST

EXECUTE "ls" CAPTURING DirListing

 128

EXIT

The EXIT statement halts the execution of a program and returns a numeric exit code to the parent

process. For compatibility with older versions of the language, use the EXIT statement without an

expression. In this case, it is synonymous with the BREAK statement.

COMMAND SYNTAX

EXIT (expression)

EXIT

SYNTAX ELEMENTS

Any expression provided must be parenthesized and evaluate to a numeric result. The numeric result is

used as the UNIX or Windows exit code, which is returned to the parent process by the C function

exit(). If the expression does not evaluate to a numeric result the program will enter the debugger and

display a suitable error message.

NOTES

The expression has been forced to be parenthesized to avoid confusion with the EXIT statement

without an expression as much as is possible. The authors apologize for having to provide two different

meanings for the same keyword

See also:BREAK.

EXAMPLE

READ Record FROM FileDesc, RecordKey ELSE

 CRT "Record ":RecordKey:" is missing"

 EXIT(1)

END ELSE

 CRT "All required records are present"

 EXIT(0)

END

 129

EXP

The EXP function returns the mathematical constant to the specified power.

COMMAND SYNTAX

EXP(expression)

SYNTAX ELEMENTS

The expression may consist of any form of jBASE BASIC expression but should evaluate to a numeric

argument or a runtime error occurs and the program enters the debugger.

NOTES

The function returns a value that is accurate to as many decimal places specified by the PRECISION of

the program.

EXAMPLE

zE10 = EXP(10) ;* Get e^10

 130

EXTRACT

The EXTRACT function is an alternative method of accessing values in a dynamic array other than

using the <n,n,n> syntax described earlier.

COMMAND SYNTAX

EXTRACT(expression1, expression2 {, expression3 {, expression4}})

SYNTAX ELEMENTS

expression1 specifies the dynamic array to work with and will normally be a previously assigned

variable.

The expressions 2 through 4 should all return a numeric value or a runtime error will occur and the

program will enter the debugger.

expression2 specifies the field to extract, expression3 the value to extract and expression4 the sub-

value to extract.

EXAMPLES

A = "0"; A<2> = "1"; A<3> = "2"

CRT EXTRACT(A, 2)

Will display the value "1".

 131

FADD

The FADD function performs floating point addition of two numeric values.

COMMAND SYNTAX

FADD(expression1, expression2)

SYNTAX ELEMENTS

Both expression1 and expression 2 must evaluate to non-null numeric values.

NOTES

If either of the arguments evaluates to null then a run time "non-numeric" error will occur.

EXAMPLES

PRECISION 7

CRT FADD(0.5044,23.7290002)

displays 24.2334002

 132

FDIV

The FDIV function performs floating point division on two numeric values.

COMMAND SYNTAX

FDIV(expression1, expression2)

SYNTAX ELEMENTS

Both expression1 and expression 2 must evaluate to non-null numeric values.

 NOTES

If either of the arguments evaluates to null then a run time "non-numeric" error will occur.

If the second argument evaluates to zero then a run time "divide by zero" error will occur.

The calculation is not subject to the PRECISION setting.

EXAMPLES

CRT FMUL(1,7)

displays 0.1428571429

 133

FIELD

The FIELD function returns a multi-character delimited field from within a string.

COMMAND SYNTAX

FIELDS(string, delimiter, occurrence{, extractCount})

SYNTAX ELEMENTS

string specifies the string, from which the field(s) is to be extracted.

delimiter specifies the character or characters that delimit the fields within the dynamic array.

occurrence should evaluate to an integer of value 1 or higher. It specifies the delimiter used as the

starting point for the extraction.

extractCount is an integer that specifies the number of fields to extract. If omitted, assumes one.

NOTES

If the emulation option, jbase_field, is set then the field delimiter may consist of more than a single

character, allowing fields to be delimited by complex codes.

See also: GROUP

EXAMPLES

Fields = "AAAA:BBJIMBB:CCCCC"

CRT FIELD(Fields, ":", 3)

CRT FIELD(Fields, "JIM", 1)

displays:

CCCCC

AAAA:BB

 134

FIELDS

The FIELDS function is an extension of the FIELD function. It returns a dynamic array of multi-

character delimited fields from a dynamic array of strings.

COMMAND SYNTAX

FIELDS(DynArr, Delimiter, Occurrence{, ExtractCount})

SYNTAX ELEMENTS

DynArr should evaluate to a dynamic array.

Delimiter specifies the character or characters that delimit the fields within the dynamic array.

Occurrence should evaluate to an integer of value 1 or higher. It specifies the delimiter used as the

starting point for the extraction.

ExtractCount is an integer that specifies the number of fields to extract. If omitted, assumes one.

NOTES

If the emulation option, jbase_field, is set then the field delimiter may consist of more than a single

character, allowing fields to be delimited by complex codes.

EXAMPLES

The following program shows how each element of a dynamic array can be changed with the FIELDS

function.

t = ""

t<1> = "a:b:c:d:e:f"

t<2> = "aa:bb:cc:dd:ee:ff" : @VM: "1:2:3:4" : @SVM: ":W:X:Y:Z"

t<3> = "aaa:bbb:ccc:ddd:eee:fff":@VM:@SVM

t<4> = "aaaa:bbbb:cccc:dddd:eeee:ffff"

r1 = FIELDS(t,":",2)

r2 = FIELDS(t,":",2,3)

r3 = FIELDS(t,"bb",1,1)

The above program creates three dynamic arrays.

V - represents a value mark.

s - represents a sub-value mark.

r1 <1>b

<2>bb v 2 s W

 135

<3>bbb

<4>bbbb

r2 <1>b:c:d

<2>bb:cc:dd v 2:3:4 s W:X:Y<3>bbb:ccc:ddd v s

<4>bbbb:cccc:dddd

r3 <1>a:b:c:d:e:f

<2>aa: v 1:2:3:4 s W:X:Y:Z

<3>aaa: v s

<4>aaaa:

 136

FILEINFO

Use the FILEINFO function to return information about the specified file variable.

COMMAND SYNTAX

FILEINFO (file.variable, key)

This function is currently limited to return values to determine if the file variable is a valid file

descriptor variable.

Key Return Status

01 if file.variable is a valid files variable zero otherwise.

 137

FILELOCK

Use the FILELOCK statement to acquire a lock on an entire file. This prevents other users from

updating the file until the program releases it. A FILELOCK statement that does not specify lock.type

is equivalent to obtaining an update record lock on every record of the file. An open file is specified by

file.variable. If no file.variable is specified, the default file is assumed; if the file is neither accessible

nor open, the program enters the debugger.

COMMAND SYNTAX

FILELOCK filevar {LOCKED statements} {ON ERROR statements}

FILEUNLOCK filevar {ON ERROR statements}

DESCRIPTION

When the FILELOCK statement is executed, it will attempt to take an exclusive lock on the entire file.

If there are any locks currently outstanding on the file, then the statement will block until there are no

more locks on the file. The use of the LOCKED clause allows the application to perform an unblocked

operation.

When the FILELOCK statement is blocked waiting for a lock, other processes may continue to perform

database operations on that file, including the removal of record locks and the taking of record locks.

Once the FILELOCK is taken, it will block ALL database accesses to the file whether or not the access

involves record locks. i.e. a READ will block once it has been executed, as will, CLEARFILE etc,. The

lock continues until the file is closed, the program terminates, or a FILEUNLOCK statement is

executed.

NOTE: The FILELOCK statement might differ to those found on other vendors systems. You should

also not that the use of these statements for other than administration work, for example, within batch

jobs, is not recommended. The replacement of such with more judicious use of item locks is advised.

IMPLEMENTATION NOTES

The FILELOCK command is implemented using the native locking mechanism of the operating system

and is entirely at its mercy. Because of this, you may see some slight implementation differences

between operating systems. These comments on native locking do not apply to the NT platform as

jBASE uses the NT locking mechanism.

The uses of the native (UNIX) locking mechanism means the file in question MUST NOT use the

jBASE locking mechanism. You can set a file to use the native locking mechanism by using the

jchmod command:

 jchmod +N filename {filename ...}

Alternatively, like this when the file is originally created:

 CREATE-FILE filename 1,1 23,1 NETWORK=TRUE

If the file continues to use the jBASE record locking, then the ON ERROR clause will be taken and the

SYSTEM(0) and STATUS() functions will set to 22 to indicate the error.

 138

EXAMPLES

OPEN '','SLIPPERS' TO FILEVAR ELSE STOP "CAN'T OPEN FILE"

FILELOCK FILEVAR LOCKED STOP 'FILE IS ALREADY LOCKE D'

FILEUNLOCK DATA

OPEN '','SLIPPERS' ELSE STOP "CAN'T OPEN FILE"

FILELOCK LOCKED STOP 'FILE IS ALREADY LOCKED'

PRINT "The file is locked."

FILEUNLOCK

 139

FILEUNLOCK

Use the FILEUNLOCK statement to release a file lock set by the FILELOCK statement.

COMMAND SYNTAX

FILEUNLOCK [file.variable] [ON ERROR statements]

 file.variable specifies a file previously locked with a FILELOCK statement. If file.variable is not

specified, the default file with the FILELOCK statement is assumed .If file.variable is not a valid file

variable then the FILEUNLOCK statement will enter the debugger.

The ON ERROR Clause

The ON ERROR clause is optional in the FILELOCK statement. The ON ERROR clause lets you

specify an alternative for program termination when encountering a fatal error during processing of the

FILELOCK statement. If a fatal error occurs, with no ON ERROR clause specified, the program enters

the debugger.

If the ON ERROR clause is used, the value returned by the STATUS function is the error number.

EXAMPLE

In the following example, the first FILEUNLOCK statement unlocks the default file. The second

FILEUNLOCK statement unlocks the file variable FILE.

OPEN '','SLIPPERS' ELSE STOP "CAN'T OPEN SLIPPERS"

FILELOCK

FILEUNLOCK

OPEN 'PIPE' TO FILEVAR ELSE STOP

FILELOCK FILEVAR

FILEUNLOCK FILEVAR

 140

FIND

The FIND statement allows the location of a specified string within a dynamic array.

COMMAND SYNTAX

FIND expression1 IN Var1 {, expression2} SETTING Var2 {, Var3 {, Var4}} THEN | ELSE

statement(s)

SYNTAX ELEMENTS

expression1 evaluates to the string with which to compare every element of the dynamic array. Var1 is

the dynamic array that will be searched. The FIND command will normally find the first occurrence of

expression1 unless expression2 is specified. If specified then expression2 will cause a specific

occurrence of expression1 to be located. The three variables Var2, Var3, Var4 are used to record the

Field, Value and Sub-Value positions in which expression1 was found.

If expression1 is found in any element of Var1 then Vars 2, 3 and 4 are set to the position in which it

was found and any THEN clause of the statement is executed. If expression1 is not found within any

element of the dynamic array then Vars 2, 3 and 4 are undefined and the ELSE clause of the statement

is executed.

NOTES

The statement may omit either the THEN clause or the ELSE clause but may not omit both. It is valid

for the statement to contain both clauses if required.

See also: LOCATE, FINDSTR

EXAMPLES

Var = "ABC":VM:"JAC":AM:"CDE":VM:"WHO"

FIND "JAC" IN Var SETTING Ap, Vp THEN

 CRT "JAC is in Field ":Ap:", value ":Vp

END ELSE

 CRT "JAC could not be found"

END

Will display: JAC is in Field 1, value 2

 141

FINDSTR

The FINDSTR statement locates a string as a substring of a dynamic array element. It is similar in

operation to the FIND statement.

COMMAND SYNTAX

FINDSTR expression1 IN Var1 {, expression2} SETTING Var2 {,Var3 {, Var4}} THEN | ELSE

statement(s)

SYNTAX ELEMENTS

expression1 evaluates to the string with which to search every element of the dynamic array. Var1 is

the actual dynamic array that will be searched. FINDSTR will normally locate the first occurrence of

expression1 unless expression2 is specified. If specified then expression2 will cause a specific

occurrence of expression1 to be located. The three variables Var2, Var3, Var4 are used to record the

Field, Value and Sub-Value positions in which expression1 was found.

If expression1 is found as a substring of any element of Var1 then Vars 2, 3 and 4 are set to the position

in which it was found and the THEN clause of the statement is executed if it is present. If expression1

is not found within any element of the dynamic array then Vars 2,3 and 4 are undefined and the ELSE

clause of the statement is executed.

NOTES

The statement may omit either the THEN clause or the ELSE clause but may not omit both. It is valid

for the statement to contain both clauses if required.

EXAMPLES

Var = "ABC":VM:"OJACKO":AM:"CDE":VM:"WHO"

FINDSTR "JAC" IN Var SETTING Ap, Vp THEN

CRT "JAC is within Field ":Ap:", value ":Vp

END ELSE

 CRT "JAC could not be found"

END

Displays: JAC is within Field 1, value 2

 142

FORMLIST

The FORMLIST statement creates an active select list from a dynamic array.

COMMAND SYNTAX

FORMLIST variable1 {TO variable2 | listnum}

SYNTAX ELEMENTS

variable1 specifies the dynamic array from which the active select list is to be created

 If variable2 is specified then the newly created list will be placed in the variable. Alternatively, a

select list number in the range 0 to 10 can be specified with listnum. If neither variable2 nor listnum is

specified then the default list variable will be assumed.

NOTES

See also: DELETELIST, READLIST, WRITELIST

EXAMPLES

MyList = "key1":@AM:"key2":@AM:"key3"

FORMLIST MyList TO ListVar

LOOP

 READNEXT Key FROM ListVar ELSE EXIT

 READ Item FROM Key THEN

 * Do whatever processing is necessary on Item

 END

REPEAT

 143

FLUSH

Writes all the buffers for a sequential I/O file immediately. Normally, sequential I/O uses buffering for

input/output operations, and writes are not immediately flushed.

COMMAND SYNTAX

FLUSH file.variable {THEN statements [ELSE statements] | ELSE statements}

file.variable specifies a file previously opened for sequential processing. If file.variable evaluates to

null, the FLUSH statement fails and the program enters the debugger. After the buffer is written to the

file, it executes the THEN statements, ignoring the ELSE statements.

If none of the above can be completed, it executes the ELSE statements.

EXAMPLE

OPENSEQ 'DIRFILE', 'RECORD' TO FILE THEN

PRINT "'DIRFILE' OPENED FOR SEQUENTIAL PROCESSING"

END ELSE STOP

WEOFSEQ FILE

*

WRITESEQ 'NEW LINE' ON FILE THEN

FLUSH FILE THEN

PRINT "BUFFER FLUSHED"

END ELSE PRINT "NOT FLUSHED"

ELSE ABORT

*

CLOSESEQ FILE

END

 144

FMT

Join lines on U in mask code definition.

Expand on syntax to formatting superset. i.e. we now allow [Width] [Background] [Justification]

INTERNATIONAL MODE

When using the FMT function in International Mode the “Width” fields refer to character display

widths, such that a character may take up more than a single display position. This is typical of the

Japanese, Chinese, and characters whereby the character display requires possibly two display

positions.

Additional date formatting codes have been provided for use in Internationalized programs.

See also: OCONV / FMTS as per FMT

GE - Operator similar to EQ. compares two expressions for greater than or equal

GT - Greater than

GTS - Add as per GES, except just greater than for dynamic array comparison.

INTERNATIONAL MODE

When using the “GE/GT/GES/GTS” function in International Mode, the “operator/function” will use

the currently configured locale to determine the rules by which each string is considered greater or

equal to the other.

Mask Code Description

j Justification

R Right Justified

L Left Justified

U Left Justified, Break on space. Note: This justification will format the

output into blocks of data in the variable and it is up to the programmer

to actually separate the blocks.

D Date (OCONV)

n Decimal Precision: A number from 0 to 9 that defines the decimal precision. It

specifies the number of digits for output following the decimal point. The

processor inserts trailing zeros if necessary. If n is omitted or is 0, a decimal

point will not be output.

m Scaling Factor: A number that defines the scaling factor. The source value is

descaled (divided) by that power of 10. For example, if m=1, the value is

divided by 10; if m=2, the value is divided by 100, and so on. If m is omitted, it

is assumed equal to n (the decimal precision).

Z Suppress leading zeros. NOTE: fractional values, which have no integer, will

 145

Mask Code Description

have a zero before the decimal point. If the value is zero, a null will be output.

, The thousands separator symbol. It specifies insertion of thousands separators

every three digits to the left of the decimal point. You can change the display

separator symbol by invoking the SET-THOU command. Use the SET-DEC

command to specify the decimal separator.

c Credit Indicator. NOTE: If a value is negative and you have not specified one of

these indicators, the value will be displayed with a leading minus sign. If you

specify a credit indicator, the data will be output with either the credit characters

or an equivalent number of spaces, depending on its value.

C Prints the literal CR after negative values.

D Prints the literal DB after positive values.

E Encloses negative values in angle brackets < >

M Prints a minus sign after negative values.

N Suppresses embedded minus sign.

$ Appends a Dollar sign to value.

Fill Character and

Length

#n Spaces. Repeat space n times. Output value is overlaid on the spaces

created.

*n Asterisk. Repeat asterisk n times. Output value is overlaid on the

asterisks created.

%n Zero. Repeat zeros n times. Output value is overlaid on the zeros created.

&x Format. x can be any of the above format codes, a currency symbol, a

space, or literal text. The first character following & is used as the

default fill character to replace #n fields without data. Format strings are

enclosed in parentheses "()".

 EXAMPLES

Format

Expression

Source

Value (X)

Returned Value

(columns) (V)

12345678901234567890

12345678901234567890

12345678901234567890

V = FORMAT(X, "R2#10") 1234.56 1234.56

V = FORMAT(X, "L2%10") 1234.56 1234.56000

V = FORMAT(X, "R2%10") 1234.56 0001234.56

V = FORMAT(X, "L2*10") 1234.56 12.34*****

V = FORMAT(X, "R2*10") 1234.56 *****12.34

V = FORMAT(X, "R2,$#15") 123456.78 $123,456.78

V = FORMAT(X, "R2,&$#15") 123456.78 $$$$$123,456.78

 146

V = FORMAT(X, "R2,& $#15") 123456.78 $ 123,456.78

V = FORMAT(X, "R2,C&*$#15") -123456.78 $***123,456.78CR

V = FORMAT(X, "R((###) ###-###)") 1234567890 (123) 456-7890

V = FORMAT(X, "R((#3) #2-#4)") 1234567890 (123) 456-7890

V = FORMAT(X, "L& Text #2-#3") 12345 Text 12-345

V = FORMAT(X, "L& ((Text#2) #3)") 12345 (Text12) 345

V = FORMAT(X, "T#20") This is a test of the

American Broadcasting

System

This is a test of the

American

Broadcasting System

V = FORMAT(X, "D4/") 12260 07/25/2001

 147

FMTS

Use the FMTS function to format elements of dynamic.array for output. Each element of the array is

independently acted upon and returned as an element in a new dynamic array.

COMMAND SYNTAX

FMTS (dynamic.array, format)

SYNTAX ELEMENTS

format is an expression that evaluates to a string of formatting codes. The Syntax of the format

expression is:

[width] [background] justification [edit] [mask]

The format expression specifies the width of the output field, the placement of background or fill

characters, line justification, editing specifications, and format masking. For complete syntax details,

See also: FMT function.

If dynamic.array evaluates to null, it returns null. If format evaluates to null, the FMTS function fails

and the program enters the debugger.

GE OPERATOR SIMILAR TO eq. compares two expressions for greater than or equal

GT As Above, except Greater than

GTS Add as per GES, except just greater than for dynamic array expression

FMUL/FDIV/FADD/FSUB

 148

FOLD

The FOLD function re-delimits a string by replacing spaces with attribute marks at positions defined by

a length parameter.

COMMAND SYNTAX

FOLD(expression1, expression2)

SYNTAX ELEMENTS

expression1 evaluates a string to be re-delimited.

expression2 evaluates to a positive integer that represents the maximum number of characters between

delimiters in the resultant string.

NOTES

The FOLD function creates a number of sub-strings such that the length of each sub-string does not

exceed the length value in expression2. It converts spaces to attribute marks except when enclosed in

sub-strings and removes extraneous spaces.

EXAMPLES

The following examples show how the FOLD function delimits text based on the length parameter. The

underscores represent attribute marks.

q = "Smoking is one of the leading causes of statis tics"

CRT FOLD(q, 7)

Smoking_is one_of the_leading_causes_of_statist_ics

q = "Hello world"

CRT FOLD(q, 5)

Hello_world

q = "Let this be a reminder to you all that this or ganization will

not

 tolerate failure."

CRT FOLD(q, 30)

let this be a reminder to you_all that this organiz ation_will not

tolerate failure.

q = "the end"

 149

CRT FOLD(q, 0)

t_h_e_e_n_d

 150

FOOTING

The FOOTING statement halts all subsequent output to the terminal at the end of each output page.

The statement allows the evaluation and display of an expression at the foot of each page. Output,

which is current, and being sent to the terminal, the output is paused until the entry of a carriage return

at the terminal (unless the N option is specified either in the current HEADING or in this FOOTING).

COMMAND SYNTAX

FOOTING expression

SYNTAX ELEMENTS

The expression should evaluate to a string, which is printed at the bottom of every page of output. The

string could contain a number of interpreted special characters, replaced in the string before printing.

The following characters have special meaning within the string:

"C{n}" center the line, if n is specified the output line is assumed to be n characters long

"D" or \\ replace with the current date

"L" or] replace with the newline sequence

"N" terminal output does not pause at the end of each page

"P" or ^ replace with the current page number

"PP" or ^^ replace with the current page number in a field of 4 characters; the field is right

justified

"T" or \ replace with the current time and date

" replace with a single " character

NOTES

If the output is to the printer a PRINTER ON statement is in force; output sent to the terminal with the

CRT statement is not paged; if output is to the terminal then all output is paged.

EXAMPLE

FOOTING "Programming staff by weight Page "P"

 151

FOR

The FOR statement allows the construction of looping constructs within the program, which is

controlled by a counting variable; this can be terminated early by expressions tested after every

iteration.

COMMAND SYNTAX

FOR var=expression1 TO expression2 {STEP expression3} {WHILE | UNTIL expression4}...NEXT

{var}

SYNTAX ELEMENTS

var is the counting variable used to control the loop. The first time the loop is entered var is assigned

the value of expression1, which must evaluate to a numeric value. After each iteration of the loop, var

is automatically incremented by one.

expression2 must also evaluate to a numeric value as it causes the loop to terminate when the value of

var is greater than the value of this expression. expression2 is evaluated at the start of every iteration of

the loop and compared with the value of expression1.

If the STEP expression3 clause is included within the statement, var will automatically be incremented

by the value of expression3 after each iteration of the loop. expression3 is evaluated at the start of each

iteration.

expression3 may be negative, in which case the loop will terminate when var is less than expression2.

The statement may optionally include either an evaluated WHILE or UNTIL clause (not both), before

each iteration of the loop. When the WHILE clause is specified the loop will only continue with the

next iteration if expression4 evaluates to Boolean TRUE. When the UNTIL clause is specified the loop

will only continue with the next iteration if expression4 evaluates to Boolean FALSE.

NOTES

Because expression2 and expression3 must be evaluated upon each iteration of the loop, you should

only code complex expressions here if they may change within each iteration. If the values they yield

will not change then you should assign the value of these expressions to a variable before coding the

loop statement. You can replace expressions 3 and 4 with these variables. This can offer large

performance increases where complex expressions are in use.

See also: BREAK, CONTINUE.

EXAMPLES

Max =DCOUNT(BigVar, CHAR (254))

FOR I = 1 TO Max STEP 2 WHILE BigVar LT 2

5

 BigVar += 1

 152

NEXT I

This example will increment every second field of the variable BigVar but the loop will terminate early

if the current field to be incremented is not numerically less than 25.

 153

FSUB

The FSUB function performs floating-point subtraction on two numeric values.

COMMAND SYNTAX

FSUB(expression1, expression2)

SYNTAX ELEMENTS

Both expression1 and expression 2 must evaluate to non-null numeric values.

NOTES

If either of the arguments evaluates to null then a run time "non-numeric" error will occur.

EXAMPLES

PRECISION 7

CRT FSUB(2.54,5.703358)

displays -3.163358

 154

FUNCTION

Identifies a user-defined function, which can be invoked by other jBASE BASIC programs, arguments

to the function can optionally be declared.

COMMAND SYNTAX

FUNCTION name {({MAT} variable, {MAT} variable...) }

SYNTAX ELEMENTS

Name is the name by which the function is invoked.

Variable is an expression used to pass values between the calling program and the function.

NOTES

Use the FUNCTION statement to identify user-written source code functions. Each function must be

coded in separate records and the record Id must match that of the Function Name, which in turn

should match the reference in the calling program.

The optional comma separated variable list can be a number of expressions that pass values between

the calling programs and the function. To pass an array the variable name must be preceded by the

MAT keyword. When a user-written function is called, the calling program must specify the same

number of variables that are specified in the FUNCTION statement.

An extra 'hidden' variable is used to return a value from the user-written function. The value to be

returned can be specified within the Function by the RETURN (value) statement. If using the

RETURN statement without a value then by default it returns an empty string.

The calling program must specify a DEFFUN or DEFB statement to describe the function to be called

and the function source must be cataloged and locatable similar to subroutines.

EXAMPLE

FUNCTION MyFunction(A, B)

 Result = A * B

RETURN (Result)

 155

GES

Use the GES function to test if elements of one dynamic array are greater than or equal to

corresponding elements of another dynamic array.

COMMAND SYNTAX

GES (array1, array2)

SYNTAX ELEMENTS

Compares each element of array1 with the corresponding element of array2, if the element from array1

is greater than or equal to the element from array2, it returns a one in the corresponding element of a

new dynamic array. If the element from array1 is less than the element from array2, it returns a zero

(0). If an element of one dynamic array has no corresponding element in the other dynamic array, it

evaluates the undefined element as empty, and the comparison continues.

If either element of a corresponding pair is null, it returns null for that element.

 156

GET

The GET statement reads a block of data directly from a device.

COMMAND SYNTAX

GET Var {,length} {SETTING Count} FROM Device {UNTIL TermChars} {RETURNING

TermChar} {WAITING Timeout} THEN | ELSE statements

SYNTAX ELEMENTS

Var is the variable in which to place the input (from the previously open Device).

If length is specified, it limits the number of characters read from the input device.

If the optional Count option is used, it returns the number of characters actually read from the device.

Device is the file variable associated with the result from a successful OPENSEQ or OPENSER

command.

TermChars specifies one or more characters that will terminate input.

TermChar The actual character that terminated input

Timeout is the number of seconds to wait for input. If no input is present when the timeout period

expires, the ELSE clause (if specified) is executed.

NOTES

The GET statement does no pre-or post-processing of the input data stream - nor does it handle any

terminal echo characteristics. If this is desired, the application - or device drive - will handle it.

If there are no specified length and timeout expressions, the default input length is one (1) character. If

no length is specified, but TermChars are, there is no limit to the number of characters input.

The GET syntax requires a specified THEN or ELSE clause, or both. The THEN clause executes when

the data received is error free; the ELSE clause executes when the data is unreceiveable (or a timeout

occurs).

See: GETX

 157

GETCWD

The GETCWD function allows a jBASE BASIC program to determine the current working directory of

the program, which is normally be the directory in which execution of the program occurred but

possibly changed using the CHDIR function.

COMMAND SYNTAX

GETCWD(Var)

SYNTAX ELEMENTS

When executed the Var will be set to the name of the current working directory; the function itself

returns a Boolean TRUE or FALSE value to indicate whether the command was successful or not.

NOTES

Refer to your UNIX or Windows documentation for more information on the concept of the current

working directory.

EXAMPLES

IF GETCWD(Cwd) THEN

 CRT "Current Working Directory = ":Cwd

END ELSE

 CRT "Could not determine CWD!"

END

 158

GETENV

All processes have an environment associated with them that contains a number of variables indicating

the state of various parameters. The GETENV function allows a jBASE BASIC program to determine

the value of any of the environment variables associated with it.

COMMAND SYNTAX

GETENV(expression, variable)

SYNTAX ELEMENTS

The expression should evaluate to the name of the environment variable whose value is to be returned.

The function will then assign the value of the environment variable to variable. The function itself

returns a Boolean TRUE or FALSE value indicating the success or failure of the function.

.

See: PUTENV

EXAMPLE

IF GETENV("PATH", ExecPath) THEN

 CRT "Execution path is ":ExecPath

END ELSE

 CRT "Execution path is not set up"

END

 159

GETLIST

GETLIST allows the program to retrieve a previously stored list (perhaps created with the SAVE-LIST

command), into a jBASE BASIC variable.

COMMAND SYNTAX

GETLIST expression TO variable1 {SETTING variable2} THEN|ELSE statements

SYNTAX ELEMENTS

variable1 is the variable into which the list will be read. expression should evaluate to the name of a

previously stored list to retrieve, or null. If expression evaluates to null, the current default external

select list (generated by a previous SELECT command for example) will be retrieved. If specified,

variable2 will be set to the number of elements in the list.

If the statement succeeds in retrieving the list, then the statements associated with any THEN clause

will be executed. If the statement fails to find the list, then the statements associated with any ELSE

clause will be executed.

NOTES

The GETLIST statement is identical in function to the READLIST statement.

See also: DELETELIST, WRITELIST

EXAMPLES

Find the list first

GETLIST "MyList" TO MyList ELSE STOP

LOOP

* Loop until there are no more elements

WHILE READNEXT Key FROM MyList DO

......

REPEAT

 160

GETUSERGROUP

For UNIX, the jBASE BASIC GETUSERGROUP function returns the group number for the user ID

specified by @uid. For Windows NT or Windows 2000, it returns zero.

COMMAND SYNTAX

GETUSERGROUP(uid)

EXAMPLES

In the following example, the program statement assigns the user group to variable X:

X = GETUSERGROUP(@UID)

In the next example, the program statement assigns the user group for 1023 to variable X:

X = GETUSERGROUP(1023)

 161

GETX

The GETX statement reads a block of data (in ASCII hexadecimal format) directly from a device.

COMMAND SYNTAX

GETX Var {,length} {SETTING Count} FROM Device {UNTIL TermChars} {RETURNING

TermChar} {WAITING Timeout} THEN | ELSE statements

SYNTAX ELEMENTS

Var is the variable in which to place the input (from the previously open Device).

If specifying a length it limits the number of characters read from the input device.

If the optional Count option is used, it returns the number of characters actually read from the device.

Device is the file variable associated with the result from a successful OPENSEQ or OPENSER

command.

TermChars specifies one or more characters that will terminate input.

TermChar The actual character that terminated input

Timeout is the number of seconds to wait for input. If no input is present when the timeout period

expires, the ELSE clause (if specified) is executed.

NOTES

The GETX statement does no pre-or post-processing of the input data stream nor does it handle any

terminal echo characteristics. It is assumed that if this is desired the application - or device drive - will

handle it.

If there are no specified length and timeout expressions, the default input length is one (1) character. If

there is no length specified, but TermChars are, there is no limit to the number of characters input.

The GETX syntax requires a specified THEN or ELSE clause, or both. The THEN clause executes

when the data received is error free; the ELSE clause executes when the data is unreceiveable (or a

timeout occurs).

GETX will convert all input into ASCII hexadecimal format after input.

See also: GET

 162

GOSUB

The GOSUB statement causes execution of a local subroutine, after which execution will continue with

the next line of code.

COMMAND SYNTAX

GOSUB label

SYNTAX ELEMENTS

The label should refer to an existent label within the current source code, which identifies the start of a

local subroutine.

EXAMPLES

GOSUB Initialize ;* open files etc..

GOSUB Main ;* perform main program

GOSUB Finish ;* close files etc..

STOP

...

Initialize: * open files

OPEN......

.

RETURN

....

Main: * main execution loop

......

RETURN

Finish: * clean up after execution

......

RETURN

 163

GOTO

The GOTO statement causes program execution to jump to the code at a specified label.

COMMAND SYNTAX

GO{TO} Label

SYNTAX ELEMENTS

The label should refer to an existing label within the current source code.

NOTES

Warning: using the GOTO command obscures the readability of the code and is a hindrance to

maintainability. All programs written using the GOTO construct can be written using structured

statements such as LOOP and FOR. There are various opinions on this issue but the consensus is, avoid

GOTO.

One possibly acceptable use of the GOTO statement is to transfer execution to an error handler upon

detection of a fatal error that will cause the program to terminate.

EXAMPLE

GOTO Exception;* jump to the exception handler

.....

Exception:* exception handler

....STOP

 164

GROUP

The GROUP function is equivalent to the FIELD function.

COMMAND SYNTAX

GROUP(Expression1, Expression2, Expression3, Expression4)

SYNTAX ELEMENTS

Expression1 evaluates to the string containing fields to be extracted.

Expression2 evaluates to the character(s) delimiting each field within Expression1.

Expression3 should evaluate to a numeric value specifying the number of the first field to extract from

Expression1.

Expression4 evaluates to a numeric value specifying the number of fields to extract as a group.

NOTES

Expression2 may evaluate to more than a single character allowing fields to be delimited with complex

expressions.

EXAMPLES

A = "123:-456:-789:-987:-"

CRT GROUP(A, ":-", 2, 2)

This example displays:

456:-789

on the terminal being the second and third fields and their delimiter within variable A

 165

HEADING

Heading halts all subsequent output to the terminal at the end of each page. The statement evaluates

and displays an expression at the top of each page. Current output sent to the terminal, is paused until

entry of a carriage return at the terminal - unless the N option is specified.

COMMAND SYNTAX

HEADING expression

SYNTAX ELEMENTS

The expression should evaluate to a string printed at the top of every page of output. The string may

contain a number of interpreted special characters, replaced in the string before printing. The following

characters have special meaning within the string:

"C{n}" Center the line. If n is specified the output line is assumed n characters long.

"D" or \\ Replace with the current date.

"L" or] Replace with the newline sequence.

"N" Terminal output does not pause at the end of each page.

"P" or ^ Replace with the current page number.

"PP" or ^^ Replace with the current page number in a field of 4 characters. The field is

right justified.

"T" or \ Replace with the current time and date.

" Replace with a single " character.

NOTES

If output is to the printer, a PRINTER ON statement is in use, and does not page output sent to the

terminal with the CRT statement. Unless you specify the “N” option, all output sent to the terminal is

paged.

EXAMPLES

HEADING "Programming staff by size of waist Page "P"

 166

HEADINGE and HEADINGN

The HEADINGE statement is the same as the HEADING statement, which causes a page eject with the

HEADING statement.

The HEADINGN statement is the same as the HEADING statement, and suppresses the page eject.

 167

HUSH

Use the HUSH statement to suppress the display of all output normally sent to a terminal during

processing. HUSH also suppresses output to a COMO file.

HUSH acts as a toggle. If it is used without a qualifier, it changes the current state. Do not use this

statement to shut off output display unless you are sure the display is unnecessary. When you use

HUSH ON, all output is suppressed including error messages and requests for information.

COMMAND SYNTAX

HUSH { ON | OFF | expression }

EXAMPLE

HUSH ON

 168

ICONV

The ICONV function converts data in external form such as dates to their internal form.

COMMAND SYNTAX

ICONV(expression1, expression2)

SYNTAX ELEMENTS

 expression1 evaluates to the data upon which the conversion is to be performed.

 expression2 should evaluate to the conversion code that is to be performed against the data.

Add additional ICONV extensions for timestamp as per WDx/WTx

NOTES

If the conversion code used assumes a numeric value and a non-numeric value is passed then the

original value in expression1 is returned unless the emulation option iconv_nonnumeric_return_null is

set.

EXAMPLES

InternalDate = ICONV("27 MAY 1997", "D")

In this example, ICONV returns the internal form of the date May 27, 1997.

 169

ICONVS

Use ICONVS to convert each element of dynamic.array to a specified internal storage format.

COMMAND SYNTAX

ICONVS (dynamic.array, conversion)

SYNTAX ELEMENTS

conversion is an expression that evaluates to one or more valid conversion codes, separated by value

marks (ASCII 253).

Each element of dynamic.array is converted to the internal format specified by conversion and is

returned in a dynamic array. If multiple codes are used, they are applied from left to right. The first

conversion code converts the value of each element of dynamic.array. The second conversion code

converts the value of each element of the output of the first conversion, and so on. If dynamic.array

evaluates to null, it returns null. If an element of dynamic.array is null, null it returns null for that

element. If conversion evaluates to null, the ICONV function fails and the program terminates with a

run-time error message.

The STATUS function reflects the result of the conversion:

For information about converting elements in a dynamic array to an external format

See also: OCONVS function.

0 The conversion is successful.

1 An element of dynamic.array is invalid. It returns an empty string, unless

dynamic.array is null, in which case it returns null.

2 Conversion is invalid.

3 Successful conversion of possibly invalid data.

 170

IF (statement)

Allows other statements to be conditionally executed

COMMAND SYNTAX

IF expression THEN|ELSE statements

SYNTAX ELEMENTS

It evaluates the expression to a value of Boolean TRUE or FALSE. If the expression is TRUE executes

then the statements defined by the THEN clause (if present). If the expression is FALSE executes the

statements defined by the ELSE clause.

The THEN and ELSE clauses may take two different forms being single and multiple line statements.

The simplest form of either clause is of the form:

IF A THEN CRT A

or

IF A ELSE CRT A

However, expand the clauses to enclose multiple lines of code using the END keyword as so:

IF A THEN

 A = A*6

 CRT A

END ELSE

 A = 76

 CRT A

END

You can combine the single and multi-line versions of either clause to make complex combinations of

the command. For reasons of readability it is suggested that where both clauses are present for an IF

statement that the same form of each clause is coded.

NOTES

IF statements can be nested within either clause to any number of levels

EXAMPLE

CRT "Are you sure (Y/N) ":

INPUT Answer,1_

 171

IF OCONV (Answer, "MCU")= "Y" THEN

 GOSUB DeleteFiles

 CRT "Files have been deleted"

END ELSE

 CRT "File delete was ignored"

END

 172

IFS

Use the IFS function to return a dynamic array whose elements are chosen individually from one of

two dynamic arrays based on the contents of a third dynamic array.

COMMAND SYNTAX

IFS (dynamic.array, true.array, false.array)

IFS evaluate each element of the dynamic.array. If the element evaluates to true, it returns the

corresponding element from true.array to the same element of a new dynamic array. If the element

evaluates to false, it returns the corresponding element from false.array. If there is no corresponding

element in the correct response array, it returns an empty string for that element. If an element is null,

that element evaluates to false.

 173

IN

The IN statement allows the program to receive raw data from the input device, which is normally the

terminal keyboard, one character at a time.

COMMAND SYNTAX

IN Var {FOR expression THEN|ELSE statements}

SYNTAX ELEMENTS

Var will be assigned the numeric value (0 - 255 decimal) of the next character received from the input

device. The statement will normally wait indefinitely (block) for a character from the keyboard.

Specifying the FOR clause to the IN statement allows the statement to stop waiting for keyboard after a

specified amount of time. The expression should evaluate to a numeric value, which will be taken as

the number of deci-seconds (tenths of a second) to wait before abandoning the input.

The FOR clause must have either or both of the THEN or ELSE clauses If a character is received from

the input device before the time-out period then Var is assigned its numeric value and the THEN clause

is executed (if present). If the input statement times out before a character is received then Var is

unaltered and the ELSE clause is executed (if present).

NOTES

See also: INPUT, INPUTNULL.

EXAMPLES

Char2 = "

IN Char

IF Char = 27 THEN ;* ESC seen

 IN Char2 FOR 20 THEN ;* Function Key?

 Char2 = CHAR(Char2) ;* ASCII value

 END

END

Char = CHAR(Char):Char2 ;* Return key sequence

 174

INDEX

The INDEX function will return the position of a character or characters within another string.

COMMAND SYNTAX

INDEX(expression1, expression2, expression3)

SYNTAX ELEMENTS

expression1 evaluates to the string to be searched.

expression2 evaluates to the string or character that will be searched for within expression1.

expression3 should evaluate to a numeric value and specify which occurrence of expression2 should

be searched for within expression1.

NOTES

If the specified occurrence of expression2 is not found in expression1 then it returns Zero (0).

EXAMPLE

ABet = "abcdefghijklmnopqrstuvwxyzabc"

CRT INDEX(ABet, "a", 1)

CRT INDEX(ABet, "a", 2

)

CRT INDEX(ABet, "jkl", 1)

The above code will display:

1

27

10

 175

INMAT

The INMAT() function returns the number of dimensioned array elements.

COMMAND SYNTAX

INMAT({array})

DESCRIPTION

Using the INMAT() function, without the 'array' argument, returns the number of dimensioned array

elements from the most recent MATREAD, MATREADU, MATREADL or MATPARSE statement. If

the number of array elements exceeds the number of elements specified in the corresponding DIM

statement, the INMAT() function will return zero.

Using the INMAT(), function with the 'array' argument, returns the current number of elements to the

dimensioned 'array'.

NOTES

In some dialects the INMAT() function is also used to return the modulo of a file after the execution of

an OPEN statement, which is inconsistent with its primary purpose and not implemented in jBASE. To

achieve this functionality use the IOCTL() function with the JIOCTL_COMMAND_FILESTATUS

command.

EXAMPLE

OPEN "CUSTOMERS" TO CUSTOMERS ELSE STOP 201, "CUSTOMERS"

DIM CUSTREC(99)

ELEMENTS = INMAT(CUSTREC) ; * Returns the value "99 " to the variable

ELEMENTS

ID = "149"

MATREAD CUSTREC FROM CUSTOMERS, ID THEN

 CUSTREC.ELEMENTS = INMAT() ; * Returns the numb er of elements in

the CUSTRECarray to the variable CUSTREC.ELEMENTS

END

 176

INPUT

The INPUT statement allows the program to collect data from the current input device, which will

normally be the terminal keyboard but may be stacked input from the same or separate program.

COMMAND SYNTAX

INPUT {@ (expression1 {, expression2)}{:} Var{{, expression3}, expression4} {:}{_} {WITH

expression5} {FOR expression6 THEN|ELSE statements}

SYNTAX ELEMENTS

@(expression1, expression2) allows the screen cursor to be positioned to the specified column and

row before the input prompt is sent to the screen. The syntax for this is the same as the @() function

described earlier.

Var is the variable in which the input data is to be stored.

expression3, when specified, should evaluate to a numeric value. This will cause input to be

terminated with an automatic newline sequence after exactly this number of characters has been input.

If the _ option is specified with expression4 then the automatic newline sequence is not specified but

any subsequent input characters are belled to the terminal and thrown away.

expression4 when specified, should evaluate to a sequence of 1 to 3 characters. The first character will

be printed expression3 times to define the field on the terminal screen. At the end of the input if less

than expression3 characters were input then the rest of the field is padded with the second character if it

was supplied. If the third character is supplied then the cursor will be positioned after the last character

input rather than at the end of the input field.

The : option, when specified, suppress the echoing of the newline sequence to the terminal. This will

leave the cursor positioned after the last input character on the terminal screen.

WITH expression5 allows the default input delimiter (the newline sequence) to be changed. When

specified, expression5, should evaluate to a string of up to 256 characters, each of which may delimit

the input field. If this clause is used then the newline sequence is removed as a delimiter and must be

specified explicitly within expression5 as CHAR(10).

The "FOR" clause allows the "INPUT" statement to time out after a specified waiting period instead of

blocking as normal Expression6 should evaluate to a numeric value, which will be taken as the number

of deci-seconds (tenths of a second) to wait before timing out. The time-out value is used as the time

between each keystroke and should a time-out occur, Var would hold the characters that were input

until the time-out.

The FOR clause requires either the THEN and ELSE clauses or both; if no time-out occurs the THEN

clause is taken. If a time-out does occur, the ELSE clause is taken.

NOTES

The INPUT statement will always examine the data input stack before requesting data from the input

device. If data is present on the stack then it is used to satisfy INPUT statements one field at a time

 177

until the stack is exhausted. Once exhausted, the INPUT statement will revert to the input device for

further input. There is no way (by default) to input a null field to the INPUT@ statement. If the

INPUT@ statement receives the newline sequence only as input, then the Var will be unchanged. Use

the INPUTNULL statement to define a character that indicates a NULL input.

Use the CONTROL-CHARS command to control whether or not control characters (i.e. those outside

the range x'1F' - x'7F') are accepted by INPUT.

See also: IN, INPUTNULL.

EXAMPLES

Answer = "

LOOP

WHILE Answer = " DO

 INPUT Answer,1 FOR 10 ELSE

 GOSUB UpdateClock

 END

REPEAT

The above example attempts to read a single character from the input device for 10 deci-seconds (1

second). The LOOP will exit when a character has been input otherwise every second it will call the

local subroutine UpdateClock.

 178

INPUTCLEAR

The INPUTCLEAR statement clears the type-ahead buffer.

COMMAND SYNTAX

INPUTCLEAR

SYNTAX ELEMENTS

None

NOTES

INPUTCLEAR only clears the type-ahead buffer. It does not clear data stacked with the DATA

statement.

The INPUTCLEAR statement is synonymous with CLEARINPUT.

EXAMPLE

CRT "Start year end processing (Yes/No) :"

INPUTCLEAR

INPUT ans

IF ans # "Yes" THEN

CRT "year end processing not started"

END

 179

INPUTNULL

The INPUTNULL statement allows the definition of a character that will allow a null input to be seen

by the INPUT@ statement.

COMMAND SYNTAX

INPUTNULL expression

SYNTAX ELEMENTS

The expression should evaluate to a single character. Subsequently, any INPUT@ statement that sees

only this character input before the new-line sequence will NULL the variable in which input is being

stored.

If expression evaluates to the NULL string " then the default character of _ is used to define a NULL

input sequence.

NOTES

The INPUT statement does not default to accepting the _ character as a NULL input, the programmer

must explicitly allow this with the statement: INPUTNULL "

EXAMPLES

INPUTNULL "&"

INPUT @ (10,10):Answer,1

IF Answer = " THEN

 CRT "A NULL input was received"

END

 180

INS

The INS statement allows the insertion of elements into a dynamic array.

COMMAND SYNTAX

INS expression BEFORE Var<expression1{, expression2{, expression3}}>

SYNTAX ELEMENTS

expression evaluates to the element to be inserted in the dynamic array.

expression1 expression2 and expression3 should all evaluate to numeric values and specify the Field,

Value and Sub-Value before which the new element is to be inserted.

NOTES

Specifying a negative value to any of the expressions 1 through 3 will cause the element to append as

the last Field, Value or Sub-Value rather than at a specific position. Only one expression may be

negative otherwise only the first negative value is used correctly while the others are treated as the

value 1.

The statement will insert NULL Fields, Values or Sub-Values accordingly if any of the specified

insertion points exceeds the number currently existing.

EXAMPLE

Values = "

FOR I = 1 TO 50

 INS I BEFORE Values<-1>

NEXT I

FOR I = 2 TO 12

 INS I*7 BEFORE Values<7,i>

NEXT I

 181

INSERT

INSERT is the function form of the INS statement, with preference given to the use of INS.

COMMAND SYNTAX

INSERT(expression1, expression2{, expression3 {, expression4 }}; expression5)

SYNTAX ELEMENTS

expression1 evaluates to a dynamic array in which to insert a new element and will normally be a

variable.

expression2 expression3 and expression4 should evaluate to numeric values and specify the Field,

Value and Sub-Value before which the new element will be inserted.

expression5 evaluates to the new element to be inserted in expression1.

EXAMPLES

A = INSERT(B, 1,4; "Field1Value4")

 182

INT

The INT function truncates a numeric value into its nearest integer form.

COMMAND SYNTAX

INT(expression)

SYNTAX ELEMENTS

expression should evaluate to a numeric value. The function will then return the integer portion of the

value.

NOTES

The function works by truncating the fractional part of the numeric value rather than by standard

mathematical rounding techniques. Therefore, INT(9.001) and INT(9.999) will both return the value 9.

EXAMPLES

CRT INT(22/7)

Displays the value 3

 183

IOCTL

The jBASE BASIC language provides an intrinsic function called IOCTL that behaves in a similar

manner to the C function ioctl(). Its purpose is to allow commands to be sent to the database driver for

a particular file, and then to receive a reply from the database driver.

As with the C function ioctl, the use of IOCTL is highly dependent upon the database driver it is

talking to. Each database driver may choose to provide certain common functionality, or may add its

own commands and so on. This is especially true of user-written database drivers.

First, an example of a source program that opens a file and finds the type of file:

INCLUDE JBC.h

OPEN "MD" TO DSCB ELSE STOP 201,"MD"

status=""

IF IOCTL(DSCB,JIOCTL_COMMAND_FILESTATUS,status) THEN

 PRINT "Type of file = ":DQUOTE(status<1>)

END ELSE

 PRINT "IOCTL FAILED !! unknown file type"

END

If the ELSE clause is taken, it does not necessarily mean there is an error, it only means that the

database driver for file "MD" does not support the command that was requested from it. The file JBC.h

is supplied with jBASE in the directory JBCRELEASEDIR sub directory include. If the source is

compiled with the jbc or BASIC command, this directory is automatically included in the search path

and no special action is needed by the programmer for the "INCLUDE JBC.h" statement.

The format of the IOCTL function is:

IOCTL(Filevar, Command, Parameter)

Where:

filevar Is a variable that has had a file opened against it using the OPEN statement. However, if you

want to use the default file variable, use -1 in this position. For example:

OPEN "MD" ELSE STOP

filevar = -1

IF IOCTL(filevar,JIOCTL_COMMAND_xxx,status) ...

command can be any numeric value (or variable containing a numeric). However, it is up to the

database driver to support that particular command number. The remainder of this chapter describes the

common IOCTL command numbers supported by the jBASE database drivers provided.

 184

Status Pass here a jBASE BASIC variable. The use of this variable depends upon the command

parameter, and will be described later for each command supported.

The return value is 0 for failure, or 1 for success. A value of -1 generally shows the command has not

been recognized.

The remainder of this section will deal with the IOCTL commands that are supported by the provided

jBASE database drivers, and the JBC_COMMAND_GETFILENAME command that is supported for

all database drivers.

JBC_COMMAND_GETFILENAME COMMAND

Using this command to the IOCTL function, you can determine the exact file name that was used to

open the file. This is helpful because jEDI uses Q pointers, F pointers and the JEDIFILEPATH

environment variable to actually open the file, and the application can never be totally sure where the

resultant file was really opened. Normally of course, this is of no concern to the application.

EXAMPLE

Open the file CUSTOMERS and find out the exact path that was used to open the file.

INCLUDE JBC.h

OPEN "CUSTOMERS" TO DSCB ELSE STOP 201,"CUSTOMERS"

filename = ""

IF IOCTL(DSCB,JBC_COMMAND_GETFILENAME,filename) ELSE

 CRT "IOCTL failed !!" ; EXIT(2)

END

PRINT "Full file path = ":DQUOTE(filename)

This command is executed by the jBASE BASIC library code rather than the jEDI library code or the

database drivers, so it can be run against a file descriptor for any file type.

JIOCTL_COMMAND_CONVERT COMMAND

Some of the jBASE BASIC database drivers will perform an automatic conversion of the input and

output record when performing reads and writes.

An example of this is when writing to a directory. In this case, the attribute marks will be converted to

new-line characters and a trailing new-line character added. Similarly for reading from a directory the

new-line characters will be replaced with attribute marks, and the trailing new-line character will be

deleted.

The above example is what happens for the database driver for directories. It assumes by default that

the record being read or written is a text file and that the conversion is necessary. It tries to apply some

intelligence to reading files, as text files always have a trailing new-line character. Therefore, if a file is

read without a trailing new-line character, the database driver assumes the file must be a binary file

rather than a text file, and no conversion takes place.

 185

This conversion of data works in most cases and usually requires no special intervention from the

programmer.

There are cases however, when this conversion needs to be controlled and interrogated, and the IOCTL

function call with the JIOCTL_COMMAND_CONVERT command provides the jBASE database

drivers that support this conversion with commands to control it.

The call to IOCTL, if successful, will only affect file operations that use the same file descriptor.

Consider the following code:

INCLUDE JBC.h

OPEN "MD" TO FILEVAR1 ELSE ...

OPEN "MD" TO FILEVAR2 ELSE ...

IF IOCTL(FILEVAR1,JIOCTL_COMMAND_CONVERT,"RB")

In the above example, any future file operations using variable FILEVAR1 will be controlled by the

change forced in the IOCTL request. Any file operations using variable FILEVAR2 will not be

affected and will use the default file operation.

Input to the IOCTL is a string of controls delimited by a comma that tell the database driver what to do.

The output from the IOCTL can optionally be a string to show the last conversion that the driver

performed on the file.

The descriptions of the available controls that can be passed as input to this IOCTL function are:

Code Description

RB All future reads to be in binary (no conversion)

RT All future reads to be in text format (always do a conversion)

RI All future reads to decide themselves whether binary or text

RS Return to caller the status of the last read ("B" = binary, "T" = text)

WB All future writes to be in binary (no conversion)

WT All future writes to be in text format (always do a conversion)

WI All future writes to decide themselves whether binary or text

WS Return to caller the status of the last write ("B" = binary, "T" = text)

KB All future reads/writes have the record key unaltered

KT All future reads/writes have the record key modified

KI All future reads/writes to decide if to do a conversion

KS Return to caller the status of the last record key ("B" = binary, "T" = text)

EXAMPLE 1

The application wants to open a file, and to ensure that all reads and writes to that file are in binary, and

that no translation such as new-lines to attribute marks is performed.

 186

INCLUDE JBC.h

OPEN "FILE" TO DSCB ELSE STOP 201,"FILE"

IF IOCTL(DSCB,JIOCTL_COMMAND_CONVERT,"RB,WB") ELSE

 CRT "UNABLE TO IOCTL FILE 'FILE'" ; EXIT(2)

END

EXAMPLE 2

Read a record from a file, and find out if the last record read was in text format (were new-lines

converted to attribute marks and the trailing new-line deleted), or in binary format (with no conversion

at all).

INCLUDE JBC.h

OPEN "." TO DSCB ELSE STOP 201,"."

READ rec FROM DSCB,"prog.o" ELSE STOP 202,"prog.o"

status = "RS"

IF IOCTL(DSCB,JIOCTL_COMMAND_CONVERT,status) THEN

 IF status EQ "T" THEN CRT "TEXT" ELSE CRT "BINARY"

END ELSE

 CRT "The IOCTL failed !!"

END

JIOCTL_COMMAND_FILESTATUS COMMAND

The JIOCTL_COMMAND_FILESTATUS command will return an attribute delimited list of the status

of the file to the caller.

Attribute Description

<1> File type, as a string

<2> FileFlags, as decimal number, show LOG, BACKUP and TRANS

<3> BucketQty, as decimal number, number of buckets in the file

<4> BucketSize, as decimal number, size of each bucket in bytes

<5> SecSize, as decimal number, size of secondary data space

<6> Restore Spec, a string showing any restore re-size specification

<7> Locking identifiers, separated by multi-values

<8> FileFlags showing LOG, BACKUP and TRANSACTION permissions

 187

<8,1> Set to non-zero to suppress logging on this file

<8,2> Set to non-zero to suppress transaction boundaries on this file

<8,3> Set to no-zero to suppress backup of the file using jbackup

<9> Hashing algorithm used

EXAMPLE

Open a file and see if the file type is a directory .

INCLUDE JBC.h

OPEN ".." TO DSCB ELSE STOP 201,".."

status = ""

IF IOCTL(DSCB,JIOCTL_COMMAND_FILESTATUS,status) ELS E

 CRT "IOCTL failed !!" ; EXIT(2)

END

IF status<1> EQ "UD" THEN

 PRINT "File is a directory"

END ELSE

 PRINT "File type is ":DQUOTE(status<1>)

 PRINT "This is not expected for .."

END

EXAMPLE 2

Open a file ready to perform file operations in a transaction against it. Make sure the file has not been

removed as a transaction type file by a previous invocation of the command "jchmod

-T CUSTOMERS".

INCLUDE JBC.h

OPEN "CUSTOMERS" TO DSCB ELSE STOP 201,"CUSTOMERS"

IF IOCTL(DSCB,JIOCTL_COMMAND_FILESTATUS,status) ELS E

 CRT "IOCTL failed !!" ; EXIT(2)

END

IF status<8,2> THEN

 CRT "Error ! File CUSTOMERS is not"

 CRT "part of transaction boundaries !!"

 CRT "Use "jchmod +T CUSTOMERS" !!"

 EXIT(2)

END

 JIOCTL_COMMAND_FINDRECORD COMMAND

 188

This command will find out if a record exists on a file without the need to actually read in the record.

This can provide large performance gains in certain circumstances.

EXAMPLE

Before writing out a control record, make sure it doesn't already exist. As the control record is quite

large, it will provide performance gains to simply test if the output record already exists, rather than

reading it in using the READ statement to see if it exists.

INCLUDE JBC.h

OPEN "outputfile" TO DSCB ELSE STOP 201,"outputfile"

... Make up the output record to write out in "output"

key = "output.out"

rc = IOCTL(DSCB,JIOCTL_COMMAND_FINDRECORD,key)

BEGIN CASE

 CASE rc EQ 0

 WRITE output ON DSCB,key

 CRT "Data written to key " : key

 CASE rc GT 0

 CRT "No further action, record already exists"

 CASE 1

 CRT "IOCTL not supported for file type"

END CASE

JIOCTL_COMMAND_FINDRECORD_EXTENDED COMMAND

This command to the IOCTL function returns the record size and the time and date the record was last

updated. If the record does not exist, null is returned. The time/date stamp is returned in UTC format.

EXAMPLE

Print the time and data of last update for each record in filename.

INCLUDE JBC.h

OPEN "filename" TO DSCB ELSE STOP 201,"filename"

*

* Select each record in the newly opened file

*

SELECT DSCB

LOOP WHILE READNEXT record.key DO

*

* Get the details on the record and look for errors.

*

 record.info = record.key

 189

 IF IOCTL(DSCB,JIOCTL_COMMAND_FINDRECORD_EXTENDED,record.info) ELSE

 CRT "Error! File driver does not support this"

 STOP

 END

*

* Extract and convert the returned data

*

 record.size = record.info<1>

 record.utc = record.info<2>

 record.time = OCONV(record.utc,"U0ff0")

 record.date = OCONV(record.utc,"U0ff1")

*

* Print the information.

*

 PRINT "Record key ":record.key:" last updated at ":

 PRINT OCONV(record.time,"MTS"):" ":

 PRINT OCONV(record.date,"D4")

REPEAT

JIOCTL_COMMAND_HASH_RECORD COMMAND

For jBASE hashed files such as j3 and j4 each record is pseudo-randomly written to one of the buckets

(or groups) of the hashed file. The actual bucket it is written to depends upon two factors:

The actual record key (or item-id)

The number of buckets in the file (or modulo)

This IOCTL command shows which bucket number the record would be found in, given the input

record key. The bucket number is in the range 0 to (b-1) where b is the number of buckets in the file

specified when the file was created (probably using CREATE-FILE).

The command only returns the expected bucket number, as is no indication that the record actually

exists in the file.

Two attributes are returned by this command. The first is the hash value that the record key has hashed

to, and the second attribute is the bucket number.

EXAMPLE

Open a file, and find out what bucket number the record "PIPE&SLIPPER" would be found in.

INCLUDE JBC.h

OPEN "WEDDING-PRESENTS" TO DSCB ELSE STOP

key = "PIPE&SLIPPER"

parm = key

IF IOCTL(DSCB,JIOCTL_COMMAND_HASH_RECORD,parm) THEN

 190

 PRINT "key ":key:" would be in bucket ":parm<2>

END ELSE

 CRT "IOCTL failed, command not supported"

END

JIOCTL_COMMAND_HASH_LOCK COMMAND

The jEDI locking mechanism for records in jEDI provided database drivers is not strictly a 100%

record locking mechanism. Instead, it uses the hashed value of the record key to give a value from 0 to

230-1 to describe the record key. The IOCTL command can be used to determine how a record key

would be converted into a hashed value for use by the locking mechanism.

EXAMPLE

Lock a record in a file and find out what the lock id of the record key is. The example then calls the

jRLA locking demon and the display of locks taken should include the lock taken by this program.

INCLUDE JBC.h

DEFCE getpid()

OPEN "WEDDING-PRESENTS" TO DSCB ELSE STOP

key = "PIPE&SLIPPER"

parm = key

IF IOCTL(DSCB,JIOCTL_COMMAND_HASH_LOCK,parm) ELSE

 CRT "IOCTL failed, command not supported"

 EXIT(2)

END

PRINT "The lock ID for the key is ":parm

PRINT "Our process id is " : getpid()

 191

ISALPHA

The ISALPHA function will check that the expression consists of entirely alphabetic characters.

COMMAND SYNTAX

 ISALPHA(expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ISALPHA function will then return TRUE (1) if the

expression consists of entirely alphabetic characters. The function will return FALSE (0) if any

character in the expression is not alphabetic.

INTERNATIONAL MODE

When the ISALPHA function is used in International Mode the properties of each character is

determined according to the Unicode Standard.

 192

ISALNUM

The ISALNUM function will check that the expression consists of entirely alphanumeric characters.

COMMAND SYNTAX

 ISALNUM(expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ISALNUM function will then return TRUE (1) if

the expression consists of entirely alphanumeric characters. The function will return FALSE (0) if the

expression contains any characters, which are not alphanumeric.

INTERNATIONAL MODE

When the ISALNUM function is used in International Mode the properties of each character is

determined according to the Unicode Standard.

 193

ISCNTRL

The ISCNTRL function will check that the expression consists entirely of control characters.

COMMAND SYNTAX

 ISCNTRL(expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ISCNTRL function will then return TRUE (1) if the

expression consists of entirely control characters. The function will return FALSE (0) if the expression

contains any characters, which are not control characters.

INTERNATIONAL MODE

When the ISCNTRL function is used in International Mode the properties of each character is

determined according to the Unicode Standard.

 194

ISDIGIT

The ISDIGIT function will check that the expression consists of entirely numeric characters.

COMMAND SYNTAX

 ISDIGIT(expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ISDIGIT function will then return TRUE (1) if the

expression consists of entirely numeric characters. The function will return FALSE (0) if the

expression contains any characters, which are not numeric.

INTERNATIONAL MODE

When the ISDIGIT function is used in International Mode the properties of each character is

determined according to the Unicode Standard.

 195

ISLOWER

The ISLOWER function will check that the expression consists of entirely lower case characters.

COMMAND SYNTAX

 ISLOWER(expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ISLOWER function will then return TRUE (1) if

the expression consists of entirely lower case characters. The function will return FALSE (0) if the

expression contains any characters, which are not lower case characters.

INTERNATIONAL MODE

When the ISLOWER function is used in International Mode the properties of each character is

determined according to the Unicode Standard

 196

ISPRINT

The ISPRINT function will check that the expression consists of entirely printable characters.

COMMAND SYNTAX

ISPRINT(expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ISPRINT function will then return TRUE (1) if the

expression consists of entirely printable characters. The function will return FALSE (0) if the

expression contains any characters, which are not printable.

INTERNATIONAL MODE

When the ISPRINT function is used in International Mode the properties of each character is

determined according to the Unicode Standard.

 197

ISSPACE

The ISSPACE function will check that the expression consists of entirely space type characters.

COMMAND SYNTAX

 ISSPACE(expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ISSPACE function will then return TRUE (1) if the

expression consists of entirely spacing type characters. The function will return FALSE (0) if the

expression contains any characters, which are not space characters.

INTERNATIONAL MODE

When the ISSPACE function is used in International Mode the properties of each character is

determined according to the Unicode Standard.

 198

ISUPPER

The ISUPPER function will check that the expression consists of entirely upper case characters.

COMMAND SYNTAX

 ISUPPER(expression)

SYNTAX ELEMENTS

The expression can return a result of any type. The ISUPPER function will then return TRUE (1) if the

expression consists of entirely lower case characters. The function will return FALSE (0) if the

expression contains any characters, which are not upper case characters.

INTERNATIONAL MODE

When the ISUPPER function is used in International Mode the properties of each character is

determined according to the Unicode Standard.

 199

ITYPE

Use the ITYPE function to return the value resulting from the evaluation of an I-type expression in a

jBASE file dictionary.

COMMAND SYNTAX

ITYPE (i.type)

I.type is an expression evaluating to the contents of the compiled I-descriptor. You must compile the I-

descriptor before the ITYPE function uses it; otherwise, you get a run-time error message.

Using several methods set the I.type to the evaluated I-descriptor in several ways. One way is to read

the I-descriptor from a file dictionary into a variable, then use the variable as the argument to the

ITYPE function. If the I-descriptor references a record ID, the current value of the system variable

@ID is used. If the I-descriptor, references field values in a data record, the data is taken from the

current value of the system variable @RECORD.

To assign field values to @RECORD, read a record from the data file into @RECORD before invoking

the ITYPE function.

If i.type evaluates to null, the ITYPE function fails and the program terminates with a run-time error

message.

NOTE: Set the @FILENAME to the name of the file before ITYPE execution.

EXAMPLE

This is the SLIPPER file content:

JIM GREG ALAN

001 8 001 10 001 5

This is the DICT SLIPPER content:

SIZE

001 D

002 1

003

004

005 10L

006 L

This is the program source code:

OPEN 'SLIPPERS' TO FILE ELSE STOP

OPEN 'DICT','SLIPPERS' TO D.FILE ELSE STOP

 200

*

READ ITYPEDESC FROM D.FILE, 'SIZE' ELSE STOP

*

EXECUTE 'SELECT SLIPPERS'

@FILENAME = “SLIPPERS”

LOOP

READNEXT @ID DO

*

READ @RECORD FROM FILE, @ID THEN

*

PRINT @ID: "WEARS SLIPPERS SIZE " ITYPE(ITYPEDESC)

END

REPEAT

The output of this program is:

3 records selected

JIM WEARS SLIPPERS SIZE 8

GREG WEARS SLIPPERS SIZE 10

ALAN WEARS SLIPPERS SIZE 5

 201

JBASECOREDUMP

Use as a diagnostic tool for applications and allows a snapshot of the application to be dumped to an

external file for later analysis

COMMAND SYNTAX

JBASECOREDUMP(expression1, expression2)

SYNTAX ELEMENTS

For jBASE 4.1 upwards only, the program variables and CALL/GOSUB stack will be dumped.

The output is in free style text format.

The function is called such:

PRINT " fatal application error, outputting a core dump"

filename = "GLOBUSDUMP_":TIME():"_":DATE():"_":SYSTEM(18)

PRINT "Please send the file ":filename:" to your Temenos support"

dummy = JBASECOREDUMP(filename , 0)

EXIT(99)

The first parameter shows the name of the operating system file to output the core dump to. You can

supply "" instead of a file name and jBASE allocates a filename of:

/JBASECOREDUMP_nnnn_mmmmm

where

nnn is the port number and mmmmmm is the process id.

The second parameter is not used at present. Future versions will allow extra information to be

selectively dumped.

A null string is always returned from the function.

EXAMPLE

jBASE Core dump created at Thu Apr 10 17:12:01 2003

Program test31 , port 0 , process id 21959

CALL/GOSUB stack

Line 0 , Source jmainfunction.b , Level 0

Source changed to ./test31.b

0007 GOSUB 100

 202

0012 GOSUB 200

0016 CALL SUB1

Source changed to ./SUB1.b

0004 GOSUB 100

0009 GOSUB 200

All the defined VAR's in the program

COMMON variables

 0x8057dd0 : greg1[1,-1] : (V) Strin g :

13 bytes at address 0x8057f60 : This is greg1

 0x8057e30 : greg2[1,-1] : (V) Strin g :

13 bytes at address 0x8057fc0 : This is greg2

STANDARD Variables in SUBROUTINE main()

 0xbfffed54 : Var1[1,-1] : (V) Stri ng :

12 bytes at address 0x8057f00 : This is CAR1

STANDARD Variables in SUBROUTINE SUB1

 0xbfffe39c : I : (V) Inte ger :

5

 0xbfffe3b8 : VM : (V) Unin itialised :

(UNASSIGNED)

 0xbfffe3d4 : x1[1,-1] : (V) Stri ng :

56 bytes at address 0x8059a60 :

2\3742\3749\374SUB1.b\3752\3741\3744\374SUB1.b\3751 \3742\37412\374tes

t31.b\3751\3741\3747\374test31.b

 0xbfffe3f0 : rc[1,-1] : (V) Stri ng :

0 bytes at address 0x40422b04 :

 0xbfffe40c : GGC2 : (V) Inte ger :

4

 0xbfffe428 : GGC3[1,-1] : (V) String :

56 bytes at address 0x8059e68 :

2\3742\3749\374SUB1.b\3752\3741\3744\374SUB1.b\3751 \3742\37412\374tes

t31.b\3751\3741\3747\374test31.b

 203

 0xbfffe444 : DSCB : (V) File d escriptor :

File './fb3'

 0xbfffe460 : rec : (V) Uninit ialised :

(UNASSIGNED)

0xbfffe47c : USERSTATS : (V) Uninit ialised :

(UNASSIGNED)

 204

JBASETHREADCreate

Use the JBASETHREADCreate command to start a new thread.

COMMAND SYNTAX

JBASETHREADCreate(ProgramName, Arguments, User, Handle)

SYNTAX ELEMENTS

ProgramName Name of program to execute

Arguments Command line arguments

User Name of user in format "user{,account{,password}}" or "" to configuration as calling user id

 205

JBASETHREADStatus

The JBASETHREADStatus command shows the status of all running threads.

COMMAND SYNTAX

JBASETHREADStatus(ThreadList)

SYNTAX ELEMENTS

ThreadList a list of all threads active in this process, with one attribute per thread.

The layout of the multi-values in each attribute is as follows:

< n,1 > port number

< n,2 > thread handle returned from JBASETHREADCreate

 206

JQLCOMPILE

JQLCOMPILE compiles a jQL statement.

COMMAND SYNTAX

JQLCOMPILE (Statement, Command, Options, Messages)

SYNTAX ELEMENTS

Statement is the variable, which will receive the compiled statement, used by a majority of functions to

execute and work on the result set etc.

Command is the actual jQL query that you want to compile (such as SELECT or something similar).

Use RETRIEVE to obtain data records as the verb rather than an existing jQL verb. This will ensure

that the right options are set internally. In addition, use any word that is not a jQL reserved word as the

verb and it will work in the same way as RETRIEVE: implement a PLOT command that passes the

entire command line into JQLCOMPILE and the results will be the same as if the first word were

replaced with RETRIEVE.

Option: you must specify JQLOPT_USE_SELECT to supply a select list to the JQLEXECUTE

function; the compile builds a different execution plan if using select lists.

 Messages: If the statement fails to compile, this dynamic array is in the STOP format, therefore STOP

messages can be programmed and printed. Provides a history of compilation for troubleshooting

purposes; Returns -1 if there is a problem found in the statement and 0 for no problem

 207

JQLEXECUTE

JQLEXECUTE starts executing a compiled jQL statement.

COMMAND SYNTAX

JQLEXECUTE (Statement, SelectVar)

SYNTAX ELEMENTS

Statement is the valid result of a call to a JQLCOMPILE(Statement, …)

SelectVar is a valid select list used to limit the statement to a predefined set of items. For example:

SELECT PROGRAMMERS WITH IQ_IN_PTS > 250

1 Item Selected

> LIST PROGRAMMERS NAME

PROGRAMMERS... NAME

0123 COOPER, F B

This function returns -1 in the event of a problem, such as an incorrect statement variable. It will cause

the statement to run against the database and produce a result set for use with JQLFETCH()

 208

JQLFETCH

JQLFETCH fetches the next result in a compiled jQL statement.

COMMAND SYNTAX

JQLFETCH (Statement, ControlVar, DataVar)

SYNTAX ELEMENTS

Statement is the result of a valid call to JQLCOMPILE(), followed by a valid call to JQLEXECUTE().

ControlVar will receive the ‘control break’ elements of any query. FOR EXAMPLE, if there are

BREAK values in the statement, described here are the totals:

The format of ControlVar is:

Attr 1 Level: 0 means detail line 1 – 25 for the control

breaks, the same as the A correlative NB.

Attr2 Item ID

Attr 3 Break control Value is 1 if a blank line should be output

first.

Attr 4 Pre-break value for 'B' option in header

Attr 5 Post-break value for 'B' option in header

DataVar will receive the actual screen data on a LIST statement for instance. The format is one

attribute per column.

Applies Attribute 7 Conversions (or attribute 3 in Prime-style DICTS) to the data

If the property STMT_PROPERTY_FORMAT is set then each attribute is also formatted according to

the width and justification of the attribute definition and any override caused by the use of FMT, of

DISPLAY.LIKE on the command line –

NOTE that column headers may also affect the formatting for that column.

This function is called until there is no more output (multiple).

 209

JQLGETPROPERTY

Gets the property of a compiled jQL statement

COMMAND SYNTAX

JQLGETPROPERTY (PropertyValue, Statement, Column, P ropertyName)

SYNTAX ELEMENTS

PropertyValue Receives the requested property value from the system or “” if the property is not set

Statement The result of a valid JQLCOMPILE(Statement)

Column Specifies that you want the value of the property for a specific column (otherwise 0 for the

whole statement).

PropertyName These are EQUATED values defined by INCLUDE’ing the file JQLINTERFACE.h.

This function returns -1 if there is a problem with the parameters or the programmer. These properties

answer questions such as “Was LPTR mode asked for,” and “How many columns are there?”

Note: Properties are valid after the compile; this is the main reason for separating the compile and

execute into two functions. After compiling, it is possible examine the properties and set properties

before executing.

 210

JQLPUTPROPERTY

JQLPUTPROPERTY sets a property in a compiled jQL statement.

COMMAND SYNTAX

JQLPUTPROPERTY (PropertyValue, Statement, Column, P ropertyName)

SYNTAX ELEMENTS

PropertyValue is the value to which you want to set the specified property, such as one or “BLAH”

Statement is the result of a valid JQLCOMPILE() function.

NOTE: Some properties may require JQLEXECUTE()first.

Column Holds 0 for a general property of the statement, or a column number if it is something that can

be set for a specific column.

PropertyName – These are EQUATED values defined by INCLUDE’ing the file JQLINTERFACE.h.

There are lots of these and someone is going to have to document each one.

This function returns -1 if it locates a problem in the statement and zero for no problem.

NOTE: Properties are valid after the compile; this is the main reason for separating the compile and

execute into two functions. After compiling, it is possible examine the properties and set properties

before executing.

 211

KEYIN

Use the KEYIN function to read a single character from the input buffer and return it.

COMMAND SYNTAX

KEYIN ()

KEYIN uses raw keyboard input, therefore all special character handling (for example, backspace) is

disabled. System special character handling (for example, processing of interrupts) is unchanged.

 212

LATIN1

The LATIN1 function converts a UTF-8 byte sequence into the binary or latin1 equivalent.

COMMAND SYNTAX

 LATIN1(expression)

SYNTAX ELEMENTS

The expression is to be a UTF-8 encoded byte sequence, which is the default format when executing in

International Mode.

NOTES

Use this function for converting UTF-8 data into binary or the latin1 code page for external

consumption. i.e. Tape devices.

 213

LEFT

The LEFT function extracts a sub-string of a specified length from the beginning of a string.

COMMAND SYNTAX

LEFT(expression, length)

SYNTAX ELEMENTS

expression evaluates to the string from which the sub string is extracted.

length is the number of extracted characters if length is less than 1, LEFT() returns null.

NOTES

The LEFT() function is equivalent to sub-string extraction starting from the first character position, i.e.

expression[1,length]

See also: RIGHT ()

EXAMPLE

S = "The world is my lobster"

CRT DQUOTE (LEFT(S,9))

CRT DQUOTE(LEFT(S,999))

CRT DQUOTE(LEFT(S,0))

This code displays:

"The world"

"The world is my lobster"

""

 214

LEN

The LEN function returns the character length of the supplied expression.

COMMAND SYNTAX

LEN(expression)

INTERNATIONAL MODE

The LEN function when used in International Mode will return the number of characters in the

specified expression rather than the number of bytes. If the expression consists of entirely of UTF-8

characters in the ASCII range 0 – 127 then the character length of the expression will equate to the byte

length. However, when the expression contains characters outside the ASCII range 0 – 127 then byte

length and character length will differ. If the byte is specifically required then use the BYTELEN

function in place of the LEN function.

NOTE: Do not use programs manipulating byte counts in International Mode.

SYNTAX ELEMENTS

expression can evaluate to any type and the function will convert it to a string automatically.

EXAMPLES

Lengths = "

FOR I = 1 TO 50

 Lengths = LEN(Values)

NEXT I

 215

LENS

Use the LENS function to return a dynamic array of the number of bytes in each element of the

dynamic.array.

COMMAND SYNTAX

LENS (dynamic.array)

Each element of dynamic.array must be a string value. The characters in each element of dynamic.array

are counted, with the counts returned.

The LENS function includes all blank spaces, including trailing blanks, in the calculation.

If dynamic.array evaluates to a null string, it returns zero (0). If any element of dynamic.array is null,

returns zero (0) for that element.

INTERNATIONAL MODE

The LEN function when used in International Mode will return the number of characters in the

specified expression rather than the number of bytes. If the expression consists of entirely of UTF-8

characters in the ASCII range 0 – 127 then the character length of the expression will equate to the byte

length. However, when the expression contains characters outside the ASCII range 0 – 127 then byte

length and character length will differ. If the byte is specifically required then use the BYTELEN

function in place of the LEN function.

NOTE: Do not use programs to manipulate byte counts in International Mode.

 216

LENDP

The LENDP function returns the display length of an expression

COMMAND SYNTAX

 LENDP(expression)

SYNTAX ELEMENTS

The expression can evaluate to any type. The LENDP function will evaluate each character in the

expression and return the calculated display length.

INTERNATIONAL MODE

The LENDP function when used in International Mode will return the display length for the characters

in the specified expression rather than the number of bytes.

NOTE: Some characters, usually Japanese, Chinese, etc will return a display length of greater than one

for some characters. Some characters, for instance control characters or null (char 0), will return a

display length of 0.

LE - Less than or equal operator Ditto re GE and LES re INTERNATIONAL MODE

 217

LES

Use the LES function to determine whether elements of one dynamic array are less than or equal to the

elements of another dynamic array.

COMMAND SYNTAX

LES (array1, array2)

It compares each element of array1 with the corresponding element of array2. If the element from

array1 is less than or equal to the element from array2, a 1 is returned in the corresponding element of a

new dynamic array. If the element from array1 is greater than the element from array2, it returns a zero

(0). If an element of one dynamic array has no corresponding element in the other dynamic array, it

evaluates the undefined element as empty, and the comparison continues.

If either of a corresponding pair of elements is null, it returns null for that element. If you use the

subroutine syntax, it returns the resulting dynamic array as return.array.

 218

LN

The LN function returns the value of the natural logarithm of the supplied value.

COMMAND SYNTAX

LN(expression)

SYNTAX ELEMENTS

The expression should evaluate to a numeric value. The function will then return the natural logarithm

of that value.

NOTES

The calculation of the natural logarithm is by using the mathematical constant e as a number base.

EXAMPLES

A = LN(22/7)

 219

LOCALDATE

Return an internal date using the specified Timestamp and TimeZone combination.

COMMAND SYNTAX

LOCALDATE(Timestamp, TimeZone)

SYNTAX ELEMENTS

The LOCALDATE function uses the specified timestamp and adjusts the value by the specified time

zone to return the date value in internal date format.

 220

LOCALTIME

Return an internal time using the specified Timestamp and TimeZone combination.

COMMAND SYNTAX

LOCALTIME(Timestamp, TimeZone)

SYNTAX ELEMENTS

The LOCALTIME function uses the specified timestamp and adjusts the value by the specified time

zone to return the time value in internal time format.

 221

LOCATE

The LOCATE statement finds the position of an element within a specified dimension of a dynamic

array.

COMMAND SYNTAX

LOCATE expression1 IN expression2{<expression3{,expression4}>}, {, expression5} {BY

expression6} SETTING Var THEN|ELSE statement(s)

SYNTAX ELEMENTS

expression1 evaluates to the string that will be searched for in expression2.

expression2 evaluates to the dynamic array within which expression1 will be searched for.

expression3 and expression4, when specified, cause a value or subvalue search respectively.

expression5 indicates the field, value or subvalue from which the search will begin.

BY expression6 causes the search to expect the elements to be arranged in a specific order, which can

considerably improve the performance of some searches. The available string values for expression6

are:

AL Values are in ascending alphanumeric order

AR Values are in right justified, then ascending order

AN Values are in ascending numeric order

DL Values are in descending alphanumeric order

DR Values are in right justified, then descending order

DN Values are in descending numeric order

Var will be set to the position of the Field, Value or Sub-Value in which expression1 was found if

indeed. If it was not found and expression6 was not specified then Var will be set to one position past

the end of the searched dimension. If expression6 did specify the order of the elements then Var will be

set to the position before which the element should be inserted to retain the specified order.

The statement must include one of or both of the THEN and ELSE clauses. If expression1 is found in

an element of the dynamic array, it executes the statements defined by the THEN clause. If expression1

is not found in an element of the dynamic array, it executes the statements defined by the ELSE clause.

INTERNATIONAL MODE

When the LOCATE statement is used in International Mode, the statement will use the currently

configured locale to determine the rules by which each string is considered less than or greater than the

other will.

NOTES

See also: FIND, FINDSTR

EXAMPLES

 222

Name = "Nelson"

LOCATE Name IN ForeNames BY "AL" SETTING Pos ELSE

 INS Name BEFORE ForeNames<Pos>

END

 223

LOCK

The LOCK statement will attempt to set an execution lock thus preventing any other jBASE BASIC

program that respects that lock to wait until this program has released it.

COMMAND SYNTAX

LOCK expression {THEN|ELSE statements}

SYNTAX ELEMENTS

The expression should evaluate to a numeric value between 0 and 255 (63 in R83 import mode).

The statement will execute the THEN clause (if defined) providing the lock could be taken. If another

program holds the LOCK and an ELSE clause is provided then the statements defined by the ELSE

clause are executed. If no ELSE clause was provided with the statement then it will block (hang) until

the other program has released the lock.

NOTES

See also: UNLOCK.

If you used the environment variable JBASE BASICEMULATE set to r83, to compile the program the

number of execution locks is limited to 64. If an execution lock greater than this number is specified,

the actual lock taken is the specified number modulo 64.

EXAMPLES

LOCK 32 ELSE

 CRT "This program is already executing!"

STOP

END

 224

LOOP

The LOOP construct allows the programmer to specify loops with multiple exit conditions.

COMMAND SYNTAX

LOOP statements1 WHILE|UNTIL expression DO statements2 REPEAT

SYNTAX ELEMENTS

statements1 and statements2 consist of any number of standard statements include the LOOP

statement itself, thus allowing nested loops.

statements1 will always be executed at least once, after which the WHILE or UNTIL clause is

evaluated.

expression is tested for Boolean TRUE/FALSE by either the WHILE clause or the UNTIL clause.

When tested by the WHILE clause statements2 will only be executed if expression is Boolean TRUE.

When tested by the UNTIL clause, statements2 will only be executed if the expression evaluates to

Boolean FALSE.

REPEAT causes the loop to start again with the first statement following the LOOP statement.

NOTES

See also: BREAK, CONTINUE

EXAMPLES

LOOP WHILE B < Max DO

 Var = B++ *6

REPEAT

LOOP

 CRT "+":

WHILE READNEXT KEY FROM List DO

 READ Record FROM FILE, KEY ELSE CONTINUE

 Record<1> *= 6

REPEAT

CRT

 225

LOWER

The LOWER function lowers system delimiters in a string to the next lowest delimiter.

COMMAND SYNTAX

LOWER(expression)

SYNTAX ELEMENTS

The expression is a string containing one or more delimiters, lowered as follows:

ASCIICharacter Lowered To

255 254

254 253

253 252

252 251

251 250

250 249

249 248

EXAMPLE

ValuemarkDelimitedVariable = LOWER(AttributeDelimitedVariable)

 226

MAKETIMESTAMP

Generate a timestamp using combination of internal date, time and timezone.

COMMAND SYNTAX

MAKETIMESTAMP(InternalDate, InternalTime, TimeZone)

SYNTAX ELEMENTS

Use the MAKETIMESTAMP function to generate a timestamp using a specified time zone. The

internal date and internal time values are combined together with the time zone specification to return a

UTC timestamp as decimal seconds.

 227

MAT

Use the MAT command to either assign every element in a specified array to a single value or to assign

the entire contents of one array to another.

COMMAND SYNTAX

MAT Array = expression

MAT Array1 = MAT Array2

SYNTAX ELEMENTS

Array , Array1 and Array2 are all pre-dimensioned arrays declared with the DIM statement.

Expression can evaluate to any data type.

NOTES

If any element of the array Array2 has not been assigned a value then a runtime error message will

occur. This can be avoided by coding the statement MAT Array2 = " after the DIM statement.

EXAMPLES

001 DIM A(45), G(45)

002 MAT G = "Array value"

003 MAT A = MAT G

 228

MATBUILD

Use the MATBUILD statement to create a dynamic array out of a dimensioned array.

COMMAND SYNTAX

MATBUILD variable FROM array{, expression1{, expression2}} {USING expression3}

SYNTAX ELEMENTS

variable is the jBASE BASIC variable into which the created dynamic array will be stored. Array is a

previously dimensioned and assigned matrix from which the dynamic array will be created.

expression1 and expression2 should evaluate to numeric integers. expression1 specifies which element

of the array the extraction will start with; expression2 specifies which element of the array the

extraction will end with (inclusive).

By default, each array element is separated in the dynamic array by a field mark. By specifying

expression3, the separator character can be changed. If expression3 evaluates to more than a single

character, only the first character of the string is used.

NOTES

When specifying starts and end positions with multi-dimensional arrays, it is necessary to expand the

matrix into its total number of variables to calculate the correct element number. See the information

about dimensioned arrays earlier in this chapter for detailed instructions on calculating element

numbers.

EXAMPLES

DIM A(40)

MATBUILD Dynamic FROM A,3,7 USING ":"

Builds a 5 element string separated by a : characte r.

MATBUILD Dynamic FROM A Builds a field mark separat ed dynamic array

from every element contained in the matrix A.

 229

MATCHES

The MATCH or MATCHES function applies pattern matching to an expression.

INTERNATIONAL MODE

When using the MATCHES statement in International Mode, the statement will use the currently

configured locale to determine the properties according to the Unicode Standard for each character in

the expression. i.e., is the character alpha or numeric?

COMMAND SYNTAX

expression1 MATCHES expression2

SYNTAX ELEMENTS

expression1 may evaluate to any type. expression2 should evaluate to a valid pattern matching string

as described below.

expression1 is then matched to the pattern supplied and a value of Boolean TRUE is returned if the

pattern is matched. A value of Boolean FALSE is returned if the pattern is not matched.

expression2 can contain any number of patterns to match those separated by value marks. The value

mark implies a logical OR of the specified patterns and the match will evaluate to Boolean TRUE if

expression1 matches any of the specified patterns.

NOTES

The rule table shown below shows construction of pattern matching strings (n refers to any integer

number).

Pattern Explanation

nN this construct matches a sequence of n digits

nA this construct matches a sequence of n alpha characters

nC this construct matches a sequence of n alpha characters or digits

nX this construct matches a sequence of any characters

"string" This construct matches the character sequence string exactly.

Applies the pattern to all characters in expression1 and it must match all characters in the expression to

evaluate as Boolean TRUE.

Specify the integer value n as 0. This will cause the pattern to match any number of characters of the

specified type.

EXAMPLES

IF Var MATCHES "0N" THEN CRT "A match!"

Matches if all characters in Var are numeric or Var is a null string.

IF Var MATCHES "0N'.'2N"...

 230

Matches if Var contains any number of numerics followed by the “.” character followed by 2 numeric

characters. e.g. 345.65 or 9.99

Pattern = "4X':'6N';'2A"

Matched = Serno MATCHES Pattern

Matches if the variable Serno consists of a string of 4 arbitrary characters followed by the ":" character

then 6 numerics then the ";" character and then 2 alphabetic characters. e.g. 1.2.:123456;AB or

17st:456789;FB

 231

MATCHFIELD

COMMAND SYNTAX

MATCHFIELD (string, pattern, field)

DESCRIPTION

Use the MATCHFIELD function to check a string against a match pattern: See also: MATCH operator

for information about pattern matching.

field is an expression that evaluates to the portion of the match string to be returned.

If string matches pattern, the MATCHFIELD function returns the portion of string that matches the

specified field in pattern. If string does not match pattern, or if string or pattern evaluates to the null

value, the MATCHFIELD function returns an empty string. If field evaluates to the null value, the

MATCHFIELD function fails and the program terminates with a run-time error.

pattern must contain specifiers to cover all characters contained in string. For example, the following

statement returns an empty string because not all parts of string are specified in the pattern:

MATCHFIELD ("XYZ123AB", "3X3N", 1)

To achieve a positive pattern match on the string above, use the following statement:

MATCHFIELD ("XYZ123AB", "3X3N0X", 1)

This statement returns a value of "XYZ".

EXAMPLES

In the following example, the string does not match the pattern:

In the following example, the entire string does not match the pattern:

Source Lines Program Output

Q=MATCHFIELD("AA123BBB9","2A0N3A0N",3)

PRINT "Q= ",Q

Q= BBB

ADDR='20 GREEN ST. NATICK, MA.,01234'

ZIP=MATCHFIELD(ADDR,"0N0X5N",3)

PRINT "ZIP= ",ZIP

ZIP= 01234

INV='PART12345 BLUE AU'

 232

COL=MATCHFIELD(INV,"10X4A3X",2)

PRINT "COL= ",COL

COL= BLUE

Source Lines Program Output

XYZ=MATCHFIELD('ABCDE1234',"2N3A4N",1)

PRINT "XYZ= ",XYZ

XYZ=

Source Lines Program Output

ABC=MATCHFIELD('1234AB',"4N1A",2)

PRINT "ABC= ",ABC

ABC=

 233

MATPARSE

Use the MATPARSE statement to assign the elements of a matrix from the elements of a dynamic

array.

COMMAND SYNTAX

MATPARSE array{, expression1{, expression2}} FROM variable1 {USING expression3} SETTING

variable2

SYNTAX ELEMENTS

array is a previously dimensioned matrix, which will be assigned to from each element of the dynamic

array. variable1 is the jBASE BASIC variable from which the matrix array will be stored.

expression1 and expression2 should evaluate to numeric integers. expression1 specifies which element

of the array the assignment will start with; expression2 specifies which element of the array the

assignment will end with (inclusive).

 By default, the dynamic array assumes the use of a field mark to separate each array element. By

specifying expression3, the separator character can be changed. If expression3 evaluates to more than a

single character, only the first character of the string is used.

As assignment will stop when the contents of the dynamic array have been exhausted, it can be useful

to determine the number of matrix elements that were actually assigned to. If the SETTING clause is

specified then variable2 will be set to the number of elements of the array that were assigned to.

NOTES

When specifying starts and end positions with multi-dimensional arrays, it is necessary to expand the

matrix into its total number of variables to calculate the correct element number. See the information

about dimensioned arrays earlier in this section for detailed instructions on calculating element

numbers.

EXAMPLE

DIM A(40)

MATPARSE A,3,7 FROM Dynamic

Assign 5 elements of the array starting at element 3.

 234

MATREAD

The MATREAD statement allows a record stored in a jBASE file to be read and mapped directly into a

dimensioned array.

COMMAND SYNTAX

MATREAD array FROM {variable1,}expression {SETTING setvar} {ON ERROR statements}

{LOCKED statements} {THEN|ELSE statements}

SYNTAX ELEMENTS

array should be a previously dimensioned array, which will be used to store the record to be read. If

specified, variable1 should be a jBASE BASIC variable that has previously been opened to a file using

the OPEN statement. If variable1 is not specified then the default file is assumed. The expression

should evaluate to a valid record key for the file.

If no record is found and can be read from the file then it is mapped into the array and executes the

THEN statements (if any). If the record cannot be read from the file then array is unchanged and

executes the ELSE statements (if any).

If the record could not be read because another process already had a lock on the record then one of

two actions is taken. If the LOCKED clause was specified in the statement then the statements

dependent on it are executed. If no LOCKED clause was specified then the statement blocks (hangs)

until the other process releases the lock. If a LOCKED clause is used and the read is successful, a lock

will be set.

If the SETTING clause is specified, setvar will be set to the number of fields in the record on a

successful read. If the read fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, it executes the statements following the ON ERROR clause for any of the

above Incremental File Errors except error 128.

NOTES

The record is mapped into the array using a predefined algorithm. The record is expected to consist of a

number of Field separated records, which are then assigned one at a time to each successive element of

the matrix. See the notes on matrix organization earlier in this section for details of multi dimensional

arrays.

 235

If there were more fields in the record than elements in the array, then the final element of the array

will be assigned all remaining fields. If there were fewer fields in the record than elements in the array

then remaining array elements will be assigned a null value.

Note that if multi-values are read into an array element they will then be referenced individually as:

 Array(n)<1,m>

not

 Array(n)<m>

EXAMPLES

MATREAD Xref FROM CFile, "XREF" ELSE MAT Xref = "

MATREAD Ind FROM IFile, "INDEX" ELSE MAT Ind = 0

MATREAD record FROM filevar, id SETTING val ON ERRO R

PRINT "Error number ":val:" occurred which prevente d record from

being read."

 STOP

END THEN

 PRINT 'Record read successfully'

END ELSE

 PRINT 'Record not on file'

END

PRINT "Number of attributes in record = ": val

 236

MATREADU

The MATREADU statement allows a record stored in a jBASE file to be read and mapped directly into

a dimensioned array. The record will also be locked for update by the program.

COMMAND SYNTAX

MATREADU array FROM { variable1,}expression {SETTING setvar} {ON ERROR statements}

{LOCKED statements} {THEN|ELSE statements}

SYNTAX ELEMENTS

array should be a previously dimensioned array, which will be used to store the record to be read. If

specified, variable1 should be a jBASE BASIC variable that has previously been opened to a file using

the OPEN statement. If variable1 is not specified then the default file is assumed. The expression

should evaluate to a valid record key for the file.

If found, the record can be read from the file then it is mapped into array and executes the THEN

statements (if any). If the record cannot be read from the file for some reason then array is unchanged

and executes the ELSE statements (if any).

If the record could not be read because another process already had a lock on the record then one of

two actions is taken. If the LOCKED clause was specified in the statement then the statements

dependent on it are executed. If no LOCKED clause was specified then the statement blocks (hangs)

until the other process releases the lock.

If the SETTING clause is specified, setvar will be set to the number of fields in the record on a

successful read. If the read fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements following the ON ERROR clause will be executed for any

of the above Incremental File Errors except error 128.

NOTES

The record is mapped into the array using a predefined algorithm. The record is expected to consist of a

number of Field separated records, which are then assigned one at a time to each successive element of

the matrix. See the notes on matrix organization earlier in this section for details of the layout of multi

dimensional arrays.

If there were more fields in the record than elements in the array, then the final element of the array

will be assigned all remaining fields. If there were fewer fields in the record than elements in the array

then remaining array elements will be assigned a null value.

 237

NOTE: that if multi-values are read into an array element they will then be referenced individually as:

 Array(n)<1,m>

not

 Array(n)<m>

EXAMPLES

MATREADU Xref FROM CFile, "XREF" ELSE MAT Xref = "

MATREADU Ind FROM IFile, "INDEX" LOCKED

 GOSUBInformUserLock ;* Say it is locked

END THEN

 GOSUB InformUserOk ;* Say we got it

END ELSE

 MAT Ind = 0 ;* It was not there

END

MATREADU record FROM filevar, id SETTING val ON ERR OR

 PRINT "Error number ":val:" occurred which prev ented record from

being read."

 STOP

END LOCKED

 PRINT "Record is locked"

END THEN

 PRINT 'Record read successfully'

END ELSE

 PRINT 'Record not on file'

END

PRINT "Number of attributes in record = ": val

 238

MATWRITE

The MATWRITE statement transfers the entire contents of a dimensioned array to a specified record

on disc.

COMMAND SYNTAX

MATWRITE array ON { variable,}expression {SETTING setvar} {ON ERROR statements}

SYNTAX ELEMENTS

array should be a previously dimensioned and initialized array. If specified, variable should be a

previously opened file variable (i.e. the subject of an OPEN statement). If variable is not specified the

default file variable is used. expression should evaluate to the name of the record in the file.

If the SETTING clause is specified and the write succeeds, setvar will be set to the number of attributes

read into array.

If the SETTING clause is specified and the write fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements following the ON ERROR clause will be executed for any

of the above Incremental File Errors except error 128.

NOTES

The compiler will check that the variable specified is a dimensioned array before its use in the

statement.

EXAMPLES

DIM A(8)

MAT A = 99

....

MATWRITE A ON "NewArray" SETTING ErrorCode ON ERROR

 CRT "Error: ":ErrorCode:" Record could not be written."

END

...

MATWRITE A ON RecFile, "OldArray"

 239

MATWRITEU

The MATWRITEU statement transfers the entire contents of a dimensioned array to a specified record

on file, in the same manner as the MATWRITE statement. An existing record lock will be preserved.

COMMAND SYNTAX

MATWRITEU array ON { variable,}expression {SETTING setvar} {ON ERROR statements}

SYNTAX ELEMENTS

array should be a previously dimensioned and initialized array. If specified, variable should be a

previously opened file variable (i.e. the subject of an OPEN statement). If variable is not specified the

default file variable is used.

expression should evaluate to the name of the record in the file.

If the SETTING clause is specified and the write succeeds, setvar will be set to the number of attributes

read into array.

If the SETTING clause is specified and the write fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements following the ON ERROR clause will be executed for any

of the above Incremental File Errors except error 128.

NOTES

The compiler will check that the variable specified is indeed a dimensioned array before its use in the

statement.

EXAMPLES

DIM A(8)

MAT A = 99

....

MATWRITEU A ON "NewArray"

 240

MAXIMUM

The MAXIMUM function is used to return the element of a dynamic array with the highest numerical

value.

COMMAND SYNTAX

MAXIMUM(DynArr)

SYNTAX ELEMENTS

DynArr should evaluate to a dynamic array.

 NOTES

Null dynamic array elements are treat as zero.

Non-numeric dynamic array elements are ignored.

See also: MINIMUM .

EXAMPLE

If EResults is a variable containing the dynamic array:

1.45032:@AM:-3.60441:@VM:4.29445:@AM:2.00042:@SM:-3 .90228

the code:

PRECISION 5

CRT = MAXIMUM(EResults)

displays 4.29445

 241

MINIMUM

The MINIMUM function is used to return the element of a dynamic array with the lowest numerical

value.

COMMAND SYNTAX

MINIMUM(DynArr)

SYNTAX ELEMENTS

DynArr should evaluate to a dynamic array.

NOTES

Null dynamic array elements are treat as zero.

Non-numeric dynamic array elements are ignored.

See also: MAXIMUM .

EXAMPLE

If EResults is a variable containing the dynamic array:

1.45032:@AM:-3.60851:@VM:4.29445:@AM:2.07042:@SVM:- 3.90258

the code:

PRECISION 3

CRT = MINIMUM(EResults)

displays -3.903

 242

MOD

The MOD function returns the arithmetic modulo of two numeric expressions.

COMMAND SYNTAX

MOD (expression1, expression2)

SYNTAX ELEMENTS

Both expression1 and expression2 should evaluate to numeric expressions or a runtime error will

occur.

NOTES

The remainder of expression1 divided by expression2 calculates the modulo. If expression2 evaluates

to 0, then the value of expression1 is returned.

EXAMPLES

FOR I = 1 TO 10000

 IF MOD (I, 1000) = 0 THEN CRT "+":

NEXT I

displays a "+" on the screen every 1000 iterations

 243

MODS

Use the MODS function to create a dynamic array of the remainder after the integer division of

corresponding elements of two dynamic arrays.

COMMAND SYNTAX

MODS (array1, array2)

The MODS function calculates each element according to the following formula:

XY.element = X ??(INT (X / Y) * Y)

X is an element of array1 and Y is the corresponding element of array2. The resulting element is

returned in the corresponding element of a new dynamic array. If an element of one dynamic array has

no corresponding element in the other dynamic array, 0 is returned. If an element of array2 is 0, 0 is

returned. If either of a corresponding pair of elements is null, null is returned for that element.

EXAMPLE

A=3:@VM:7

B=2:@SM:7:@VM:4

PRINT MODS (A,B)

The output of this program is: 1\0]3

 244

MSLEEP

Allows the program to pause execution for a specified number of milliseconds

COMMAND SYNTAX

MSLEEP {milliseconds}

SYNTAX ELEMENTS

milliseconds must be an integer, which, specifies the number of milliseconds to sleep.

When there are no parameters assumes a default time of 1 millisecond.

NOTES

If the debugger is invoked while a program is sleeping and then execution continued, the user will be

prompted:

Continue with SLEEP (Y/N) ?

If "N" is the response, the program will continue at the next statement after the MSLEEP

See also: SLEEP to sleep for a specified number of seconds or until a specified time.

EXAMPLES

Sleep for 1/10th of a second...

MSLEEP 100

*

* 40 winks...

MSLEEP 40000

 245

MULS

See also: Floating point Operations

Use the MULS function to create a dynamic array of the element-by-element multiplication of two

dynamic arrays.

COMMAND SYNTAX

MULS (array1, array2)

Each element of array1 is multiplied by the corresponding element of array2 with the result being

returned in the corresponding element of a new dynamic array. If an element of one dynamic array has

no corresponding element in the other dynamic array, 0 is returned. If either of a corresponding pair of

elements is null, null is returned for that element.

EXAMPLE

A=1:@VM:2:@VM:3:@SM:4

B=4:@VM:5:@VM:6:@VM:9

PRINT MULS (A,B)

The output of this program is: 4]10]18\0]0

 246

NEGS

Use the NEGS function to return the negative values of all the elements in a dynamic array.

COMMAND SYNTAX

NEGS (dynamic.array)

If the value of an element is negative, the returned value is positive. If dynamic.array evaluates to null,

null is returned. If any element is null, null is returned for that element.

 247

NES

Use the NES function to determine whether elements of one dynamic array are equal to the elements of

another dynamic array.

COMMAND SYNTAX

NES (array1, array2)

Each element of array1 is compared with the corresponding element of array2. If the two elements are

equal, a 0 is returned in the corresponding element of a new dynamic array. If the two elements are not

equal, a 1 is returned. If an element of one dynamic array has no corresponding element in the other

dynamic array, a 1 is returned. If either of a corresponding pair of elements is null, null is returned for

that element.

 248

NOBUF

Use the NOBUF statement to turn off buffering for a file previously opened for sequential processing.

COMMAND SYNTAX

NOBUF file.variable {THEN statements [ELSE statements] | ELSE statements}

DESCRIPTION

jBASE can buffer for sequential input and output operations. The NOBUF statement turns off this

behavior and causes all writes to the file to be performed immediately. The NOBUF statement should

be used in conjunction with a successful OPENSEQ statement and before any input or output is

performed on the record.

If the NOBUF operation is successful, it executes the THEN statements otherwise, executes the ELSE

statements. If file.variable is not a valid file descriptor then NOBUF statement fails and the program

enters the debugger.

EXAMPLE

In the following example, if RECORD in DIRFILE can be opened, output buffering is turned off:

OPENSEQ 'DIRFILE', 'RECORD' TO DATA THEN NOBUF DATA

ELSE ABORT

 249

NOT

The NOT function is used to invert the Boolean value of an expression. It is useful for explicitly testing

for a false condition.

COMMAND SYNTAX

NOT (expression)

SYNTAX ELEMENTS

expression may evaluate to any Boolean result.

NOTES

The NOT function will return Boolean TRUE if the expression returned a Boolean FALSE. It will

return Boolean FALSE of the expression returned a Boolean TRUE.

The NOT function is useful for explicitly testing for the false condition of some test and can clarify the

logic of such a test.

EXAMPLES

EQU Sunday TO NOT (MOD (DATE(), 7))

IF Sunday THEN

 CRT "It is Sunday!"

END

In this example, the expression MOD (DATE(),7) will return 0 (FALSE) if the day is Sunday and 1 to

6 (TRUE) for the other days. To explicitly test for the day Sunday we need to invert the result of the

expression. BY using the NOT function we return a 1 (TRUE) if the day is Sunday and 0 (FALSE) for

all other values of the expression.

 250

NOTS

Use the NOTS function to return a dynamic array of the logical complements of each element of

dynamic.array.

COMMAND SYNTAX

NOTS (dynamic.array)

If the value of the element is true, the NOTS function returns a value of false (0) in the corresponding

element of the returned array. If the value of the element is false, the NOTS function returns a value of

true (1) in the corresponding element of the returned array.

A numeric expression that evaluates to 0 has a logical value of false. A numeric expression that

evaluates to anything else, other than the null value, is a logical true.

An empty string is logically false. All other string expressions, including strings, which consist of an

empty string, spaces, or the number 0 and spaces, are logically true.

If any element in dynamic.array is null, it returns null for that element.

EXAMPLE

X=5; Y=5

PRINT NOTS X-Y:@VM:X+Y)

The output of this program is:

1]0

 251

NULL

The NULL statement performs no function but can be useful in clarifying syntax and where the

language requires a statement but the programmer does not wish to perform any actions.

COMMAND SYNTAX

NULL

SYNTAX ELEMENTS

None

EXAMPLES

LOCATE A IN B SETTING C ELSE NULL

 252

NUM

Use the NUM function to test arguments for numeric values.

COMMAND SYNTAX

NUM (expression)

SYNTAX ELEMENTS

expression may evaluate to any data type.

NOTES

If found that every character in expression is numeric then NUM returns a value of Boolean TRUE If

any character in expression is found not to be numeric then a value of Boolean FALSE is returned.

Note that to execute user code migrated from older systems correctly, the NUM function will accept

both a null string and the single characters ".", "+", and "-" as being numeric.

NOTE: if running jBASE BASIC in ros emulation the "." , "+" and "-" characters would not be

considered numeric.

EXAMPLE

LOOP

 INPUT Answer,1

 IF NUM (Answer) THEN BREAK ;* Exit loop if nume ric

REPEAT

 253

NUMS

Use the NUMS function to determine whether the elements of a dynamic array are numeric or

nonnumeric strings.

COMMAND SYNTAX

NUMS (dynamic.array)

If an element is numeric, a numeric string, or an empty string, it evaluates to true, and returns a value

of 1 to the corresponding element in a new dynamic array. If the element is a nonnumeric string, it

evaluates to false, and returns a value of 0.

The NUMS of a numeric element with a decimal point (.) evaluates to true; the NUMS of a numeric

element with a comma (,) or dollar sign ($) evaluates to false.

If dynamic.array evaluates to null, it returns null. If an element of dynamic.array is null, it returns null

for that element.

INTERNATIONAL MODE

When using the NUMS function in International Mode, the statement will use the Unicode Standard to

determine whether an expression is numeric.

 254

OBJEXCALLBACK

jBASE OBjEX provides the facility to call a subroutine from a front-end program written in a tool that

supports OLE, such as Delphi or Visual Basic. The OBJEXCALLBACK statement allows

communication between the subroutine and the calling OBjEX program.

COMMAND SYNTAX

OBJEXCALLBACK expression1, expression2 THEN|ELSE statements

SYNTAX ELEMENTS

expression1 and expression2 can contain any data. They are returned to the OBjEX program where

they are defined as variants.

If the subroutine containing the OBJEXCALLBACK statement is not called from an OBjEX program

(using the Call Method) then the ELSE clause will be taken.

NOTES

The OBJEXCALLBACK statement is designed to allow jBASE BASIC subroutines to temporarily

return to the calling environment to handle exception conditions or prompt for additional information.

After servicing this event, the code should return control to the jBASE BASIC program to ensure that

the proper clean up operations are eventually made. The two parameters can be used to pass data

between the jBASE BASIC and OBjEX environments in both directions. They are defined as Variants

in the OBjEX environment and as normal variables in the jBASE BASIC environment.

See the OBjEX documentation for more information.

EXAMPLE

param1 = "SomeActionCode"

param2 = ProblemItem

OBJEXCALLBACK param1, param2 THEN

* this routine was called from ObjEX

END ELSE

* this routine was not called from ObjEX

END

 255

OCONV

Use the OCONV statement to convert internal representations of data to their external form.

COMMAND SYNTAX

OCONV (expression1, expression2)

SYNTAX ELEMENTS

expression1 may evaluate to any data type but must be relevant to the conversion code.

expression2 should evaluate to a conversion code from the list below. Alternatively, expression2 may

evaluate to a user exit known to the jBASE BASIC language or supplied by the user.

INTERNATIONAL MODE

Description of date, time, number and currency conversions when used in ICONV and International

Mode

NOTES

OCONV will return the result of the conversion of expression1 by expression2. Shown below are valid

conversion codes:

Conversion Action

D{n{c}} Converts an internal date to an external date format. The numeric argument n

specifies the field width allowed for the year and can be 0 to 4 (default 4). The

character c causes the date to be return in the form ddcmmcyyyy. If it is not

specified the month name is return in abbreviated form.

DI Allow the conversion of an external date to the internal format even though an

output conversion is expected.

DD Returns the day in the current month.

DM Returns the number of the month in the year.

DMA Returns the name of the current month.

DJ Returns the number of the day in the year (0-366).

DQ Returns the quarter of the year as a number 1 to 4

DW Returns the day of the week as a number 1 to 7 (Monday is 1).

DWA Returns the name of the day of the week.

DY{n} Returns the year in a field of n characters.

F Given a prospective filename for a command such as CREATE-FILE this

conversion will return a filename that is acceptable to the version of UNIX

jBASE is running on.

MCA Removes all but alphabetic characters from the input string.

MC/A Removes all but the NON-alphabetic characters in the input string.

MCN Removes all but numeric characters in the input string

MC/N Removes all but NON numeric characters in the input string

 256

Conversion Action

MCB Returns just the alphabetic and numeric characters from the input string

MC/B Remove the alphabetic and numeric characters from their input string.

MCC;s1;s2 Replaces all occurrences of string s1 with string s2

MCL Converts all upper case characters in the string to lower case characters

MCU Converts all lower case characters in the string to upper case characters.

MCT Capitalizes each word in the input string; e.g. JIM converts to Jim

MCP{c} Converts all non-printable characters to a period character "." in the input

string. When supplied use the character "c" in place of the period.

MCPN{n} In the same manner as the MCP conversion, it replaces all non-printable

characters. The ASCII hexadecimal value follows the replacing character.

MCNP{n} Performs the opposite conversion to MCPN. The ASCII hexadecimal value

following the tilde character converts to its original binary character value.

MCDX Converts the decimal value in the input string to its hexadecimal equivalent.

MCXD Converts the hexadecimal value in the input string to its decimal equivalent.

Gncx Extracts x groups separated by character c skipping n groups, from the input

string.

MT{HS} Performs time conversions.

MD Converts the supplied integer value to a decimal value.

MP Converts a packed decimal number to an integer value.

MX Converts ASCII input to hexadecimal characters.

T Performs file translations given a cross-reference table in a record in a file.

 257

OCONVS

Use the OCONVS function to convert the elements of dynamic.array to a specified format for external

output.

COMMAND SYNTAX

OCONVS (dynamic.array, conversion)

Converts the elements to the external output format specified by conversion and returned in a dynamic

array conversion must evaluate to one or more conversion codes separated by value marks (ASCII

253).

If multiple codes are used, they are applied from left to right as follows: the left-most conversion code

is applied to the element, the next conversion code to the right is then applied to the result of the first

conversion, and so on.

If dynamic.array evaluates to null, it returns null. If any element of dynamic.array is null, it returns null

for that element. If conversion evaluates to null, the OCONVS function fails and the program

terminates with a run-time error message.

The STATUS function reflects the result of the conversion:

0 The conversion is successful.

1 Passes an invalid element to the OCONVS function; the original element is returned. If the invalid

element is null, it returns null for that element.

2 The conversion code is invalid.

For information about converting elements in a dynamic array to an internal format

See also: ICONVS function.

INTERNATIONAL MODE

Description of date, time, number and currency conversions when used in ICONV and International

Mode

 258

ONGOTO

The ON...GOSUB and ON...GOTO statements are used to transfer program execution to a label based

upon a calculation.

COMMAND SYNTAX

ON expression GOTO label{, label...}

ON expression GOSUB label{, label...}

SYNTAX ELEMENTS

expression should evaluate to an integer numeric value. Labels should be defined somewhere in the

current source file.

ON GOTO will transfer execution to the labeled source code line in the program.

ON GOSUB will transfer execution to the labeled subroutine within the source code.

NOTES

Use the value of expression as an index to the list of labels supplied. If the expression evaluates to 1

then the first label will be jumped to, 2 then the second label will be used and so on.

If the program was compiled when the emulation included the setting generic_pick = true, then no

validations are performed on the index to see if it is valid. Therefore, if the index is out of range this

instruction will take no action and report no error.

If the program was compiled for other emulations then the index will be range checked. If found that

the index is less than 1, it is assumed to be 1 and a warning message is issued If the index is found to be

too big, then the last label in the list will be used to transfer execution and a warning message issued.

EXAMPLE

INPUT Ans,1_

ON SEQ (Ans)-SEQ(A)+1 GOSUB RoutineA, RoutineB...

 259

OPEN

Use the OPEN statement to open a file or device to a descriptor variable within jBASE BASIC.

COMMAND SYNTAX

OPEN {expression1,}expression2 TO {variable} {SETTING setvar} THEN|ELSE statements

SYNTAX ELEMENTS

The combination of expression1 and expression2 should evaluate to a valid file name of a file type that

already installed on the jBASE system. If the file has a dictionary section to be opened by the statement

then specify by the literal string "DICT" being specified in expression1. If specified, the variable will

be used to hold the descriptor for the file. It should then be to access the file using READ and WRITE.

If no file descriptor variable is supplied, then the file will be opened to the default file descriptor.

Specific data sections of a multi level file may specified by separating the section name from the file

name by a "," char in expression2.

If the OPEN statement fails it will execute any statements associated with an ELSE clause. If the

OPEN is successful, it will execute any statements associated with a THEN clause. Note that the syntax

requires either one or both of the THEN and ELSE clauses.

If specifying the SETTING clause and the open fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES: The OPEN statement uses the environment variable JEDIFILEPATH to search for the named

file. If there is no defined named file, it will search the current working directory followed by the home

directory of the current process.

The file that is the subject of the OPEN statement can be of any type known to the jBASE system. Its

type will be determined and correctly opened transparently to the application, which need not be aware

of the file type.

A jBASE BASIC program can open an unlimited amount of files.

EXAMPLES

OPEN "DICT", "CUSTOMERS" TO F.Dict.Customers ELSE

 ABORT 201, "DICT CUSTOMERS"

END

 260

opens the dictionary section of file CUSTOMERS to its own file descriptor F.Dict.Customers.

OPEN "CUSTOMERS" ELSE ABORT 201, "CUSTOMERS"

opens the CUSTOMERS file to the default file variable.

 261

OPENDEV

Opens a device (or file) for sequential writing and/or reading

COMMAND SYNTAX

OPENDEV Device TO FileVar { LOCKED statements } THEN | ELSE statements

SYNTAX ELEMENTS

Device specifies the target device or file

FileVar contains the file descriptor of the file when the open was successful

Statements conditional jBASE BASIC statements

NOTES

If the device does not exist or cannot be opened it executes the ELSE clause. Once open it takes a lock

on the device. If the lock cannot be taken then the LOCKED clause is executed if it exists otherwise the

ELSE clause is executed. The specified device can be a regular file, pipe or special device file. Regular

file types only take locks. Once open the file pointer is set to the first line of sequential data.

EXAMPLE

OPENDEV "\\.\TAPE0" TO tape.drive ELSE STOP

Opens the Windows default tape drive and prepares it for sequential processing.

For more information on sequential processing, see READSEQ, WRITESEQ the sequential processing

example.

 262

OPENINDEX

The OPENINDEX statement is used to open a particular index definition for a particular file. This

index file variable can later be used with the SELECT statement.

 COMMAND SYNTAX

OPENINDEX filename,indexname TO indexvar {SETTING setvar} THEN|ELSE statements

 SYNTAX ELEMENTS

filename should correspond to a valid file which has at least one index.

indexname should correspond to an index created for the filename.

indexvar is the variable that holds the descriptor for the index.

If the OPEN statement fails it will execute any statements associated with an ELSE clause. If the

OPEN is successful it will execute any statements associated with a THEN clause. Note that the syntax

requires either one or both of the THEN and ELSE clauses.

If the SETTING clause is specified and the open fails, setvar will be set to one of the following values:

 EXAMPLES

OPENINDEX "CUSTOMER","IXLASTNAME" TO custlastname.ix SETTING errval ELSE

 CRT "OPENINDEX failed for file CUSTOMER, index IXLASTNAME"

 ABORT

END

 263

OPENPATH

Use the OPENPATH statement to open a file (given an absolute or relative path) to a descriptor

variable within jBASE BASIC.

See also: the OPEN statement.

COMMAND SYNTAX

OPENPATH expression1 TO {variable} {SETTING setvar} THEN|ELSE statements

SYNTAX ELEMENTS

Expression1 should be an absolute or relative path to the file including the name of the file to be

opened. If specified, variable will be used to hold the descriptor for the file. It should then be to access

the file using READ and WRITE. If no file descriptor variable is supplied, then the file will be opened

to the default file descriptor.

If the OPENPATH statement fails it will execute any statements associated with an ELSE clause. If

successful, the OPENPATH will execute any statements associated with a THEN clause. Note that the

syntax requires either one or both of the THEN and ELSE clauses.

If the SETTING clause is specified and the open fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

 NOTES

The path specified may be either a relative or an absolute path and must include the name of the jBASE

file being opened.

The file that is the subject of the OPENPATH statement can be of any type known to the jBASE

system. Its type will be determined and correctly opened transparently to the application, which need

not be aware of the file type.

A jBASE BASIC program can open an unlimited amount of files.

EXAMPLES

OPENPATH "C:\Home\CUSTOMERS" TO F.Customers ELSE

 ABORT 201, "CUSTOMERS"

END

opens the file CUSTOMERS (located in C:\Home) to its own file descriptor F.Customers

OPEN "F:\Users\data\CUSTOMERS" ELSE ABORT 201, "CUS TOMERS"

 264

opens the CUSTOMERS file (located in F:\Users\data) to the default file variable.

 265

OPENSEQ

Opens a file for sequential writing and/or reading

COMMAND SYNTAX

OPENSEQ Path{,File} {READONLY} TO FileVar { LOCKED statements } THEN | ELSE

statements

SYNTAX ELEMENTS

Path specifies the relative or absolute path of the target directory or file

File specifies additional path information of the target file

FileVar contains the file descriptor of the file when the open was successful

Statements conditional jBASE BASIC statements

NOTES

If the file does not exist or cannot be opened it then executes the ELSE clause. However, if

JBASICEMULATE is set for Sequoia (use value "seq") emulation then OPENSEQ will create the file

if it does not exist. This behavior can also be achieved by specifying "openseq_creates = true" in

Config_EMULATE for the emulation being used. Once open a lock is taken on the file. If the lock

cannot be taken then the LOCKED clause is executed if it exists otherwise the ELSE clause is

executed. If specified the READONLY process takes a read lock on the file, otherwise it takes a write

lock. The specified file can be a regular, pipe or special device file. Locks are only taken on regular file

types. Once open the file pointer is set to the first line of sequential data.

SEQUENTIAL FILE PROCESSING EXAMPLES

EXAMPLE 1

This program uses sequential processing to create (write to)an ASCII

text file

* from a jBASE hashed file. It illustrates the use of the commands:

* OPENSEQ, WRITESEQ, WEOFSEQ, CLOSESEQ

*

* First, let's set the destination directory and fi le path

 Path = "d:\temp\textfile"

*

* Open the destination file path. If it does not ex ist it will be

created.

 266

* Note that "openseq_creates=true" must be set for the emulation in

config_EMULATE

 OPENSEQ Path TO MyPath THEN

 CRT "The file already exists and we don't wan t to overwrite

it."

 END ELSE

 CRT "File is being created..."

 END

*

* Open the jBASE file

 OPEN "FileName" TO jBaseFile ELSE STOP

 SELECT

 jBaseFile ;* Process all records

*

* Now, let's loop thru each item and build the ASCI I text file.

 LOOP WHILE READNEXT

 ID DO

 READ

 MyRec FROM jBaseFile, ID THEN

 Line = ""

*

* Process MyRec and build the Line variable with th e information to

be

* written to the ASCII text file. jBASE automatical ly takes care of

the

* end-of-line delimiters in this case a cr/lf is ap pended to the end

* of each line However, this can be changed with th e IOCTL() function

.*

 WRITESEQ Line TO MyPath ELSE

 CRT "What happened to the file?"

 267

 STOP

 END

 END

 REPEAT

*

* Wrapup

 WEOFSEQ MyPath

 CLOSESEQ MyPath

EXAMPLE 2

This program uses sequential processing to read fro m an ASCII text

file

* and write to a jBASE hashed file. It illustrates the use of the

commands:

* OPENSEQ, READSEQ, CLOSESEQ

*

* First, let's define the path where the sequential file resides.

 Path = "d:\temp\textfile"

*

* Open the file. If it does not exist an error will be produced.

 OPENSEQ Path TO MyPath ELSE

 CRT "Can't find the specified directory or fi le."

 ABORT

 END

*

* Open the jBASE hashed file

 OPEN "FileName" TO jBaseFile ELSE STOP

*

* Now, let's read and process each line of the ASCI I (sequential)

file.

 LOOP

 READSEQ Line FROM MyPath THEN

Initialize the record that will be written to the j BASE hashed file.

 268

 MyRec = ""

*

* Process the Line variable. This involves extracti ng the information

 which

define the key and data of the record to be written to the base

 hashed

* file. This will be left up to the application dev eloper since a

 "line"

could either be fixed length or delimited by some character such as a tab or a comma. We will assume

that Key & MyRec are assembled here.

*

* All that's left to do is to write to the jBASE-ha shed file

. WRITE MyRec on jBaseFile, Key

 END

 REPEAT

*

* Wrapup

 CLOSESEQ MyPath

 269

OPENSER

Use the OPENSER statement to handle the Serial IO. However, the OPENSER statement has also been

provided.

Serial IO to the COM ports on NT and to device files, achieves this on UNIX by using the sequential

file statements. In addition, you can perform certain control operations using the IOCTL function.

COMMAND SYNTAX

OPENSER Path,DevInfo| PIPE TO FileVar THEN | ELSE Statements

SYNTAX ELEMENTS

Path is the pathname of the required device.

DevInfo consists of the following:

Baud baud rate required

Flow y X-ON X-OFF flow control (default)

n no flow control

i input flow control

o output flow control

Parity e 7 bit even parity

o 7 bit odd parity

n 8 bit no parity, (Default)

s 8 bit no parity, strip top bit

PIPE specifies the file is to be opened to a PIPE for reading.

NOTES

The PIPE functionality allows a process to open a PIPE, once opened then the process can execute a

command via the WRITESEQ/SEND statement and then received the result back via the

GET/READSEQ statements.

EXAMPLE

FileName = "/dev/tty01s"

OPENSER FileName TO File ELSE STOP 201,FileName

WRITESEQ "ls -ail" ON File,"" ;* ONLY for PIPEs

LOOP

 Terminator = CHAR (10)

 WaitTime = 4

 GET Input SETTING Count FROM File UNTIL Termina tor RETURNING

 TermChar

 270

 WAITING WaitTime THEN

 CRT "Get Ok, Input ":Input:" Count ":Count: "TermChar

 ":TermChar

 END ELSE

 CRT "Get Timed out Input ":Input:" Count ": Count:" TermChar

 ":TermChar

 END

WHILE Input NE "" DO

REPEAT

 271

ORS

Use the ORS function to create a dynamic array of the logical OR of corresponding elements of two

dynamic arrays.

COMMAND SYNTAX

ORS (array1, array2)

Each element of the new dynamic array is the logical OR of the corresponding elements of array1 and

array2. If an element of one dynamic array has no corresponding element in the other dynamic array, it

assumes a false for the missing element.

If both corresponding elements of array1 and array2 are null, it returns null for those elements. If one

element is the null value and the other is 0 or an empty string, it returns null. If one element is the null

value and the other is any value other than 0 or an empty string, it returns true.

EXAMPLE

A="A":@SM:0:@VM:4:@SM:1

B=0:@SM:1-1:@VM:2

PRINT ORS (A,B)

The output of this program is: 1\0]1\1

 272

OSBREAD

The OSBREAD command reads data from a file starting at a specified byte location for a certain length

of bytes, and assigns the data to a variable.

COMMAND SYNTAX

OSBREAD var FROM file.var [AT byte.expr] LENGTH length.expr [ON ERROR statements]

OSBREAD performs an operating system block read on a UNIX or Windows file.

REMINDER:

Before you use OSBREAD, you must open the file by using the OSOPEN or OPENSEQ command.

NOTE: jBASE uses the ASCII 0 character [CHAR (0)] as a string-end delimiter. Therefore, ASCII 0

cannot be used in any string variable within jBASE. OSBREAD converts CHAR(0) to CHAR(128)

when reading a block of data.

SYNTAX ELEMENTS

var specifies a variable to which to assign the data read.

FROM file.var specifies a file from which to read the data.

AT byte.expr specifies a location in the file from which to begin reading data. If byte.expr is 0, the read

begins at the beginning of the file.

LENGTH length.expr specifies a length of data to read from the file, starting at byte.expr. length.expr

cannot be longer than the maximum string length determined by your system configuration.

ON ERROR statements specifies statements to execute if a fatal error occurs (if the file is not open, or

if the file is a read-only file). If you do not specify the ON ERROR clause, the program terminates

under such fatal error conditions.

STATUS Function Return Values

After you execute OSBREAD, the STATUS function returns either 0 or a failure code.

EXAMPLES

In the following example, the program statement reads 10,000 bytes of the file MYPIPE starting from

the beginning of the file. The program assigns the data it reads to the variable TEST.

OSBREAD Data FROM MYPIPE AT 0 LENGTH 10000

 273

OSBWRITE

The OSBWRITE command writes an expression to a sequential file starting at a specified byte

location.

COMMAND SYNTAX

OSBWRITE expr {ON | TO} file.var [AT byte.expr] [NODELAY] [ON ERROR statements]

OSBWRITE immediately writes a file segment out to the UNIX, Windows NT, or Windows 2000 file.

You do not have to specify a length expression because the number of bytes in expr is written to the

file.

REMINDER: Before you use OSBWRITE, you must open the file by using the OSOPEN or

OPENSEQ command.

NOTE: jBASE uses the ASCII 0 character [CHAR (0)] as a string-end delimiter. Therefore, ASCII 0

cannot be used in any string variable within jBASE. If jBASE reads a string that contains CHAR(0)

characters by using OSBREAD, those characters are converted to CHAR(128).

OSBWRITE converts CHAR (128) back to CHAR(0) when writing a block of characters.

SYNTAX ELEMENTS

expr specifies the expression to write to the file.

ON | TO file.var specifies the file on which to write the expression

AT byte.expr If byte.expr is 0, the write begins at the beginning of the file.

NODELAY forces an immediate write.

ON ERROR statements specifies statements to execute if the OSBWRITE statement fails with a fatal

error because the file is not open, an I/O error occurs, or jBASE cannot find the file. If you do not

specify the ON ERROR clause and a fatal error occurs, the program terminates.

STATUS Function Return Values

After you execute OSBWRITE, the STATUS function returns either 0 or a failure code.

0 The write was successful.

1 The write failed.

EXAMPLE

In the following example, the program statement writes the data in MYPIPE to the opened file starting

from the beginning of the file:

OSBWRITE Data ON MYPIPE AT 0

 274

OSCLOSE

The OSCLOSE command closes a sequential file that you opened with the OSOPEN or OPENSEQ

command.

COMMAND SYNTAX

OSCLOSE file.var [ON ERROR statements]

SYNTAX ELEMENTS

file.var Specifies the file to close.

ON ERROR statements Specifies statements to execute if the OSCLOSE statement fails with a fatal

error because the file is not open, an I/O error occurs, or jBASE cannot find the file.

If you do not specify the ON ERROR clause and a fatal error occurs, the program will enter the

debugger.

STATUS Function Return Values

After you execute OSCLOSE, the STATUS function returns either 0 or a failure code.

0 it closes the file successfully.

1 Close failed.

EXAMPLE

In the following example, the program statement closes the file opened to MYPIPE file variable.

OSCLOSE MYPIPE

 275

OSDELETE

The OSDELETE command deletes a NT or UNIX file.

COMMAND SYNTAX

OSDELETE filename [ON ERROR statements]

SYNTAX ELEMENTS

filename Specifies the file to delete. filename must include the file path. If you do not specify a path,

jBASE searches the current directory.

ON ERROR statements Specifies statements to execute if the OSDELETE statement fails with a fatal

error because the file is not open, an I/O error occurs, or jBASE cannot find the file.

 If you do not specify the ON ERROR clause and a fatal error occurs, the program terminates.

STATUS Function Return Values

After you execute OSDELETE, the STATUS function returns either 0 or a failure code.

0 It deletes the file

1 Delete failed.

EXAMPLES

In the following example, the program statement deletes the file ‘MYPIPE’ in the current directory:

OSDELETE "MYPIPE"

 276

OSOPEN

The OSOPEN command opens a sequential file that does not use CHAR (10) as the line delimiter.

COMMAND SYNTAX

OSOPEN filename TO file.var

[ON ERROR statements] {THEN | ELSE} statements [END]

Read/write access mode is the default. Specify this access mode by omitting READONLY and

WRITEONLY.

TIP: After opening a sequential file with OSOPEN, use OSBREAD to read a block of data from the

file, or OSBWRITE to write a block of data to the file. You also can use READSEQ to read a record

from the file, or WRITESEQ or WRITESEQF to write a record to the file, if the file is not a named

pipe. (READSEQ, WRITESEQ, WRITESEQF are line-oriented commands that use CHAR (10) as the

line delimiter.)

SYNTAX ELEMENTS

filename Specifies the file to open. filename must include the entire path name unless the file resides in

the current directory.

TO file.var Specifies a variable to contain a pointer to the file.

ON ERROR statements specifies statements to execute if the OSOPEN statement fails with a fatal

error because the file is not open, an I/O error occurs, or JBASE cannot find the file. If you do not

specify the ON ERROR clause and a fatal error occurs, the program enters the debugger.

THEN statements Executes if the read is successful.

ELSE statements Executes if the read is not successful or the record (or ID) does not exist

EXAMPLE

In the following example, the program statement opens the file ‘MYSLIPPERS’ as SLIPPERS.

OSOPEN 'MYSLIPPERS' TO SLIPPERS ELSE STOP

 277

OSREAD

Reads an OS file.

COMMAND SYNTAX

OSREAD Variable FROM expression {ON ERROR Statements} {THEN | ELSE} Statements {END}

SYNTAX ELEMENTS

Variable - Specifies the variable to contain the data from the read.

Expression - Specifies the full file path. If the file resides in the JEDIFILEPATH then just the file

name is required.

ON ERROR Statements - Conditional jBASE BASIC statements to execute if the OSREAD statement

fails with a fatal error because the file is not open, an I/O error occurs, or jBASE cannot find the file. If

you do not specify the ON ERROR clause and a fatal error occurs, the program terminates.

THEN | ELSE If the OSREAD statement fails it will execute any statements associated with an ELSE

clause. If the OSREAD is successful, it will execute any statements associated with a THEN clause.

Note that the syntax requires either one or both of the THEN and ELSE clauses.

WARNING

Do not use OSREAD on large files. The jBASE BASIC OSREAD command reads an entire sequential

file and assigns the contents of the file to a variable. If the file is too large for the program memory, the

program aborts and generates a runtime error message. On large files, use OSBREAD or READSEQ.

jBASE uses the ASCII 0 character (CHAR (0)) as a string-end delimiter. ASCII 0 is not useable within

string variable in jBASE BASIC. This command converts CHAR(0) to CHAR(128) when reading a

block of data.

OSREAD MyFile FROM "C:\MyDirectory\MyFile" ELSE PRINT "FILE NOT FOUND"

 278

OSWRITE

The OSWRITE command writes the contents of an expression to a sequential file.

COMMAND SYNTAX

OSWRITE expr {ON | TO} filename [ON ERROR statements]

NOTE:

JBASE uses the ASCII 0 character [CHAR(0)] as a string-end delimiter. For this reason, you cannot

use ASCII 0 in any string variable in jBASE. If jBASE reads a string with a CHAR(0) character, and

then the character is converted to CHAR(128), OSWRITE converts CHAR(128) to CHAR(0) when

writing a block of characters.

SYNTAX ELEMENTS

expr Specifies the expression to write to filename.

ON | TO filename specifies the name of a sequential file to which to write.

ON ERROR statements Specifies statements to execute if the OSWRITE statement fails with a fatal

error because the file is not open, an I/O error occurs, or jBASE cannot find the file. If you do not

specify the ON ERROR clause and a fatal error occurs, the program enters the debugger.

EXAMPLE

In the following example, the program segment writes the contents of FOOTWEAR to the file called

"PINK" in the directory ‘/usr/local/myslippers’

OSWRITE FOOTWEAR ON "/usr/local/myslippers"

 279

OUT

The OUT statement is used to send raw characters to the current output device (normally the terminal).

COMMAND SYNTAX

OUT expression

SYNTAX ELEMENTS

expression should evaluate to a numeric integer in the range 0 to 255, being the entire range of ASCII

characters.

NOTES

The numeric expression is first converted to the raw ASCII character specified and then sent directly to

the output advice.

EXAMPLES

EQUATE BELL TO OUT 7

BELL ;* Sound terminal bell

FOR I = 32 TO 127; OUT I; NEXT I ;* Printable chars

BELL

 280

PAGE

Prints any FOOTING statement, throws a PAGE and prints any heading statement on the current

output device.

COMMAND SYNTAX

PAGE {expression}

SYNTAX ELEMENTS

If expression is specified it should evaluate to a numeric integer, which will cause the page number

after the page throw to be set to this value.

EXAMPLES

HEADING "10 PAGE REPORT"

FOR I = 1 TO 10

 PAGE

 GOSUB PrintPage

NEXT I

 281

PAUSE

The PAUSE statement allows processing to be suspended until an external event triggered by a WAKE

statement from another process or a timeout occurs.

COMMAND SYNTAX

PAUSE {expression}

SYNTAX ELEMENTS

expression may evaluate to a timeout value, which is the maximum number of seconds to suspend the

process. If expression is omitted then the PAUSE statement will cause the process to suspend until

woken by the WAKE statement.

I f a timeout value is specified and the suspended process is not woken by a WAKE statement then the

process will continue once the timeout period has expired.

If executing a WAKE statement for the process before the process executes the PAUSE statement then

the PAUSE will be ignored and processing will continue until a subsequent PAUSE statement.

 282

PCPERFORM

PCPERFORM is synonymous with and PERFORM.

PERFORM

PERFORM is synonymous with and PERFORM.

 283

PRECISION

The PRECISION statement informs jBASE as to the number of digits of precision it uses after the

decimal point in numbers.

COMMAND SYNTAX

PRECISION integer

SYNTAX ELEMENTS

integer should be in the range 0 to 9.

NOTES

A PRECISION statement can be specified any number of times in a source file. Only the most recently

defined precision will be active at any one time.

Calling programs and external subroutines do not have to be compiled at the same degree of precision,

however, any changes to precision in a subroutine will not persist when control returns to the calling

program.

jBASE uses the maximum degree of precision allowed on the host machine in all mathematical

calculations to ensure maximum accuracy. It then uses the defined precision to format the number.

EXAMPLES

PRECISION 6

CRT 2/3

will print the value 0.666666 (note: truncation not rounding!).

 284

PRINT

The PRINT statement sends data directly to the current output device, which will be either the terminal

or the printer.

COMMAND SYNTAX

PRINT expression {, expression...} {:}

SYNTAX ELEMENTS

An expression can evaluate to any data type. The PRINT statement will convert the result to a string

type for printing. Expressions separated by commas will be sent to the output device separated by a tab

character.

The PRINT statement will append a newline sequence to the final expression unless it is terminated

with a colon ":" character.

NOTES

As the expression can be any valid expression, it may have output formatting applied to it.

If a PRINTER ON statement is currently active then output will be sent to the currently assigned

printer form queue.

See also: SP-ASSIGN command and CRT.

EXAMPLES

PRINT A "L#5"

PRINT @ (8,20):"Patrick":

 285

PRINTER

Use the PRINTER statement to control the destination of output from the PRINT statement.

COMMAND SYNTAX

PRINTER ON|OFF|CLOSE

NOTES

PRINTER ON redirects all subsequent output from the PRINT statement to the print spooler.

PRINTER OFF redirects all subsequent output from the PRINT statement to the terminal device.

PRINTER CLOSE will act as PRINTER OFF but in addition closes the currently active spool job

created by the active PRINTER ON statement.

EXAMPLES

PRINTER ON;* Open a spool job

FOR I =1 TO 60

 PRINT "Line ":I ;* Send to printer

 PRINTER OFF

 PRINT "+": ;* Send to terminal

 PRINTER ON ;* Back to printer

NEXT I

PRINTER CLOSE ;* Allow spooler to print it

 286

PRINTERR

Use PRINTERR to print standard jBASE error messages

COMMAND SYNTAX

PRINTERR expression

SYNTAX ELEMENTS

Field 1 of the expression should evaluate to the numeric or string name of a valid error message in the

jBASE error message file. If the error message requires parameters then these can be passed to the

message as subsequent fields of the expression.

INTERNATIONAL MODE

When the PRINTERR statement is used in International Mode, the error message file to be used, i.e.

the default “jBASICmessages” or other as configured via the error message environment variable, will

be suffixed with the current locale. For example, if the currently configured locale is “fr_FR” then the

statement will attempt to find the specified error message record id in the “jBASICmessages_fr_FR”

error message file. If the file cannot be found then the country code will be discarded and just the

language code used. i.e. the file “jBASICmessages_fr” will be used. If this file is also not found then

the error message file “jBASICmessages” will be used.

NOTES

The PRINTERR statement is most useful for user-defined messages that have been added to the

standard set.

You should be very careful when typing this statement it is very similar to the PRINTER statement.

Although this is not ideal, the PRINTERR statement must be supported for compatibility with older

systems.

EXAMPLES

PRINTERR 201:CHAR (254):"CUSTOMERS"

 287

PROCREAD

Use PROCREAD to retrieve data passed to programs from a jCL program.

COMMAND SYNTAX

PROCREAD variable THEN|ELSE statements

SYNTAX ELEMENTS

variable is a valid jBASE BASIC identifier, which will be used to store the contents of the primary

input buffer of the last jCL program called.

If a jCL program did not initiate the program the PROCREAD will fail and executes any statements

associated with an ELSE clause. If the program was initiated by a jCL program then the PROCREAD

will succeed, the jCL primary input buffer will be assigned to variable and any statements associated

with a THEN clause will be executed.

NOTES

It is recommended that the use of jCL and therefore the PROCREAD statement should be not be

expanded within your application and gradually replaced with more sophisticated methods such as

UNIX scripts or jBASE BASIC programs.

EXAMPLE

PROCREAD Primary ELSE

 CRT "Unable to read the jCL buffer"

 STOP

END

 288

PROCWRITE

Use PROCWRITE to pass data back to the primary input buffer of a calling jCL program.

COMMAND SYNTAX

PROCWRITE expression

SYNTAX ELEMENTS

expression may evaluate to any valid data type.

NOTES

See also: PROCREAD

EXAMPLES

PROCWRITE "Success":CHAR (254):"0"

 289

PROGRAM

PROGRAM performs no function other than to document the source code

COMMAND SYNTAX

PROGRAM progname

SYNTAX ELEMENTS

Progname can be any string of characters.

EXAMPLES

PROGRAM HelpUser

!

! Start of program

 290

PROMPT

Used to change the PROMPT character used by terminal input commands

COMMAND SYNTAX

PROMPT expression

SYNTAX ELEMENTS

expression can evaluate to any printable string.

NOTES

The entire string is used as the prompt.

The default prompt character is the question mark "?" character.

EXAMPLE

PROMPT "Next answer : "

INPUT Answer

 291

PUTENV

Use PUTENV to set environment variables for the current process.

COMMAND SYNTAX

PUTENV (expression)

SYNTAX ELEMENTS

expression should evaluate to a string of the form:

EnvVarName=value

where

EnvVarName is the name of a valid environment variable and value is any string that makes sense to

variable being set.

If PUTENV function succeeds it returns a Boolean TRUE value, if it fails it will return a Boolean

FALSE value.

NOTES

PUTENV only sets environment variables for the current process and processes spawned (say by

EXECUTE) by this process. These variables are known as export only variables.

See also: GETENV

EXAMPLE

IF PUTENV("JBASICLOGNAME=":UserName) THEN

 CRT "Environment configured"

END

 292

PWR

The PWR function raises a number to the n'th power.

COMMAND SYNTAX

PWR (expression1, expression2)

or

expression1 ^ expression2

SYNTAX ELEMENTS

Both expression1 and expression2 should evaluate to numeric arguments. The function will return the

value of expression1 raised to the value of expression2.

NOTES

If expression1 is negative and expression2 is not an integer then a maths library error is displayed and

the function returns the value 0. The error message displayed is:

pow: DOMAIN error

All calculations are performed at the maximum precision supported on the host machine and truncated

to the compiled precision on completion.

EXAMPLES

A = 2

B = 31

CRT "2 GB is ":A^B

or

CRT "2 GB is": PWR (A, B)

 293

QUOTE / DQUOTE / SQUOTE

These three functions will put a single or double quotation mark and the beginning and end of a string.

COMMAND SYNTAX

QUOTE(expression)

DQUOTE(expression)

SQUOTE(expression)

SYNTAX ELEMENTS

expression may be any expression that is valid in the JBASE BASIC language.

NOTES

The QUOTE and DQUOTE functions will enclose the value in double quotation marks. The SQUOTE

function will enclose the value in single quotation marks.

 294

RAISE

The RAISE function raises system delimiters in a string to the next highest delimiter.

COMMAND SYNTAX

RAISE (expression)

SYNTAX ELEMENTS

The expression is a string containing one or more delimiters, which are raised as follows:

ASCII Character Raised To

248 249

249 250

250 251

251 252

252 253

253 254

254 255

EXAMPLE

AttributeDelimitedVariable = RAISE(ValuemarkDelimitedVariable)

 295

READ

The READ statement allows a program to read a record from a previously opened file into a variable.

COMMAND SYNTAX

READ variable1 FROM { variable2,} expression {SETTING setvar} {ON ERROR statements}

THEN|ELSE statements

SYNTAX ELEMENTS

variable1 is the identifier into which the record will be read.

variable2, if specified, should be a jBASE BASIC variable that has previously been opened to a file

using the OPEN statement. If variable2 is not specified then the default file is assumed.

The expression should evaluate to a valid record key for the file.

If the SETTING clause is specified and the read fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements following the ON ERROR clause will be executed for any

of the above Incremental File Errors except error 128.

NOTES

If you wish to set a lock on a record, you should do so explicitly with the READU statement.

EXAMPLE 1

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

 ABORT 201, "DICT Customers"

END

READ Rec FROM DCusts, "Xref" THEN

 READ DataRec FROM Rec<7> ELSE

 ABORT 202, Rec<7>

 END

END ELSE

 296

 ABORT 202, "Xref"

END

EXAMPLE 2

READ record FROM filevar, id SETTING errorNumber ON ERROR

 PRINT errorNumber

END THEN

 PRINT 'Record read successfully'

END ELSE

 PRINT 'Record not on file'

END

 297

READBLK

Use the READBLK statement to read a block of data of a specified length from a file opened for

sequential processing and assigns it to a variable.

COMMAND SYNTAX

READBLK variable FROM file.variable, blocksize

{ THEN statements [ELSE statements] | ELSE statements }

The READBLK statement reads a block of data beginning at the current position in the file and

continuing for blocksize bytes and assigns it to variable. The current position is reset to just beyond the

last readable byte.

file.variable specifies a file previously opened for sequential processing.

If the data can be read from the file, the THEN statements are executed; any ELSE statements are

ignored. If the file is not readable or if the end of file is encountered, the ELSE statements are executed

and the THEN statements are ignored. If the ELSE statements are executed, variable is set to an empty

string. If either file.variable or blocksize evaluates to null, the READBLK statement fails and the

program enters the debugger.

NOTE: A new line in UNIX files is one byte long, whereas in Windows NT it is two bytes long. This

means that for a file with newlines, the same READBLK statement may return a different set of data

depending on the operating system the file is stored under.

The difference between the READSEQ statement and the READBLK statement is that the READBLK

statement reads a block of data of a specified length, whereas the READSEQ statement reads a single

line of data.

EXAMPLE

OPENSEQ 'MYSLIPPERS', 'PINK' TO FILE ELSE ABORT

READBLK VAR1 FROM FILE, 50 THEN PRINT VAR1

PRINT

READBLK VAR2 FROM FILE, 100 THEN PRINT VAR2

INTERNATIONAL MODE

When using the READBLK statement in International Mode, care must be taken to ensure that the

input variable is handled properly subsequent to the READBLK statement. The READBLK statement

requires that a “bytecount” be specified, however when manipulating variables in International Mode

character length rather than byte lengths are usually used and hence possible confusion or program

malfunction can occur.

If requiring character data convert the input variable from ‘binary/latin1’ to UTF-8 byte sequence via

the UTF8 function.

 298

It is recommended that the READBLK/WRITEBLK statements not be used when executing in

International Mode. Similar functionality can be obtained via the READSEQ/WRITESEQ statement,

which can be used to read/writecharacters a line at a time from a file.

 299

READL

The READL statement allows a process to read a record from a previously opened file into a variable

and takes a read-only shared lock on the record. It respects all records locked with the READU

statement but allows other processes using READL to share the same lock.

COMMAND SYNTAX

READL variable1 FROM {variable2,} expression {SETTING setvar} {ON ERROR statements}

{LOCKED statements} THEN|ELSE statements

SYNTAX ELEMENTS

variable1 is the identifier into which the record will be read.

variable2, if specified, should be a jBASE BASIC variable that has previously been opened to a file

using the OPEN statement if variable2 is not specified then the default file is assumed.

The expression should evaluate to a valid record key for the file.

If the SETTING clause is specified and the read fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements following the ON ERROR clause will be executed for any

of the above Incremental File Errors except error 128.

NOTES

READL takes a read-only shared record lock whereas READU takes an exclusive lock. This means

that any record, which is read using READL, can also be read by another process using a READL. In

other words, the lock on the record is 'shared' in that no READU lock against the same record can be

taken. Similarly, if a READU takes a lock then READL will respect that lock. By comparison, a

READU takes an exclusive lock in that the one process retains control over the record.

The usage of READU is already well documented and understood. The usage of READL allows for an

application to present a record to one or more users such that its integrity is ensured, i.e. the user(s)

viewing the record can be assured that wysiwyg and that no updates to that record have been made

whilst viewing the record.

While it is permissible to WRITE a record that has a READL lock, the intent of READL is to permit a

'read-only' shared lock and the act of WRITEing this record would not be considered good

programming practice.

 300

READ takes no lock at all and does not respect any lock taken with READU or READL. In other

words, a READ can be performed at any time and on any record regardless of any existing locks.

Due to limitations on Windows platforms, the READL statement behaves the same as the READU

statement, in other words they both take exclusive locks.

If the record could not be read because another process already had a READU lock on the record then

one of two actions is taken. If the LOCKED clause was specified in the statement then the statements

dependent on it are executed. If no LOCKED clause was specified then the statement blocks (hangs)

until the other process releases the lock. The SYSTEM (43) function can be used to determine which

port has the lock.

If the statement fails to read the record then any statements associated with the ELSE clause will be

executed. If the statement successfully reads the record then the statements associated with any THEN

clause are executed. Either or both of THEN and ELSE clauses must be specified with the statement.

The lock taken by the READL statement will be released by any of the following events however, be

aware that the record will not be fully released until all shared locks have been released:

The same program with WRITE, WRITEV or MATWRITE statements writes to the record.

The same program with the DELETE statement deletes the record.

The record lock is released explicitly using the RELEASE statement.

The program stops normally or abnormally.

When a file is OPENed to a local file variable in a subroutine then the file is closed when the

subroutine RETURNS so all locks taken on that file are released, including locks taken in a calling

program. Files that are opened to COMMON variables are not closed so the locks remain intact.

See also: WRITE, WRITEU, MATWRITE, MATWRITEU, RELEASE, and DELETE

 301

READLIST

READLIST allows the program to retrieve a previously stored list (perhaps created with the SAVE-

LIST command), into a jBASE BASIC variable.

COMMAND SYNTAX

READLIST variable1 FROM expression {SETTING variable2} THEN|ELSE statements

SYNTAX ELEMENTS

variable1 is the variable into which the list will be read.

expression should evaluate to the name of a previously stored list to retrieve. If specified, variable2

will be set to the number of elements in the list.

If the statement succeeds in retrieving the list, then the statements associated with any THEN clause

will be executed. If the statement fails to find the list, then the statements associated with any ELSE

clause will be executed.

NOTES

The READLIST statement is identical in function to the GETLIST statement.

See also: DELETELIST, FORMLIST, WRITELIST

EXAMPLES

Find the list first

READLIST MyList FROM "MyList" ELSE STOP

LOOP

* Loop until there are no more elements

WHILE READNEXT Key FROM MyList DO

......

REPEAT

 302

READNEXT

READNEXT retrieves the next element in a list variable.

COMMAND SYNTAX

READNEXT variable1, variable2 {FROM variable3} {SETTING setvar} {THEN|ELSE statements}

SYNTAX ELEMENTS

variable1 is the variable into which the next element of the list will be read.

variable2 is used when the list has been retrieved externally from a SSELECT or similar jBASE

command that has used an exploding sort directive. When specified, this variable will be set to the

multi-value reference of the current element. For example, if the SSELECT used a BY-EXP directive

on field 3 of the records in a file, the list will contain each record key in the file as many times as there

are multi-values in the field. Each READNEXT instance will set variable2 to the multi-value in field 3

to which the element refers. This allows the multi-values in field 3 to be retrieved in sorted order.

If variable3 is specified with the FROM clause, the READNEXT operates on the list contained in

variable3. If variable3 is not specified, the default select list variable will be assumed.

If the SETTING clause is specified and the read (to build the next portion of the list) fails, setvar will

be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

READNEXT can be used as an expression returning a Boolean TRUE or FALSE value. If an element

is successfully read from the list, TRUE is returned. If the list was empty, FALSE is returned.

See also: SELECT, extensions for secondary indexes.

EXAMPLE

LOOP

WHILE READNEXT Key FROM RecordList DO

......

REPEAT

 303

READPREV

This statement is syntactically similar to the READNEXT but it works in reverse order. There are some

considerations when the direction is changed from a forward search to a backward search or vice-versa.

When a SELECT statement is first executed a forward direction is assumed. Therefore if a SELECT is

immediately followed by a READPREV, then a change of direction is assumed.

During the READNEXT or READPREV sequence a next-key pointer is kept up to date. This is the

record key, or index key to use should a READNEXT be executed.

During a change of direction from forward (READNEXT) to backward (READPREV) then the next

record key or index key read in by the READPREV will be the one preceding the next-key pointer.

When the select list is exhausted it will either point one before the start of the select list (if

READPREVs have been executed) or one past the end of the select list (if READNEXTs have been

executed). Thus in the event of a change of direction the very first or very last index key or record key

will be used.

 EXAMPLE

Consider the following jBASE BASIC code

list = "DAVE" : : "GREG" : : "JIM"

SELECT list

The following table shows what happens if you do READNEXTs and READPREVs on the above code

and the reasons for it.

Statement executed Result of operation Comment

READNEXT key ELSE key becomes "DAVE" First key in list

READNEXT key ELSE key becomes "GREG" Second key in list

READPREV key ELSE key becomes "DAVE" Reversed so take preceding key

READPREV key ELSE Take ELSE clause The next key ptr exhausted at start.

READNEXT key ELSE key becomes "DAVE" First key in list

READNEXT key ELSE key becomes "GREG" Second key in list

READNEXT key ELSE key becomes "JIM" Final key. Next key ptr exhausted.

READPREV key ELSE key becomes "JIM" Reversed but list exhausted.

READPREV key ELSE key becomes "GREG" Second key in list

 304

READPREV key ELSE key becomes "DAVE" First key in list

 305

READSELECT

See also:READLIST.

 306

READSEQ

Read from a file opened for sequential access.

COMMAND SYNTAX

READSEQ Variable FROM FileVar THEN | ELSE statements

SYNTAX ELEMENTS

Variable specifies the variable to contain next record from sequential file.

FileVar specifies the file descriptor of the file opened for sequential access.

Statements Conditional jBASE BASIC statements

NOTES

Each READSEQ reads a line of data from the sequentially opened file. After each READSEQ, the file

pointer moves forward to the next line of data. The variable contains the line of data less the new line

character from the sequential file.

The default buffer size for a READSEQ is 1024 bytes. This can be changed using the IOCTL ()

function with the JIOCTL_COMMAND_SEQ_CHANGE_RECORDSIZE Sequential File Extensions.

EXAMPLES

See also: Sequential File Examples

 307

READT

The READT statement is used to read a range of tape devices 0-9.

COMMAND SYNTAX

READT variable {FROM expression} THEN|ELSE statements

SYNTAX ELEMENTS

variable is the variable that will receive any data read from the tape device.

expression should evaluate to an integer value in the range 0-9 and specifies from which tape channel

to read data. If the FROM clause is not specified the READT will assume channel 0.

If the READT fails then the statements associated with any ELSE clause will be executed. SYSTEM

(0) will return the reason for the failure as follows:

1 There is no media attached to the channel

2 An end of file mark was found.

NOTES

A "tape" does not only refer to magnetic tape devices, but also any device that has been described to

jBASE. Writing device descriptors for jBASE is beyond the scope of this manual.

If no tape device has been assigned to the specified channel the jBASE debugger is entered with an

appropriate message.

Each instance of the READT statement will read the next record available on the device. The record

size is not limited to a single tape block and the entire record will be returned whatever block size has

been allocated by the T-ATT command.

EXAMPLE

LOOP

 READT TapeRec FROM 5 ELSE

 Reason = SYSTEM(0)

 IF Reason = 2 THEN BREAK ;* done

 CRT "ERROR"; STOP

 END

REPEAT

 308

READU

The READU statement allows a program to read a record from a previously opened file into a variable.

It respects record locking and locks the specified record for update.

COMMAND SYNTAX

READU variable1 FROM {variable2,} expression {SETTING setvar} {ON ERROR statements}

{LOCKED statements} THEN|ELSE statements

SYNTAX ELEMENTS

Variable1 is the identifier into which the record will be read.

variable2 if specified, should be a jBASE BASIC variable that has previously been opened to a file

using the OPEN statement. If variable2 is not specified then the default file is assumed.

The expression should evaluate to a valid record key for the file.

If the SETTING clause is specified and the read fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements following the ON ERROR clause will be executed for any

of the above Incremental File Errors except error 128.

NOTES

If the record could not be read because another process already had a lock on the record then one of

two actions is taken. If the LOCKED clause was specified in the statement then the statements

dependent on it are executed. If no LOCKED clause was specified then the statement blocks (hangs)

until the other process releases the lock. Use the SYSTEM (43) function to determine which port has

the lock.

If the statement fails to read the record then any statements associated with the ELSE clause will be

executed. If the statement successfully reads the record then the statements associated with any THEN

clause are executed. Either or both of THEN and ELSE clauses must be specified with the statement.

The lock taken by the READU statement will be released by any of the following events:

The same program with WRITE, WRITEV or MATWRITE statements writes to the record.

The same program with the DELETE statement deletes the record.

The record lock is released explicitly using the RELEASE statement.

The program stops normally or abnormally.

 309

When a file is OPENed to a local file variable in a subroutine then the file is closed when the

subroutine RETURNS so all locks taken on that file are released, including locks taken in a calling

program. Files that are opened to COMMON variables are not closed so the locks remain intact.

See also: WRITE, WRITEU, MATWRITE, MATWRITEU, RELEASE, and DELETE

EXAMPLES

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

 ABORT 201, "DICT Customers"

END

LOOP

 READU Rec FROM DCusts, "Xref" LOCKED

 CRT "Xref locked by port ":SYSTEM(43):" - r etrying"

 SLEEP 1; CONTINUE ;* Restart LOOP

 END THEN

 READ DataRec FROM Rec ELSE

 ABORT 202, Rec

 END

 BREAK ;* Leave the LOOP

 END ELSE

 ABORT 202, "Xref"

 END

REPEAT

 310

READV

The READV statement allows a program to read a specific field from a record in a previously opened

file into a variable.

COMMAND SYNTAX

READV variable1 FROM { variable2,} expression1, expression2 {SETTING setvar} {ON ERROR

statements} THEN|ELSE statements

SYNTAX ELEMENTS

variable1 is the identifier into which the record will be read.

variable2 if specified, should be a jBASE BASIC variable that has previously been opened to a file

using the OPEN statement. If variable2 is not specified, the default file is assumed.

expression1 should evaluate to a valid record key for the file.

expression2 should evaluate to a positive integer. If the number is invalid or greater than the number of

fields in the record, a NULL string will be assigned to variable1. If the number is 0, then the readv0

emulation setting controls the value returned in variable1. If a non-numeric argument is evaluated, a

run time error will occur.

If the SETTING clause is specified and the read fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements following the ON ERROR clause will be executed for any

of the above Incremental File Errors except error 128.

NOTES

If you wish to set a lock on a record, do so explicitly with the READU or READVU statement. To read

a field from a previously opened file into a variable and take a read-only shared lock on the field, use

READVL.

EXAMPLE

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

 ABORT 201, "DICT Customers"

 311

END

READV Rec FROM DCusts, "Xref",7 THEN

 READ DataRec FROM Rec<7> ELSE

 ABORT 202, Rec<7>

 END

END ELSE

 ABORT 202, "Xref"

END

 312

READVL

Use the READVL statement to acquire a shared record lock and then read a field from the record.

The READVL statement conforms to all the specifications of the READL and READV statements.

 313

READVU

The READVU statement allows a program to read a specific field in a record in a previously opened

file into a variable. It also respects record locking and locks the specified record for update.

COMMAND SYNTAX

READVU variable1 FROM { variable2,} expression1, expression2 {SETTING setvar} {ON ERROR

statements} {LOCKED statements} THEN|ELSE statements

SYNTAX ELEMENTS

variable1 is the identifier into which the record will be read.

variable2 if specified, should be a jBASE BASIC variable that has previously been opened to a file

using the OPEN statement. If variable2 is not specified then the default file is assumed.

expression1 should evaluate to a valid record key for the file.

expression2 should evaluate to a positive integer number. If the number is invalid or greater than the

number of fields in the record, then a NULL string will be assigned to variable1. If the number is 0,

then the readv0 emulation setting controls the value returned in variable1. If a non-numeric argument is

evaluated a run time error will occur.

If the SETTING clause is specified and the read fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements following the ON ERROR clause will be executed for any

of the above Incremental File Errors except error 128.

NOTES

If the record could not be read because another process already had a lock on the record then one of

two actions is taken. If the LOCKED clause was specified in the statement then the statements

dependent on it are executed. If no LOCKED clause was specified then the statement blocks (hangs)

until the other process releases the lock.

If the statement fails to read the record then any statements associated with the ELSE clause are

executed. If the statement successfully reads the record then the statements associated with any THEN

clause are executed. Either or both of the THEN and ELSE clauses must be specified with the

statement.

The lock taken by the READVU statement will be released by any of the following events:

The same program with WRITE, WRITEV, MATWRITE or DELETE statements writes to the record.

The record lock is released explicitly using the RELEASE statement.

 314

The program stops normally or abnormally.

When a file is OPENed to a local file variable in a subroutine then the file is closed when the

subroutine RETURNS so all locks taken on that file are released, including locks taken in a calling

program. Files that are opened to COMMON variables are not closed so the locks remain intact.

See also: WRITE, WRITEU, MATWRITE, MATWRITEU, RELEASE, and DELETE

EXAMPLE

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

 ABORT 201, "DICT Customers"

END

LOOP

 READVU Rec FROM DCusts, "Xref",7 LOCKED

 CRT "Locked - retrying"

 SLEEP 1; CONTINUE ;* Restart LOOP

 END THEN

 READ DataRec FROM Rec ELSE

 ABORT 202, Rec

 END

 BREAK ;*leave the LOOP

 END ELSE

 ABORT 202, "Xref"

 END

REPEAT

 315

READXML

READXML rec FROM file, id ELSE STOP 202,id

Reads a record from a file using the style sheet held in DICT->@READXML to transform the data into

xml format

EXAMPLE

READ rec FROM file,id THEN

 CRT rec

 END

 READXML xml FROM file,id THEN

 CRT xml

 END

Screen output

CLIVE^PIPENSLIPPERS^999 LETSBE AVENUE

…

<?xml version="1.0" encoding="UTF-8"?>

<mycustomer>

<firstname>CLIVE</firstname>

<lastname>PIPENSLIPPERS</lastname>

<address>999 LETSBE AVENUE</address>

 316

RECORDLOCKED

Call the RECORDLOCKED function to ascertain the status of a record lock.

COMMAND SYNTAX

RECORDLOCKED (filevar, recordkey)

SYNTAX ELEMENTS

filevar is a file variable from a previously executed OPEN statement.

recordkey is an expression for the record id that will be checked.

NOTES

RECORDLOCKED returns an integer value to indicate the record lock status of the specified record id.

3 Locked by this process by a FILELOCK

2 Locked by this process by a READU

1 Locked by this process by a READL

0 Not locked

-1 Locked by another process by a READL

-2 Locked by another process by a READU

-3 Locked by another process by a FILELOCK

If the return value is negative, then the SYSTEM(43) and STATUS function calls can be used to

determine the port number of the program that holds the lock. If -1 is returned, more than 1 port could

hold the lock and so the port number returned will be the first port number found.]

EXAMPLE

OPEN "INVENTORY" TO invFvar ELSE ABORT 201,"Cannot open the INVENTORY

file"

...

...

IF RECORDLOCKED (invFvar,invId) = -2 THEN

 CRT "Inventory record ":invId:" is locked by po rt ":SYSTEM(43)

END

 317

REGEXP

The REGEXP function is a powerful function that allows pattern matching using UNIX regular

expressions. REGEXP is not supported on Windows.

 COMMAND SYNTAX

REGEXP(variable, expression)

 SYNTAX ELEMENTS

variable can be any type of jBASE BASIC variable and is the variable upon which pattern matching

will be performed.

expression should evaluate to a standard UNIX regular expression as defined in the UNIX

documentation.

NOTES

The function returns a numeric integer value being the first character in variable that failed to match the

specified regular expression. If a match is not found or the regular expression was invalid then the

function returns 0.

EXAMPLE

String = "jBASE Software Inc."

CRT REGEXP(String, "S[^t]*")

displays the value 4 being the position of the character "t" in the word Software

 318

RELEASE

The RELEASE statement enables a program to explicitly release record locks without updating the

records using WRITE.

COMMAND SYNTAX

RELEASE {{variable,} expression}

SYNTAX ELEMENTS

If variable is specified it should be a valid file descriptor variable (i.e. It should have been the subject

of an OPEN statement)

If an expression is supplied it should evaluate to the record key of a record whose lock the program

wishes to free. If variable was specified the record lock in the file described by it is released. If variable

was not specified the record lock in it releases the file described by the default file variable

If RELEASE is issued without arguments then all record locks in all files that were set by the current

program will be released.

NOTES

Where possible the program should avoid the use of RELEASE without arguments; this is less efficient

and can be dangerous - especially in subroutines.

EXAMPLE

READU Rec FROM File, "Record" ELSE ABORT 203, "Reco rd"

IF Rec<1> = "X" THEN

RELEASE File, "Record"

END

......

 319

REMOVE

REMOVE will successively extract delimited strings from a dynamic array.

COMMAND SYNTAX

REMOVE variable FROM array SETTING setvar

SYNTAX ELEMENTS

variable is the variable, which is to receive the extracted string.

array is the dynamic array from which the string is to be extracted.

setvar is set by the system during the extraction to indicate the type of delimiter found:

0 end of the array

1 xFF ASCII 255

2 xFE ASCII 254 Field marker

3 xFD ASCII 253 Value marker

4 xFC ASCII 252 Subvalue marker

5 xFB ASCII 251

6 xFA ASCII 250

7 xF9 ASCII 249

NOTES

The first time the REMOVE statement is used with a particular array, it will extract the first delimited

string it and set the special "remove pointer" to the start of the next string (if any). The next time

REMOVE is used on the same array, the pointer will be used to retrieve the next string and so on. The

array is not altered.

The variable named in the SETTING clause is used to record the type of delimiter that was found - so

that you can tell whether the REMOVE statement extracted a field, a value or a subvalue for example.

Delimiters are defined as characters between xF9 and xFF only. Once the end of the array has been

reached, the string variable will not be updated and the SETTING clause will always return 0. You can

reset the "remove pointer" by assigning the variable to itself - for example REC = REC.

EXAMPLE

EQU FM TO CHAR (254), VM to CHAR(253), SVM to CHAR(252)

REC = "Field 1":FM:"Value 1":VM:" Value 2":FM:"Fiel d 3"

 320

REMOVE EXSTRING FROM REC SETTING DELIM

REMOVE EXSTRING FROM REC SETTING DELIM

The first time REMOVE is used, EXSTRING will contain "Field 1" and DELIM will contain xFE. The

second time REMOVE is used, EXSTRING will contain "Value 1" and DELIM will contain xFD.

 321

REPLACE

REPLACE is an obsolete way to assign to dynamic arrays via a function.

COMMAND SYNTAX

REPLACE (var, expression1{, expression2{, expression3}}; expression4)

SYNTAX ELEMENTS

var is the dynamic array that the REPLACE function will use to assign expression4. Unless the same

var is assigned the result of the function remains unchanged.

expression1 specifies into which field assignment will be made and should evaluate to a numeric.

expression2 is only specified when multi-value assignment is to be done and should evaluate to a

numeric.

expression3 is only specified when sub-value assignment is to be done and should evaluate to a

numeric.

expression4 can evaluate to any data type and is the actual data that will be assigned to the array.

NOTES

The function returns a copy of var with the specified replacement carried out. This value may be

assigned to the original var in which case the jBASE BASIC compiler will optimize the assignment.

EXAMPLES

X = "JBASE":MV:"is Great"

X = REPLACE (X,1,1;"jBASE")

 322

RETURN

The RETURN statement transfers program execution to the caller of a subroutine/function or to a

specific label in the program.

COMMAND SYNTAX

RETURN {TO label}

or

RETURN (expression)

SYNTAX ELEMENTS

label must reference an existing label within the source of the program.

expression evaluates to the value that is returned by a user-written function.

NOTES

The RETURN statement will transfer program execution to the statement after the GOSUB that called

the current internal subroutine.

If the RETURN statement is executed in an external SUBROUTINE and there are no outstanding

GOSUBs, then the program will transfer execution back to the program that called it via CALL.

The program will enter the debugger with an appropriate message should a RETURN be executed with

no GOSUB or CALL outstanding.

The second form of the RETURN statement is used to return a value from a user-written function. This

form can only be used in a user-written function.

 323

REWIND

The REWIND statement will issue a rewind command to the device attached to the specified channel.

COMMAND SYNTAX

REWIND {ON expression} THEN|ELSE statements

SYNTAX ELEMENTS

expression, if specified, should evaluate to an integer in the range 0 to 9. Default is 0.

NOTES

If the statement fails to issue the rewind then any statements associated with the ELSE clause are

executed. If the statement successfully issues the rewind command then the statements associated with

any THEN clause are executed. Either or both of the THEN and ELSE clauses must be specified with

the statement.

If the statement fails then the reason for failure can be determined via the value of SYSTEM(0) as

follows:

Value Meaning

1 there is no media attached to the channel

2 an end of file mark was found

 324

RIGHT

The RIGHT function returns a sub-string composed of the last n characters of a specified string.

COMMAND SYNTAX

RIGHT (expression, length)

SYNTAX ELEMENTS

expression evaluates to the string from, which the sub string is extracted.

length is the number of characters that are extracted. If length is less than 1, RIGHT () returns null.

NOTES

The RIGHT () function is equivalent to sub-string extraction for the last n characters, i.e. expression[n]

See also: LEFT().

EXAMPLE

S = "The world is my lobster"

CRT DQUOTE (RIGHT (S,7))

CRT DQUOTE(RIGHT(S,99))

CRT DQUOTE(RIGHT(S,0))

This code displays:

"lobster"

"The world is my lobster"

""

 325

RND

The RND function allows the generation of random numbers by a program.

COMMAND SYNTAX

RND (expression)

SYNTAX ELEMENTS

expression should evaluate to a numeric integer value or a runtime error will occur. The absolute value

of expression is used by the function. The highest number expression can be on Windows is

PWR(2,15) - 1. The highest number on UNIX is PWR(2,31) - 1.

See also:ABS

NOTES

The function will return a random integer number between 0 and the value of expression-1.

EXAMPLE

FOR I=1 TO 20

 CRT RND (100):", ":

NEXT I

prints 20 random numbers in the inclusive range 0 to 99.

 326

RQM

RQM is synonymous with SLEEP.

 327

RTNDATA

The RTNDATA statement allows a jBASE BASIC program to return specific data to the RTNDATA

clause of another program's EXECUTE statement.

COMMAND SYNTAX

RTNDATA expression

SYNTAX ELEMENTS

expression may evaluate to any data type.

NOTES

When a jBASE BASIC program executes another jBASE BASIC program using the EXECUTE

statement it may specify a variable to pick up data in using the RTNDATA clause. The data picked up

will be that specified by the executed program using the RTNDATA statement.

The data will be discarded if the program is not executed by an EXECUTE statement in another

program.

 328

SADD

See also: Floating point Operations

The SADD function performs string addition of two base 10-string numbers.

COMMAND SYNTAX

SADD (expr1, expr2)

SYNTAX ELEMENTS

expr1 and expr2 are strings consisting of numeric characters, optionally including a decimal part.

NOTES

The SADD function can be used with numbers that may exceed a valid range with standard arithmetic

operators.

The PRECISION declaration has no effect on the value returned by SADD.

EXAMPLE

A = 4000000000000000000000000000000

B = 7

CRT SADD (A,B)

Displays 4000000000000000000000000000007 to the screen

CRT SADD (4.33333333333333333,1.8)

Displays 6.13333333333333333 to the screen

 329

SDIV

See also: Floating point Operations

The SDIV function performs a string division of two base 10-string numbers and rounds the result to

14 decimal places.

COMMAND SYNTAX

SDIV (expr1, expr2)

SYNTAX ELEMENTS

expr1 and expr2 are strings consisting of numeric characters, with either optionally including a decimal

part.

NOTES

Use the SDIV function with numbers that may exceed a valid range with standard arithmetic operators.

The PRECISION declaration has no effect on the value returned by SDIV.

EXAMPLE

A = 2

B = 3

CRT SDIV (A,B)

Displays 0.66666666666666 to the screen

CRT SDIV (355,113)

Displays 3.14159292035398 to the screen

 330

SEEK

Use the SEEK statement to move the file pointer by an offset specified in bytes, relative to the current

position, the beginning of the file, or the end of the file.

COMMAND SYNTAX

SEEK file.variable [, offset [, relto]]

{THEN statements [ELSE statements] | ELSE statements}

file.variable specifies a file previously opened for sequential access.

offset is the number of bytes before or after the reference position. A negative offset results in the

pointer being moved before the position specified by relto. If offset is not specified, 0 is assumed.

NOTE: On Windows NT systems, line endings in files are denoted by the character sequence

RETURN + LINEFEED rather than the single LINEFEED used in UNIX files. The value of offset

should take into account this extra byte on each line in Windows NT file systems.

The permissible values of relto and their meanings follow:

0 Relative to the beginning of the file

1 Relative to the current position

2 Relative to the end of the file

If relto is not specified, 0 is assumed.

If the pointer is moved, the THEN statements are executed and the ELSE statements are ignored. If the

THEN statements are not specified, program execution continues with the next statement.

If the file cannot be accessed or does not exist the ELSE statements are executed; any THEN

statements are ignored.

If file.variable, offset, or relto evaluates to null, the SEEK statement fails and the program terminates

with a run-time error message.

Note: On Windows NT systems, if you use the OPENDEV statement to open a 1/4-inch cartridge tape

(60 MB or 150 MB) for sequential processing, you can move the file pointer only to the beginning or

the end of the data. For diskette drives, you can move the file pointer only to the start of the data.

Seeking beyond the end of the file and then writing creates a gap, or hole, in the file. This hole

occupies no physical space, and reads from this part of the file return as ASCII CHAR 0 (neither the

number nor the character 0).

For more information about sequential file processing, See also: OPENSEQ, READSEQ, and

WRITESEQ statements.

EXAMPLE

 331

The following example reads and prints the first line of RECORD4. Then the SEEK statement moves

the pointer five bytes from the front of the file, then reads and prints the rest of the current line.

OPENSEQ '.', 'MYSEQFILE' TO FILE ELSE ABORT

READSEQ B FROM FILE THEN PRINT B

SEEK FILE,5, 0 THEN

READSEQ A FROM FILE THEN PRINT A ELSE ABORT

END

The output of this program is:

FIRST LINE

LINE

 332

SELECT

The SELECT statement creates a select list of elements in a specified variable.

COMMAND SYNTAX

SELECT {variable1} {TO variable2 | listnum} {SETTING setvar}

SYNTAX ELEMENTS

variable1 can be an OPENed file descriptor, in which case the record keys in the specified file will be

selected, or an ordinary variable in which case each field in the variable will become a list element.

variable1 may also be an existing list in which case the elements in the list will be selected.

If variable1 is not specified in the statement then it assumes the default file variable.

If variable2 is specified then the newly created list will be placed in the variable. Alternatively, specify

a select list number in the range 0 to 10 with listnum. If neither variable2 nor listnum is specified then

it assumes the default list variable.

If specifying the SETTING clause and the select fails, it sets setvar to one of the following values:

128 no such file or directory

4096 network error

24576 permission denied

32768 physical I/O error or unknown error

NOTES

When constructing a list from record keys in a file, it does so by extracting only the first few keys,

which when removed from the list obtains the next few keys and so on. Therefore, the creation of the

list is not immediate. This means that the list could contain records, written to the file after starting the

SELECT command.

Consider the situation where you open a file, SELECT it and then, because of the keys obtained, write

new records to the same file. It would be easy to assume that these new keys would not show up in the

list because you created the list before the new records existed. This is not the case. Any records

written beyond the current position in the file will eventually show up in the list. In situations where

this might cause a problem, or to ensure that you obtain a complete, qualified list of keys, you should

use a slower external command like jQL SELECT or SSELECT and then READNEXT to parse the

file.

If using a variable to hold the select list, then it should be unassigned or null before the SELECT. If it

contains a number in the range 0 to 10 then it will use the corresponding select list number to hold the

list, although you can still reference the list with the variable name. This "feature" is for compatibility

with older platforms. See also example 3.

Lists can be selected as many times as required.

See also: the extensions for secondary indexes.

 333

EXAMPLE 1

OPEN "Customers" ELSE ABORT 201, "Customers"

SELECT TO CustList1

SELECT TO CustList2

EXAMPLE 2

OPEN "Customers" TO CustFvar ELSE ABORT 201, "Custo mers"

SELECT CustFvar TO 2

DONE = 0

LOOP

 READNEXT CustId FROM 2 ELSE Done = 1

UNTIL DONE DO

 GOSUB ProcessCust

REPEAT

EXAMPLE 3

CLEAR

OPEN "Customers" TO CustFvar ELSE ABORT 201, "Custo mers"

OPEN "Products" TO ProdFvar ELSE ABORT 201, "Produc ts"

SELECT CustFvar TO Listvar1

SELECT ProdFvar TO Listvar2

This example demonstrates a coding error. The CLEAR statement is used to initialize all variables to

zero. Since Listvar1 has the value 0, select list number 0 is used to hold the list. However, the CLEAR

statement also initializes Listvar2 to zero, so the second SELECT overwrites the first list.

 334

SEND

The SEND statement sends a block of data directly to a device.

COMMAND SYNTAX

SEND output {:} TO FileVar THEN | ELSE statements

SYNTAX ELEMENTS

The output is an expression evaluating to a string that will be sent to the output device (specified by

FileVar). It is expected that the device has already been opened with OPENSER or OPENSEQ.

The SEND statement will append a newline sequence to the final output expression unless it is

terminated with a colon ":" character.

NOTES

As the expression can be any valid expression, it may have output formatting applied to it.

The SEND syntax requires you specify either a THEN or ELSE clause, or both. It executes the THEN

clause if the data is without error. Else executes, the ELSE clause if the data cannot be sent.

See also: SENDX

EXAMPLES

See also: Sequential File Processing.

 335

SENDX

The SENDX statement sends a block of data (in hexidecimal) directly to a device.

COMMAND SYNTAX

SENDX output {:} TO FileVar THEN | ELSE statements

SYNTAX ELEMENTS

The output is an expression evaluating to a string that will be sent to the output device (specified by

FileVar). It is expected that OPENSER or OPENSEQ has already opened the device .

The SENDX statement will append a newline sequence to the final output expression unless it is

terminated with a colon ":" character.

NOTES

As the expression can be any valid expression, it may have output formatting applied to it.

The SENDX syntax requires a specified THEN or ELSE clause, or both. If the data is send without

error, it executes the THEN clause. If the data cannot be sent, it executes the ELSE clause.

See also: SEND

EXAMPLES

See also: Sequential File Processing Examples.

 336

SENTENCE

The SENTENCE function allows a program to locate the command used to invoke it and the arguments

it was given.

COMMAND SYNTAX

SENTENCE ({expression})

SYNTAX ELEMENTS

If expression is specified it should evaluate to a positive integer value. A negative value will return a

null string. A value of null will return the entire command line.

An integer value of expression will return a specific element of the command line with the command

itself being returned by SENTENCE (0), the first parameter being returned by SENTENCE(1) and so

on.

NOTES

It is assumed the command line arguments are space separated and when returning the entire command

line they are returned as such. The SYSTEM(1000) function will return the command line attribute

mark delimited.

EXAMPLES

DIM Parm(4)

ProgName = SENTENCE (0) ;* program is?

FOR I = 1 TO 4

 Parm(I) = SENTENCE(I) ;* get parameters

NEXT I

 337

SEQ

The SEQ function returns numeric ASCII value of a character.

COMMAND SYNTAX

SEQ (expression)

INTERNATIONAL MODE

The SEQ function will return numeric values beyond 255 for UTF-8 byte sequences representing any

Unicode values above 0x000000ff.

SYNTAX ELEMENTS

expression may evaluate to any data type. However, the SEQ function will convert the expression to a

string and operate on the first character of that string.

NOTES

SEQ operates on any character in the integer range 0 to 255

EXAMPLES

EQU ENQ TO 5

* Get next comms code

* Time-out after 20 seconds

INPUT A, 1 FOR 200 ELSE BREAK

IF SEQ (A) = ENQ THEN

* Respond to ENQ char

 338

SEQS

Use the SEQS function to convert a dynamic array of ASCII characters to their numeric string

equivalents.

COMMAND SYNTAX

SEQS (dynamic.array)

dynamic.array specifies the ASCII characters to be converted. If dynamic.array evaluates to null, it

returns null. If any element of dynamic.array is null, it returns null for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as return.array.

By using the SEQS function to convert a character outside its range results in a run-time message, and

the return of an empty string.

EXAMPLE

G="T":@VM:"G"

A=SEQS (G)

PRINT A

PRINT SEQS("G")

The output of this program is: 84]71 71

INTERNATIONAL MODE

The SEQ function will return numeric values beyond 255 for UTF-8 byte sequences representing any

Unicode values above 0x000000ff.

 339

SIN

The SIN function returns the mathematical sine value of a numeric expression.

COMMAND SYNTAX

SIN (expression)

SYNTAX ELEMENTS

expression should evaluate to a numeric value and is interpreted as a number of degrees between 0 and

360.

NOTES

The function will calculate the sine of the angle specified by the expression as accurately as the host

system will allow. It will then truncate the value according to the PRECISION of the program.

EXAMPLE

CRT @ (-1):

FOR I = 0 TO 79

 CRT @ (I,12+INT(SIN (360/80*(I+1))*10)):"*":

NEXT I

 340

SLEEP

Sleep allows the program to pause execution for a specified period.

COMMAND SYNTAX

SLEEP {expression}

SYNTAX ELEMENTS

expression may evaluate to one of two forms:

Numeric in which case the statement will sleep for the specified number of seconds or fractions of a

second

"nn:nn{:nn}" in which case the statement will sleep until the time specified.

If expression is not supplied then a default period of 1 second is assumed.

NOTES

Sleeping until a specified time works by calculating the time between the current time and the time

supplied and sleeping for that many seconds. If in the meantime the host clock is changed the program

will not wake up at the desired time;

If invoking the debugger while a program is sleeping and the execution continued, the user will be

prompted:

Continue with SLEEP (Y/N)?

If "N" is the response, the program will continue at the next statement after the SLEEP.

See also: MSLEEP to sleep for a specified number of milliseconds.

EXAMPLES

Sleep until the end of the working day for anyone w ho doesn't program

computers

SLEEP "17:30”

* 40 winks...

SLEEP 40

* Sleep for two and a half seconds...

SLEEP 2.5

 341

SMUL

See also: Floating Point Operations

The SMUL function performs string multiplication of two base 10-string numbers.

COMMAND SYNTAX

SMUL (expr1, expr2)

SYNTAX ELEMENTS

expr1 and expr2 are strings consisting of numeric characters, with either optionally including a

decimal part.

NOTES

Use the SMUL function with numbers that may exceed a valid range with standard arithmetic

operators.

The PRECISION declaration does not affect the value returned by SMUL.

EXAMPLES

A = 243603310027840922

B = 3760

CRT SMUL (A,B)

Displays 915948445704681866720 to the screen

CRT SMUL (0.0000000000000475,3.61)

Displays 0.0000000000001714 to the screen

 342

SORT

See also: Floating point Operations

The SORT function sorts all elements of a dynamic array in ascending left-justified order.

COMMAND SYNTAX

SORT (expression)

SYNTAX ELEMENTS

expression may evaluate to any data type but will only be useful if it evaluates to a dynamic array.

NOTES

The dynamic array can contain any number and combination of system delimiters.

The SORT () function will return an attribute-delimited array of the sorted elements.

Note: that all system delimiters in expression will be converted to an attribute mark '0xFE' in the sorted

result. For example, the following code

 MyArray = 'GEORGE':@VM:'FRED':@AM:'JOHN':@SVM:'A NDY'

 CRT SORT (MyArray)

will return

 ANDY^FRED^GEORGE^JOHN

where '^' is an attribute mark, '0xFE'. MyArray remains unchanged.

The SORT is achieved by the quick sort algorithm, which sorts in situ and is very fast.

EXAMPLE

Read a list, sort it and write it back

*READ List FROM "Unsorted" ELSE List = "

List = SORT (List)

WRITE List ON "Sorted"

INTERNATIONAL MODE

When using the SORT function in International Mode, the function will use the currently configured

locale to determine the rules by which each string is considered less than or greater than the other for

sort purposes.

 343

SOUNDEX

The SOUNDEX function allows phonetic conversions of strings.

COMMAND SYNTAX

SOUNDEX (expression)

SYNTAX ELEMENTS

expression may evaluate to any data type but the function will only give meaningful results for English

words.

NOTES

The phonetic equivalent of a string is calculated as the first alphabetic character in the string followed

by a 1 to 3-digit representation of the rest of the word.

The digit string is calculated from the following table:

Characters Value code

B F P V 1

C G J K Q S X Z 2

D T 3

L 4

M N 5

R 6

All characters not contained in the above table are ignored. The function is case insensitive and

identical sequences of a character are interpreted as a single instance of the character.

The idea is to provide a crude method of identifying words such as last names even if they are not spelt

correctly. The function is not foolproof should not be the sole method of identifying a word.

EXAMPLE

INPUT Lastname

Lastname = SOUNDEX (Lastname)

search the databases

 344

SPACE

The SPACE function generates a specific number of ASCII space characters.

COMMAND SYNTAX

SPACE (expression)

SYNTAX ELEMENTS

expression should evaluate to a positive integer value.

NOTES

The SPACE function will return the specified number of ASCII space characters and is useful for

padding strings. It should not be used to position output on the terminal screen as this is inefficient,

accomplish this by using the @() function.

EXAMPLES

TenSpaces = SPACE (10)

 345

SPACES

Use the SPACES function to return a dynamic array with elements composed of blank spaces.

COMMAND SYNTAX

SPACES (dynamic.array)

dynamic.array specifies the number of spaces in each element. If dynamic.array or any element of

dynamic.array evaluates to null, the SPACES function will enter the debugger.

 346

SPLICE

Use the SPLICE function to create a dynamic array of the element-by-element concatenation of two

dynamic arrays, separating concatenated elements by the value of expression.

COMMAND SYNTAX

SPLICE (array1, expression, array2)

Each element of array1 is concatenated with expression and with the corresponding element of array2.

The result is returned in the corresponding element of a new dynamic array. If an element of one

dynamic array has no corresponding element in the other dynamic array, the element is returned

properly concatenated with expression. If either element of a corresponding pair is null, null is returned

for that element. If expression evaluates to null, null is returned for the entire dynamic array.

EXAMPLE

A="A":@VM:"B":@SM:"C"

B="D":@SM:"E":@VM:"F"

C='-'

PRINT SPLICE (A,C,B)

The output of this program is:

A-D\-E]B-F\C-

 347

SPOOLER

The SPOOLER function returns information from the jBASE spooler.

COMMAND SYNTAX

SPOOLER (n{, Port|User})

SYNTAX ELEMENTS

n Description

1 returns formqueue information

2 returns job information

3 formqueue assignment

4 returns status information

Port limits the information returned to the specified port

User limits the information returned to the specified user.

NOTES

SPOOLER(1) returns information about formqueues. The information is returned in a dynamic array,

which contains an attribute for each formqueue. Each formqueue is structured as follows:

MultiValue Description

1 Formqueue name

2 Form type

3 Device

4 Device type

5 Status

6 Number of jobs on the formqueue

7 Page skip

SPOOLER(2) returns information about print jobs. The information is returned in a dynamic array,

which contains an attribute for each print job.

MultiValue Description

1 Formqueue name

2 Print job number

3 Effective user id

4 Port number job was generated on

5 Creation date in internal format

6 Creation time in internal format

7 Job Status

 348

MultiValue Description

8 Options

9 Print job size (pages)

10 Copies

11 Reserved

12 Reserved

13 Reserved

14 Effective user id

15 Real user id

16 Application id as set by @APPLICATION.ID

17 JBASICLOGNAME id

SPOOLER(3) returns information about current formqueue assignments. The information is returned in

a dynamic array, which contains an attribute for each assignment. Each attribute is structured as

follows:

MultiValue Description

1 Report (channel) number

2 Formqueue name

3 Options

4 Copies

SPOOLER(4) returns information about current print jobs. The information is returned in a dynamic

array, which contains an attribute for each job being generated. Each attribute is structured as follows:

MultiValue Description

1 Report (channel) number

2 Print job number

3 Print job size (pages)

4 Creation date in internal format

5 Creation time in internal format

6 Job Status

7 Effective User id

8 Real user id

9 JBASICLOGNAME id

10 Banner test from SETPTR BANNER text command

The values for Job Status are:

Status Description

1 Queued

 349

2 Printing

3 Finished

4 Open

5 Hold

6 Edited

 350

SQRT

See also: Floating point Operations

The SQRT function returns the mathematical square root of a value.

COMMAND SYNTAX

SQRT (expression)

SYNTAX ELEMENTS

The expression should evaluate to a positive numeric value as the authors do not want to introduce a

complex number type within the language. Negative values will cause a math error.

NOTES

The function calculates the result at the highest precision available and then truncates the answer to the

required PRECISION.

EXAMPLE

FOR I = 1 TO 1000000

 J=SQRT (I)

NEXT I

 351

SSELECT

Use the SSELECT statement to create:

A numbered select list of record IDs in sorted order from a jBASE hashed file

A numbered select list of record IDs from a dynamic array

A select list of record IDs from a dynamic array is not in sorted order.

You can then access this select list by a subsequent READNEXT statement, which removes one record

ID at a time from the list.

COMMAND SYNTAX

SSELECT [variable] [TO list.number] [ON ERROR statements]

SSELECTN [variable] [TO list.number] [ON ERROR statements]

SSELECTV [variable] TO list.variable [ON ERROR statements]

variable can specify a dynamic array or a file variable. If it specifies a dynamic array, the record IDs

must be separated by field marks (ASCII 254). If variable specifies a file variable, the file variable

must have previously been opened. If variable is not specified, the default file is assumed. If the file is

neither accessible nor open, or if variable evaluates to null, the SSELECT statement fails and the

program enters the debugger with a run-time error message.

The TO clause specifies the select list that is to be used. list.number is an integer from 0 through 10. If

no list.number is specified, select list 0 is used.

The record IDs of all the records in the file forms the list. The record IDs are listed in ascending order.

Each record ID is one entry in the list.

Use the SSELECTV statement to store the select list in a named list variable instead of to a numbered

select list. list.variable is an expression that evaluates to a valid variable name.

The ON ERROR Clause

The ON ERROR clause is optional in SSELECT statements. The ON ERROR clause lets you specify

an alternative for program termination when a fatal error is encountered during processing of a

SSELECT statement.

EXAMPLE

The following example opens the file SLIPPERS to the file variable DSCB, then creates an active

sorted select list of record IDs. The READNEXT statement assigns the first record ID in the select list

to the variable @ID, then prints it.

OPEN '','SLIPPERS' ELSE PRINT "NOT OPEN"

 352

SSELECT

READNEXT @ID THEN PRINT @ID

The output of this program is:

0001

INTERNATIONAL MODE

When using the SSELECT statement in International Mode, the statement will use the currently

configured locale to determine the rules by which each string is considered less than or greater than the

other for sort purposes.

 353

SSELECTN

See also: SSELECT.

SSELECTV

See also: SSELECT.

 354

SSUB

See also: Floating Point Operations

The SSUB function performs string subtraction of two base 10-string numbers.

COMMAND SYNTAX

SSUB (expr1, expr2)

SYNTAX ELEMENTS

expr1 and expr2 are strings consisting of numeric characters, optionally including a decimal part.

NOTES

Use the SSUB function with numbers that may exceed a valid range with standard arithmetic operators.

The PRECISION declaration has no effect on the value returned by SSUB.

EXAMPLE

A = 2.3000000123456789

B = 5.0000000000000001

CRT SSUB (A,B)

Displays -2.6999999876543212 to the screen

 355

STATUS Function

Use the STATUS function after an OPENPATH statement to find the cause of a file open failure (that

is, for an tatement in which the ELSE clause is used). The following values can be returned if the

statement is unsuccessful:

For File access commands

READ, WRITE, OPEN

Previous Operation

Value = 0 if successful

Value = Operating System error code if previous command failed

13 – permission denied on UNIX systems

OCONV Conversions

0 = successful

1 = invalid conversion requested

3 = conversion of possible invalid date

 356

STATUS function

COMMAND SYNTAX

STATUS ()

DESCRIPTION

Arguments are required for the STATUS function.

Values of STATUS after CLOSE, DELETE, MATREAD, MATWRITE, OPEN, READ and WRITE

After a DELETE statement: After a DELETE statement with an ON ERROR clause, the value returned

is the error number.

Returns 0 if successful else returns ERROR number

 357

STATUS function

After an OPEN, OPENPATH, or OPENSEQ statement: The file type is returned if the file is opened

successfully. If the file is not opened successfully, the following values may return:

After a READ statement: If the file is a distributed file, the STATUS function returns the following:

STATUS function

After a READL, READU, READVL, or READVU statement: If the statement includes the LOCKED

clause, the returned value is the terminal number, as returned by the WHO command, of the user who

set the lock.

After a READSEQ statement:

After a READT, REWIND, WEOF, or WRITET statement: The returned value is hardware-dependent

(that is, it varies according to the characteristics of the specific tape drive unit). Consult the

documentation that accompanied your tape drive unit for information about interpreting the values

returned by the STATUS function.

 358

STATUS statement

SYNTAX ELEMENTS

STATUS array FROM variable

THEN statements ELSE statements•ELSE statements

DESCRIPTION

Use the STATUS statement to determine the status of an open file. The STATUS statement returns the

file status as a dynamic array and assigns it to an array.

The STATUS statement returns the following values in the following attributes:

STATUS Statement Values

Attribute Description

1 Current position in the file Offset in bytes from beginning of file

2 End of file reached 1 if EOF, 0 if not.

3 Error accessing file 1 if error, 0 if not.

4 Number of bytes available to read

5 File mode Permissions (in octal) 6 File size in bytes.

7 Number of hard links 0 if no links. Where applicable else 0

8 O/S User ID. ID based on the user name and domain of the user a jBASE pseudo user.

9 O/S Group ID.

STATUS statement

10 I-node number; Unique ID of file on file system

11 Device on which i-node resides Number of device. The value is an internally calculated value on

Windows NT.

12 Device for special character or block Number of device.

13 Time of last access in internal format

14 Date of last access in internal format.

15 Time of last modification in internal format

16 Date of last modification in internal format.

17 Time and date of last status change in internal format.

18 Date of last status change in internal format.

19 Number of bytes left in output queue (applicable to terminals only)

20 { }

21 jBASE File types j3, j4, jPLUS

22 jBASE File types j3, j4, jPLUS

 359

23 jBASE File types j3, j4, jPLUS

24 Part numbers of part files belonging to a distributed file multivalued list

STATUS statement

variable specifies an open file. If variable evaluates to the null value, the STATUS statement fails and

the program terminates with a run-time error message.

If the STATUS array is assigned to an array, the THEN statements are executed and the ELSE

statements are ignored. If no THEN statements are present, program execution continues with the next

statement. If the attempt to assign the array fails, the ELSE statements are executed; any THEN

statements are ignored.

EXAMPLE

OPENSEQ '/Fred' TO test THEN PRINT "File Opened" ELSE STOP

STATUS info FROM filevar

filename= stat<20>

inode= info<10>

 360

STOP

The STOP statement is virtually identical in function to the ABORT statement except that it does not

terminate a calling jCL program.

 361

STR

The STR function allows the duplication of a string a number of times.

COMMAND SYNTAX

STR (expression1, expression2)

SYNTAX ELEMENTS

expression1 will evaluate to the string to duplicate and may be of any length.

expression2 should evaluate to a numeric integer, which specifies the number of times the string will

be duplicated.

EXAMPLE

LongString = STR ("long string ", 999)

 362

STRS

Use the STRS function to produce a dynamic array containing the specified number of repetitions of

each element of dynamic.array.

COMMAND SYNTAX

STRS (dynamic.array, repeat)

dynamic.array is an expression that evaluates to the strings to be generated.

repeat is an expression that evaluates to the number of times the elements are to be repeated. If it does

not evaluate to a value that can be truncated to a positive integer, an empty string is returned for

dynamic.array.

If dynamic.array evaluates to null, it returns null. If any element of dynamic.array is null, null is

returned for that element. If repeat evaluates to null, the STRS function fails and the program enters the

debugger.

EXAMPLE

ABC="A":@VM:"B":@VM:"C"

PRINT STRS (ABC,3)

The output of this program is:

AAA]BBB]CCC

 363

SUBROUTINE

The SUBROUTINE statement is used at the start of any program that will be called externally by the

CALL statement. It also declares any parameters to the compiler.

COMMAND SYNTAX

SUB{ROUTINE} Name {({MAT} variable{,{MAT} variable...})}

SYNTAX ELEMENTS

Name is the identifier by which the subroutine will be known to the compilation process. It should

always be present as this name (not the source file name), will be used to call it by. However, if the

name is left out, the compiler will name subroutine as the source file name (without suffixes). Default

naming is not encouraged as it can cause problems if source files are renamed.

Each comma separated variable in the optional parenthesized list is used to identify parameters to the

compiler. These variables will be assigned the values passed to the subroutine by a CALL statement.

NOTES

The SUBROUTINE statement must be the first code line in a subroutine.

A subroutine will inherit all the variables declared using the COMMON statement providing an

equivalent COMMON area is declared within the SUBROUTINE source file. The program will fail to

compile if the number of common variables used in each common area exceeds the number defined in

the equivalent area in the main program.

Subroutines can only be called via the jBASE BASIC CALL statement

A subroutine can redefine PRECISION but the new precision will not persist when the subroutine

returns to the calling program.

A subroutine will return to the CALLing program if it reaches the logical end of the program or a

RETURN is executed with no outstanding GOSUB statement.

A SUBROUTINE will not return to the calling program if a STOP or ABORT statement is executed.

See also: CALL, CATALOG, COMMON, RETURN

 EXAMPLES

SUBROUTINE DialUp(Number, MAT Results)

 DIM Results(8)

....

 364

SUBS

The SUBS function returns a dynamic array, the content of which is derived by subtracting each

element of the second dynamic array argument from the corresponding element of the first dynamic

array argument.

COMMAND SYNTAX

SUBS(DynArr1, DynArr2)

SYNTAX ELEMENTS

DynArr1 and DynArr2 represent dynamic arrays.

NOTES

Null elements of argument arrays are treated as zero. Otherwise, a non-numeric element in an argument

array will cause a run-time error.

EXAMPLE

X = 1 : @VM : @VM : 5 : @VM : 8 : @SVM : 27 : @VM : 4

Y = 1 : @VM : 5 : @VM : 8 : @VM : 70: @VM : 19

S = SUBS(X, Y)

The variable S is assigned the value:

0 : @VM : -5 : @VM : -3 : @VM : -62 : @SVM : 27 : @ VM : -15

 365

SUBSTRINGS

The SUBSTRINGS function returns a dynamic array of elements, which are sub-strings of the

corresponding elements in a supplied dynamic array.

COMMAND SYNTAX

SUBSTRINGS (DynArr, Start, Length)

SYNTAX ELEMENTS

DynArr should evaluate to a dynamic array.

Start specifies the position from which characters are extracted from each array element. It should

evaluate to an integer greater than zero.

Length specifies the number of characters to extract from each dynamic array element. If the length

specified exceeds the number of characters remaining in an array element then all characters from the

Start position are extracted.

INTERNATIONAL MODE

When using the SUBSTRINGS function in International Mode, the function will use the ‘start’ and

length’ parameters to the function as character count values, rather than bytecount

EXAMPLES

The following program shows how each element of a dynamic array can be changed with the FIELDS

function.

t = ""

t<1> = "AAAAA"

t<2> = "BBBBB" : @VM: "CCCCC" : @SVM: "DDDDD"

t<3> = "EEEEE":@VM:@SVM

r1 = SUBSTRINGS (t,3,2)

r2 = SUBSTRINGS(t,4,20)

r3 = SUBSTRINGS(t,0,1)

The above program creates 3 dynamic arrays. v represents a value mark. s represents a sub-value mark.

r1 <1>AA

<2>BB v CC s DD

<3>EE v s

r2 <1>AA

<2>BB v CC s DD

 366

<3>EE v s

r3 <1>A

<2>B v C s D

<3>E v s

 367

SUM

The SUM function sums numeric elements in a dynamic array.

COMMAND SYNTAX

SUM (expr)

SYNTAX ELEMENTS

expr is a dynamic array.

NOTES

Non-numeric sub-values, values and attributes are ignored.

EXAMPLES

s = CHAR (252)

v = CHAR(253)

a = CHAR(254)

a0 = 1:s:2:v:3:a:4:s:5:v:6:a:7:s:8:v:'NINE'

a1 = SUM (A)

a2 = SUM(a1)

a3 = SUM(a2)

CRT a0

CRT a1

CRT a2

CRT a3

The above code displays:

12²345²678²NINE

3²39²615²0

61515

36

 368

SWAP

The SWAP function operates on a variable and replaces all occurrences of one string with another.

COMMAND SYNTAX

SWAP (variable, expression1, expression2)

SYNTAX ELEMENTS

expression1 may evaluate to any result and is the string of characters that will be replaced.

expression2 may also evaluate to any result and is the string of characters that will replace

expression1. The variable may be any previously assigned variable in the program.

NOTES: Either string can be of any length and is not required to be the same length. This function is

provided for compatibility with older systems.

See also: CHANGE function.

EXAMPLE

String1 = "Jim"

String2 = "James"

Variable = "Pick up the tab Jim"

CRT SWAP (Variable, String1, String2)

CRT SWAP(Variable, "tab", "check")

 369

System Functions

The following system functions are supported by jBASE:

SYSTEM(0) Return the last error code

SYSTEM(1) Return 1 if output directed to printer

SYSTEM(2) Return page width

SYSTEM(3) Return page depth

SYSTEM(4) Return no of lines to print in current page. (HEADING statement)

SYSTEM(5) Return current page number (HEADING statement)

SYSTEM(6) Return current line number (HEADING statement)

SYSTEM(7) Return terminal type

SYSTEM(8) Return record length for tape channel 0

SYSTEM(9) Return CPU milliseconds

SYSTEM(10) Return 1 if stacked input available

SYSTEM(11) Returns the number of items in an active select list or 0 if no list is active

SYSTEM(12) Return 1/1000, (or 1/10 for ROS), seconds past midnight

SYSTEM(13) Release time slice

SYSTEM(14) Returns the number of characters available in input buffer. Invoking SYSTEM(14)

can cause a slight delay in program execution.

SYSTEM(15) Return bracket options used to invoke command

SYSTEM(16) Return current PERFORM/EXECUTE level

SYSTEM(17) Return stop code of child process

SYSTEM(18) Return port number or JBCPORTNO

SYSTEM(19) Return login name or JBASICLOGNAME. If the system_19_timedate emulation

option is set then returns the number of seconds since midnight December 31, 1967.

SYSTEM(20) Returns last spooler file number created

SYSTEM(21) Returns port number or JBCPORTNO

SYSTEM(22) Reserved

SYSTEM(23) Returns status of the break key

Enabled

0 Enabled

1 Disabled by BASIC

2 Disabled by Command

3 Disabled by Command and BASIC

SYSTEM(24) Returns 1 if echo enabled, 0 if echo disabled

SYSTEM(25) Returns 1 if background process

SYSTEM(26) Returns current prompt character

SYSTEM(27) Returns 1 if executed by PROC

SYSTEM(28) Reserved.

SYSTEM(29) Reserved.

 370

SYSTEM(30) Returns 1 if paging is in effect (HEADING statement)

SYSTEM(31) Reserved

SYSTEM(32) Reserved

SYSTEM(33) Reserved

SYSTEM(34) Reserved

SYSTEM(35) Returns language in use as a name or number (ROS)

SYSTEM(36) Reserved

SYSTEM(37) Returns thousands separator

SYSTEM(38) Returns decimal separator

SYSTEM(39) Returns money symbol

SYSTEM(40) Returns program name

SYSTEM(41) Returns release number

SYSTEM(42) Reserved

SYSTEM(43) Returns port number of item lock

SYSTEM(44) Returns 99 for jBASE system type

SYSTEM(45) Reserved

SYSTEM(46) Reserved

SYSTEM(47) Returns 1 if currently in a transaction

SYSTEM(48) Reserved

SYSTEM(49) Returns PLID environment variable

SYSTEM(50) Returns login user id

SYSTEM(51) Reserved

SYSTEM(52) Returns system node name

SYSTEM(53) Reserved

SYSTEM(100) Returns program create information

SYSTEM(101) Returns port number or JBCPORTNO

SYSTEM(102) Reserved

SYSTEM(1000) Returns command line separated by attribute marks

SYSTEM(1001) Returns command line and options

SYSTEM(1002) Returns temporary scratch file name

SYSTEM(1003) Returns terminfo Binary definitions

SYSTEM(1004) Returns terminfo Integer definitions

SYSTEM(1005) Returns terminfo String definitions

SYSTEM(1006) Reserved

SYSTEM(1007) Returns system time

SYSTEM(1008) Returns SYSTEM file path

SYSTEM(1009) Returns MD file path

SYSTEM(1010) Returns Print Report information

SYSTEM(1011) Returns jBASE release directory path. JBASICRELEASEDIR

 371

SYSTEM(1012) Returns jBASE global directory path. JBASICGLOBALDIR

SYSTEM(1013) Returns memory usage (UNIX only):

<1> Free memory small blocks

<2> Free memory large blocks

<3> Used memory small blocks

<4> Used memory large blocks

SYSTEM(1014) Returns relative PROC level

SYSTEM(1015) Returns effective user name. LOGNAME

SYSTEM(1016) Returns tape assignment information

SYSTEM(1017) Returns platform. UNIX, WINNT or WIN95

SYSTEM(1018) Returns configured processors

SYSTEM(1019) Returns system information (uname -a)

SYSTEM(1020) Returns login user name

SYSTEM(1021) JBASE release information:

<1> Major release number

<2> Minor release number

<3> Patch level

<4> Copyright information

SYSTEM(1022) Returns the status of jBASE profiling:

0 no profiling is active

1 full profiling is active

2 short profiling is active

3 jCOVER profiling is active

SYSTEM (1023) Used by STATUS() function

SYSTEM(1024) Retrieves details about last signals

SYSTEM(1025) Returns value of International mode for thread

SYSTEM(1026) Total amount of memory in use formatted with commas

 372

SYSTEM(1027) Returns directory PROC; Used by WHERE, LISTU

Information about running processes can be obtained via the PROC jedi....

This JEDI enables retrieval of information from executing processes and is the

interface now used by the WHERE command...

 OPEN SYSTEM(1027) TO PROC ELSE STOP 201, "PR OC"

 SELECT PROC TO Sel

 LOOP

 WHILE READNEXT key FROM Sel DO

 READ ProcessRecord FROM PROC, key ELSE CRT "R ead

Error"; STOP

 REPEAT

Info for current user can be returned from the @USERSTATS variable.

Attribute descriptions for Process Records returned from the PROC Jedi READ

interface.

<1> Port number

<2> Number of programs running

<3> Connect time

<4> Process ID

<5> Account name

<6> User name

<7> Terminal name in jBASE format

<8> Terminal name in UNIX format

<9> Database name

<10> Name of the tty device

<11> Language name

<12> Time listening thread executed

<13> Mallinfo memory free

<14> Mallinfo memory used

<15>Type of thread as a number

<16> Type of thread as a string WHERE

 thread_type_string = "Normal" =1

 thread_type_string = "javaOBjEX" = 2

 thread_type_string = "vbOBjEX" = 3

 thread_type_string = "jrfs" = 4

 thread_type_string = "Compiler" = 5

 373

 <17> Number of instructions executed and licenses allocated to work around a bug

in Windows. Need to build the buffer in separate sprintf's

<18> Number of OPEN's

<19> Number of READ's

<20> Number of WRITE's

<21> Number of DELETE's

<22> Number of CLEARFILE's

<23> Number of EXECUTE's

<24> Number of INPUT's

<25> UNUSED

<26> Number of files the application thinks is open

<27> Number of files that in reality are opened by the OS

<28> Application data set by @USER.ROOT

<29> Text String to identify process

<41> Command line arguments < threadnext >

<42> Current Line Number < threadnext >

<43> Name of source <threadnext >

<44> Status as a text string < threadnext >

 status = "Program running normally"

 status = "Program is SLEEPING"

 status = "Program in DEBUGGER"

 status = "Program at keyboard INPUT"

 status = "Program blocked on record LOCK"

status = "Program performing EXECUTE/PERFORM"

 status = "Error!! Status unknown"

<47> Status as an integer <threadnext >

<48> User CPU time <threadnext >

<49> System CPU time <threadnext >

<50> Child User CPU time <threadnext >

<51> Child System CPU time <threadnext >

<52> User defined thread data <threadnext >

SYSTEM(1028) Logged in database name

 374

SYSTEM(1029) Shows the CALL stack history so that in error conditions the application, such as

database I/O statistics, programs being performed and so on. Can be used with

@USERDATA.

SYSTEM(1030) This new entry into the SYSTEM() function returns the current perform level in the

range 1 to 32. This is similar to SYSTEM(16), which returns the nested execute

level. The difference is that SYSTEM(16) does not include any procs, paragraphs or

shells and returns the relative application program level. SYSTEM(1030) returns

the relative program level including all the proc interpreters, paragraph interpreters

and shells.

SYSTEM(1031) Number of free bytes on the current file system

SYSTEM(1032) Returns default frame size

SYSTEM(1034) Returns handle of the current thread

SYSTEM(1035) Returns the product ID of the license currently in use by this process;

1. Enterprise

13. Server

Entries above 2000 are for system use only.

 375

TAN

The TAN function returns the mathematical tangent of an angle.

COMMAND SYNTAX

TAN (expression)

SYNTAX ELEMENTS

expression should evaluate to a numeric type.

NOTES

The function calculates the result at the highest precision available on the host system; it truncates the

result to the current PRECISION after calculation.

EXAMPLES

Adjacent = 42

Angle = 34

CRT "Opposite length = ":TAN (Angle)*Adjacent

 376

TIME

The TIME() function returns the current system time.

COMMAND SYNTAX

TIME ()

NOTES

Returns the time as the number of seconds past midnight

EXAMPLES

CRT "Time is ":OCONV(TIME(), "MTS")

 377

TIMEDATE

The TIMEDATE() function returns the current time and date as a printable string.

COMMAND SYNTAX

TIMEDATE ()

NOTES

The function returns a string of the form: hh:mm:ss dd mmm yyyy or in the appropriate format for your

international date setting.

EXAMPLES

CRT "The time and date is ":TIMEDATE ()

 378

TIMEDIFF

Returns the interval between two timestamp values as a dynamic array

COMMAND SYNTAX

Time Diff(Timestamp1, Timestamp2,Mask)

SYNTAX ELEMENTS

The TIMEDIFF function returns the interval between two timestamp values by subtracting the value of

Timestamp2 from Timestamp1. The interval is returned as an attribute delimited array of the time

difference.

The Mask is an integer from 0 to 7 and selects one of the following output formats:

Mask Array

0 - Days^Hours^Minutes^Seconds^Milliseconds (Default)

1 - Weeks^Days^Hours^Minutes^Seconds^Milliseconds

2 - Months^Days^Hours^Minutes^Seconds^Milliseconds

3 - Months^Weeks^Days^Hours^Minutes^Seconds^Milliseconds

4 - Years^Days^Hours^Minutes^Seconds^Milliseconds

5 - Years^Weeks^Days^Hours^Minutes^Seconds^Milliseconds

6 - Years^Months^Days^Hours^Minutes^Seconds^Milliseconds

7 - Years^Months^Weeks^Days^Hours^Minutes^Seconds^Milliseconds

 379

TIMEOUT

If no data is read in the specified time, use the TIMEOUT statement to terminate a READSEQ or

READBLK statement.

COMMAND SYNTAX

TIMEOUT file.variable, time

file.variable specifies a file opened for sequential access.

Time: is an expression that evaluates to the number of seconds the program should wait before

terminating the

READSEQ statement.

TIMEOUT causes subsequent READSEQ and READBLK statements to terminate and execute ELSE

statements if the number of seconds specified by time elapses while waiting for data.

If either file.variable or time evaluates to null, the TIMEOUT statement fails and the program enters

the debugger.

EXAMPLES

TIMEOUT SLIPPERS, 10

READBLK VAR1 FROM SLIPPERS, 15 THEN PRINT VAR1 ELSE

PRINT "TIMEOUT OCCURRED"

END

 380

TIMESTAMP

Returns a UTC timestamp value as decimal seconds

COMMAND SYNTAX

 TIMESTAMP ()

SYNTAX ELEMENTS

The TIMESTAMP function returns a Universal Coordinated Time (UTC) value as decimal seconds,

i.e. Seconds with tenths and hundredths specified after the decimal point.

"The value is returned as a variable with as many decimal places as the current precision allows.

However, successive calls may return the same value many times before the operating system updates

the underlying timer. For example, Windows updates the low level timer every 1/50 second even

though it stores the time in billionths of a second."

 381

TRANS

The TRANS function will return the data value of a field, given the name of the file, the record key, the

field number, and an action code.

COMMAND SYNTAX

TRANS ([DICT] filename, key, field#, action.code)

SYNTAX ELEMENTS

DICT is the literal string to be placed before the file name in the event it is desired to open the

dictionary portion of the file, rather than the data portion.

filename is a string containing the name of the file to be accessed. Note that it is the actual name of the

file, and not a file unit variable. This function requires the file name, regardless of whether or not the

file has been opened to a file unit variable.

key is an expression that evaluates to the record key, or item ID, of the record from which data is to be

accessed.

field# is the field number to be retrieved from the record.

action.code indicates what should happen if the field is null, or the if record is not found. This is a

literal. The valid codes are:

X Returns a null string. This is the default action

V Prints an error message.

C Returns the value of key

NOTES

If the field being accessed is a dynamic array, TRANS will return the array with the delimiter

characters lowered by 1. For example, multivalue marks (ASCII-253) are returned as subvalue marks

(ASCII-252), and subvalue marks are returned as text marks (ASCII-251).

If you supply -1 for field#, the entire record will be returned.

The TRANS function is the same as the XLATE function.

EXAMPLES

Retrieval of a simple field: Given a file called "VENDORS" containing a record with the record key of

"12345" and which contains the value of "ABC Company" in field 1,

VENDOR.ID = "12345"

VENDOR.NAME = TRANS ("VENDORS",VENDOR.ID,1,"X")

CRT VENDOR.NAME

 382

will display: ABC Company

Retrieval of an array: Suppose field 6 of the VENDORS file contains a multivalued list of purchase

order numbers, such as

10011]10062]10079

use the TRANS function to retrieve it:

PO.LIST = TRANS ("VENDORS",VENDOR.ID,6,"X")

CRT PO.LIST

will display: 10011\10062\10079

Notice that the backslashes (\) were substituted for brackets (]), indicating that the delimiter is now

CHAR(252).

Retrieval of an entire dictionary item: Given a dictionary item called "VENDOR.NAME" with the

following content

001 A

002 1

003 Vendor Name

004

005

006

007

008

009 L

010 30

these statements

DICT.ID = "VENDOR.NAME"

DICT.REC = TRANS ("DICT VENDORS",VENDOR.ID,-1,"C")

PRINT DICT.REC

will display

A]1]Vendor Name]]]]]L]30

 383

TRANSABORT

The TRANSABORT statement is used to abort the current transaction and reverse any updates to the

database.

 COMMAND SYNTAX

TRANSABORT {abort-text} [THEN statement | ELSE statement]

SYNTAX ELEMENTS

abort-text specifies an optional text string to save in the transaction abort record.

A THEN or ELSE (or both) statement is required. The THEN clause will be executed if the

transaction is successfully aborted. The ELSE clause will be executed if the transaction abort fails for

any reason.

NOTES

Any record locks set during the transaction will be released upon successful completion.

 384

TRANSQUERY

The TRANSQUERY function is used to detect whether or not a transaction is active on the current

process.

COMMAND SYNTAX

TRANSQUERY()

NOTES

TRANSQUERY will return 1 (true) if the process is within a transaction boundary, and 0 (false) if it is

not. In other words, TRANSQUERY will return true if the TRANSTART statement has been issued

but a TRANSEND or TRANSABORT statement has not yet been processed.

By default, all hashed files are marked for inclusion in a transaction however this can be modified by

the jchmod utility.

 385

TRANSTART

In transaction processing, the TRANSTART statement is used to mark the beginning of a transaction.

 COMMAND SYNTAX

TRANSTART {SYNC}{start-text} [THEN statement | ELSE statement]

SYNTAX ELEMENTS

SYNC is an option to force the updates to be flushed at transaction end or abort. start-text specifies an

optional text string to save with the transaction start record.

A THEN or ELSE (or both) statement is required. The THEN clause will be executed if the

transaction is successfully started. The ELSE clause will be executed if the transaction start fails for

any reason.

NOTES

Record locks set during the transaction will not be released until a TRANSEND or TRANSABORT

statement is processed.

A program (or series of programs) can only have one active transaction at one time. If another

TRANSTART statement is encountered whilst a transaction is active, a run-time error will be

generated.

 386

TRANSEND

The TRANSEND statement is used to mark the end of a successfully completed transaction.

COMMAND SYNTAX

TRANSEND {end-text} [THEN statement | ELSE statement]

SYNTAX ELEMENTS

end-text specifies an optional text string to save with the transaction end record.

A THEN or ELSE (or both) statement is required. The THEN clause will be executed if the

transaction is successfully ended. The ELSE clause will be executed if the transaction end fails for any

reason.

NOTES

Any record locks set during the transaction will be released upon successful completion.

 387

TRIM

The TRIM statement allows characters to be removed from a string in a number of ways.

COMMAND SYNTAX

TRIM (expression1 {, expression2{, expression3}})

SYNTAX ELEMENTS

expression1 specifies the string from which to trim characters.

expression2 may optionally specify the character to remove from the string. If not specified then the

space character is assumed.

expression3 evaluates to a single character specifies the type of trim to perform.

NOTES

The trim types available for expression3 are:

Type Operation

L removes leading characters only

T removes trailing characters only

B removes leading and trailing characters

A removes all occurrences of the character

R removes leading, trailing and redundant characters

F removes leading spaces and tabs

E removes trailing spaces and tabs

D removes leading, trailing and redundant spaces and tabs.

EXAMPLE

INPUT Answer

* Remove spaces and tabs (second parameter ignored)

Answer = TRIM (Answer, ", "D")

INPUT Joker

* Remove all dots

Thief = TRIM(Joker, ".", "A")

 388

TRIMB

The TRIMB() function is equivalent to TRIM(expression, " ", "T")

 389

TRIMBS

Use the TRIMBS function to remove all trailing spaces and tabs from each element of dynamic.array.

COMMAND SYNTAX

TRIMBS (dynamic.array)

TRIMBS removes all trailing spaces and tabs from each element and reduces multiple occurrences of

spaces and tabs to a single space or tab.

If dynamic.array evaluates to null, null is returned. If any element of dynamic.array is null, null is

returned for that value.

 390

TRIMF

The TRIMF() function is equivalent to TRIM(expression, " ", "L")

 391

TRIMFS

Use the TRIMFS function to remove all leading spaces and tabs from each element of dynamic.array.

COMMAND SYNTAX

TRIMFS (dynamic.array)

TRIMFS removes all leading spaces and tabs from each element and reduces multiple occurrences of

spaces and tabs to a single space or tab.

If dynamic.array evaluates to null, it returns null. If any element of dynamic.array is null, it returns null

for that value.

 392

UNASSIGNED

The UNASSIGNED function allows a program to determine whether a variable has been assigned a

value.

COMMAND SYNTAX

UNASSIGNED (variable)

SYNTAX ELEMENTS

variable is the name of variable used elsewhere in the program.

NOTES

The function returns Boolean TRUE if variable has not yet been assigned a value. The function returns

Boolean FALSE if variable has already been assigned a value.

See also: ASSIGNED

EXAMPLES

IF UNASSIGNED(Var1) THEN

 Var1 = "Assigned now!"

END

 393

UNIQUEKEY

Returns a unique 16-byte character key

COMMAND SYNTAX

 UNIQUEKEY ()

SYNTAX ELEMENTS

The UNIQUEKEY() function will generate a unique 16-byte character key on each call to the function.

The key contains characters from the set A-Z a-z 0-9 + and / (base64)

Based on the current UTC time and the process number, the key is unique on a single computer system

providing that the system clock is not turned back.

If the system administrator adjusts the system clock backwards, then there is a slight possibility of

generating duplicate keys during the period until the clock has caught back up to time that the

adjustment was made.

Any process that continues to execute throughout this period will continue to produce unique keys.

A process that starts up during this period and is given the process ID of a process that terminated

during the period, may possibly generate a duplicate key until the period ends.

 394

UNLOCK

The UNLOCK statement releases a previously LOCKed execution lock.

COMMAND SYNTAX

UNLOCK {expression}

SYNTAX ELEMENTS

If specifying expression it should evaluate to the number of a held execution lock, for release.

If omitting expression then it releases all execution locks held by the current program

NOTES

There is no action if the program attempts to release an execution lock that it had not taken.

See also: LOCK.

EXAMPLE

LOCK 23 ; LOCK 32

......

UNLOCK

 395

UDTEXECUTE

See also:EXECUTE.

UPCASE

See also:DOWNCASE/UPCASE.

 396

UTF8

The UTF8 function converts a latin1or binary string into the UTF-8 equivalent byte sequence.

COMMAND SYNTAX

 UTF8 (expression)

SYNTAX ELEMENTS

The expression is expected to be a binary/latin1code page string, which converts the binary string into

a UTF-8 encoded byte sequence, used to represent the Unicode values for each byte in the expression.

NOTES

This function is useful for converting binary or latin1 code page data into internal format when in

International Mode.

 397

WAKE

Use the WAKE statement to wake a suspended process, which has executed a PAUSE statement.

COMMAND SYNTAX

WAKE PortNumber

SYNTAX ELEMENTS

PortNumber is a reference to awaken the target port. The WAKE statement has no effect on processes,

which do not execute the PAUSE statement.

 398

WEOF

The WEOF statement allows the program to write an EOF mark on an attached tape device.

COMMAND SYNTAX

WEOF {ON expression}

SYNTAX ELEMENTS

expression specifies the device channel to use. Should evaluate to a numeric integer argument in the

range 0-9, the default value is zero.

NOTES

If the WEOF fails it then executes the statements associated with any ELSE clause. SYSTEM(0) will

return the reason for the failure as follows:

1 there is no media attached to the channel

2 end of media found

NOTES

A "tape" does not refer to magnetic tape devices only but to any device described previously to jBASE.

If the specified channel has no assigned tape device, it enters the jBASE debugger with an appropriate

message.

EXAMPLE

WEOF ON 5 ELSE

 CRT "No tape device exists for channel 5"

END

 399

WEOFSEQ

Write end of file on file opened for sequential access.

COMMAND SYNTAX

WEOFSEQ FileVar { THEN | ELSE Statements}

SYNTAX ELEMENTS

FileVar specifies the file descriptor of the file opened for sequential access.

Statements conditional jBASE BASIC statements

NOTES

WEOFSEQ forces truncation of the file at the current file pointer nothing is actually 'written' to the

sequential file.

EXAMPLES

See also: Sequential File Examples

 400

WRITE

The WRITE statement allows a program to write a record into a previously opened file.

COMMAND SYNTAX

WRITE variable1 ON|TO { variable2,} expression {SETTING setvar} {ON ERROR statements}

SYNTAX ELEMENTS

variable1 is the identifier containing the record to write.

variable2, if specified, should be a previous opened jBASE BASIC variable to a file using the OPEN

statement. If not specifying variable2 then it assumes the default file.

The expression should evaluate to a valid record key for the file.

If specifying the SETTING clause and the write fails, it sets setvar to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

If holding a lock on the record by this process, it is released by the WRITE.

If you wish to retain a lock on a record, you should do so explicitly with the WRITEU statement.

EXAMPLE

OPEN "DICT Customers" TO DCusts ELSE

 ABORT 201, "DICT Customers"

END

WRITE Rec ON DCusts, "Xref" ON ERROR

CRT "Xref not written to DICT Customers"

END

 401

WRITEBLK

Use the WRITEBLK statement to write a block of data to a file opened for sequential processing.

COMMAND SYNTAX

WRITEBLK expression ON file.variable

{THEN statements [ELSE statements] | ELSE statements}

Each WRITEBLK statement writes the value of expression starting at the current position in the file.

The current position is incremented to beyond the last byte written. WRITEBLK does not add a new

line at the end of the data.

file.variable specifies a file opened for sequential processing.

The value of expression is written to the file, and the THEN statements are executed. If no THEN

statements are specified, program execution continues with the next statement. If the file is neither

accessible or does not exist, it executes the ELSE statements; and ignores any THEN statements.

If either expression or file.variable evaluates to null, the WRITEBLK statement fails and the program

enters the debugger with a run-time error message.

INTERNATIONAL MODE

When using the WRITEBLK statement in International Mode, care must be taken to ensure that the

write variable is handled properly before the WRITEBLK statement. The WRITEBLK statement

expects the output variable to be in “bytes”, however when manipulating variables in International

Mode character length rather than byte lengths are usually used and hence possible confusion or

program malfunction can occur. If requiring byte count data the output variable can be converted from

the UTF-8 byte sequence to ‘binary/latin1’ via the LATIN1 function.

It is not recommended that you use the READBLK/WRITEBLK statements when executing in

International Mode. You can obtain similar functionality via the READSEQ/WRITESEQ statement,

which can be used to read/write, characters a line at a time from a file.

 402

WRITELIST

WRITELIST allows the program to store a list held in a jBASE BASIC variable to the global list file.

COMMAND SYNTAX

WRITELIST variable ON|TO expression {SETTING setvar} {ON ERROR statements}

SYNTAX ELEMENTS

variable is the variable in which the list is held.

expression should evaluate to the required list name. If expression is null, it writes the list to the

default external list.

If the SETTING clause is specified and the write fails, it sets setvar to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTE

See also: DELETELIST, READLIST, FORMLIST

EXAMPLE

* Create the list first

WRITELIST MyList ON "MyList"

 403

WRITESEQ

Write to a file opened for sequential access.

COMMAND SYNTAX

WRITESEQ Expression {APPEND} ON|TO FileVar THEN | ELSE statements

or

WRITESEQF Expression {APPEND} TO FileVar THEN | ELSE statements

SYNTAX ELEMENTS

Variable specifies the variable to contain next record from sequential file.

FileVar specifies the file descriptor of the file opened for sequential access.

Statements conditional jBASE BASIC statements

NOTES

Each WRITESEQ writes the data on a line of the sequentially opened file. Each data is suffixed with a

new line character. After each WRITESEQ, the file pointer moves forward to the end of line. The

WRITESEQF statement forces each data line to be flushed to the file when it is written. The APPEND

option forces each WRITESEQ to advance to the end of the file before writing the next data line.

EXAMPLES

See also: Sequential File Examples

 404

WRITESEQF

SYNTAX

WRITESEQF expression {ON | TO} file.variable [ON ERROR statements]

{THEN statements [ELSE statements] | ELSE statements}

DESCRIPTION

Use the WRITESEQF statement to write new lines to a file opened for sequential processing, and to

ensure that data is physically written to disk (that is, not buffered) before the next statement in the

program is executed. The sequential file must be open, and the end-of-file marker must be reached

before you can write to the file. You can use the FILEINFO function to determine the number of the

line about to be written.

Normally, when you write a record using the WRITESEQ statement, the record is moved to a buffer

that is periodically written to disk. If a system failure occurs, you could lose all the updated records in

the buffer. The WRITESEQF statement forces the buffer contents to be written to disk; the program

does not execute the statement following the WRITESEQF statement until the buffer is successfully

written to disk.

A WRITESEQF statement following several WRITESEQ statements ensures that all buffered records

are written to disk. WRITESEQF is intended for logging applications and should not be used for

general programming. It increases the disk I/O of your program and therefore degrades performance.

file.variable specifies a file opened for sequential access.

The value of expression is written to the file as the next line, and the THEN statements are executed. If

THEN statements are not specified, program execution continues with the next statement; if the

specified file cannot be accessed or does not exist, the ELSE statements are executed; any THEN

statements are ignored.

If expression or file.variable evaluates to the null value, the WRITESEQF statement fails and the

program terminates with a run-time error message.

The ON ERROR Clause

The ON ERROR clause is optional in the WRITESEQF statement. Its syntax is the same as that of the

ELSE clause. The ON ERROR clause lets you specify an alternative for program termination when a

fatal error is encountered while the WRITESEQF statement is being processed.

 405

WRITET

The WRITET statement enables data to be written to a range of tape devices between 0-9.

COMMAND SYNTAX

WRITET variable {ON|TO expression} THEN|ELSE statements

SYNTAX ELEMENTS

variable is the variable that holds the data for writing to the tape device.

expression should evaluate to an integer value in the range 0-9 and specifies from which tape channel

to read the data. If the ON clause is not specified the WRITET will assume channel 0.

If the WRITET fails then the statements associated with any ELSE clause will be executed.

SYSTEM(0) will return the reason for the failure as follows:

1 there is no media attached to the channel

2 end of media found

NOTES

A "tape" does not refer to magnetic tape devices only but any device that has been described to jBASE.

Writing device descriptors for jBASE is beyond the scope of this documentation.

If no tape device has been assigned to the specified channel the jBASE debugger is entered with an

appropriate message.

Where possible the record size is not limited to a single tape block and the entire record will be written

blocked to whatever block size has been allocated by the T-ATT command. However, certain devices

do not allow jBASE to accomplish this (SCSI tape devices for instance).

EXAMPLE

LOOP

 WRITET TapeRec ON 5 ELSE

 Reason = SYSTEM(0)

 IF Reason = 2 THEN BREAK ;* done

 CRT "ERROR"; STOP

END

REPEAT

 406

WRITEU

The WRITEU statement allows a program to write a record into a previously opened file. An existing

record lock will be preserved.

COMMAND SYNTAX

WRITEU variable1 ON|TO { variable2,} expression {SETTING setvar} {ON ERROR statements}

SYNTAX ELEMENTS

variable1 is the identifier holding the record to be written.

variable2, if specified, should be a jBASE BASIC variable that has previously been opened to a file

using the OPEN statement. If variable2 is not specified then the default file is assumed.

The expression should evaluate to a valid record key for the file.

If the SETTING clause is specified and the write fails, setvar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

If the statement fails to write the record then any statements associated with the ON ERROR clause is

executed.

The lock maintained by the WRITEU statement will be released by any of the following events:

the same program with WRITE, WRITEV or MATWRITE statements writes to the record.

the record lock is released explicitly using the RELEASE statement.

the program stops normally or abnormally.

See also: READU, MATREADU, RELEASE

EXAMPLES

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

 ABORT 201, "DICT Customers"

 407

END

WRITEU Rec FROM DCusts, "Xref" Setting Err ON ERROR

 CRT "I/O Error[":Err:"]"

 ABORT

END

 408

WRITEV

The WRITEV statement allows a program to write a specific field of a record in a previously opened

file.

COMMAND SYNTAX

WRITEV variable1 ON|TO {variable2,} expression1, expression2 {SETTING setvar} {ON ERROR

statements}

SYNTAX ELEMENTS

variable1 is the identifier holding the record to be written.

variable2, if specified, should be a jBASE BASIC variable that has previously been opened to a file

using the OPEN statement. If variable2 is not specified then it assumes the default file.

expression1 should evaluate to a valid record key for the file.

expression2 should evaluate to a positive integer number. If the number is greater than the number of

fields in the record, it will add null fields to variable1. If expression2 evaluates to a non-numeric

argument, it will generate a run time error.

If the SETTING clause is specified and the write fails, it sets setvar to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

The WRITEV statement will cause the release of any lock held on the record by this program. If you

wish to retain a lock on the record, do so explicitly with the WRITEVU statement.

EXAMPLE

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

 ABORT 201, "DICT Customers"

END

WRITEV Rec ON DCusts, "Xref",7 Setting Err ON ERROR

 CRT "I/O Error[":Err:"]"

 409

 ABORT

END

 410

WRITEXML

WRITEXML rec ON file,id ELSE STOP 210,id

Write a dynamic array in xml format using a style sheet from the DICT

Use WRITEXML to write an XML record to a hash file

Transforms the XML into a dynamic array before being written to the file

The transform takes place using the style sheet in DICT->@WRITEXML

EXAMPLE

WRITEXML rec ON file,id ON ERROR CRT "Broken! " : r ec

 411

WRITEVU

The WRITEVU statement allows a program to write a specific field on a record in a previously opened

file. An existing record lock will be preserved.

COMMAND SYNTAX

WRITEVU variable1 ON|TO { variable2,} expression1, expression2 {SETTING setvar} {ON ERROR

statements}

SYNTAX ELEMENTS

variable1 is the identifier holding the record to be written.

variable2, if specified, should be a jBASE BASIC variable that has previously been opened to a file

using the OPEN statement. If variable2 is not specified then the default file is assumed.

expression1 should evaluate to a valid record key for the file.

expression2 should evaluate to a positive integer number; if the number is greater than the number of

fields in the record, null fields will be added to variable1. If expression2 evaluates to a non-numeric

argument, a run time error will be generated.

If the SETTING clause is specified and the write fails, it sets setvar to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

If the statement fails to write the record, it executes any statements associated with the ON ERROR

clause.

Any of the following events will release the lock taken by the WRITEVU statement:

The same program with WRITE, WRITEV or MATWRITE statements writes to the record.

By explicitly using the RELEASE statement, it releases the record lock.

The program stops normally or abnormally.

See also: MATWRITEU, RELEASE, WRITE, WRITEU.

EXAMPLE

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

 412

 ABORT 201, "DICT Customers"

END

WRITEVU Rec ON DCusts, "Xref",1 SETTING Err ON ERRO R

 CRT "I/O Error[":Err:"]

ABORT

END

 413

XLATE

The XLATE function will return the data value of a field, given the name of the file, the record key, the

field number, and an action code.

COMMAND SYNTAX

XLATE ([DICT] filename, key, field#, action.code)

SYNTAX ELEMENTS

DICT is the literal string to be placed before the file name in the event it is desired to open the

dictionary portion of the file, rather than the data portion.

filename is a string containing the name of the file to be accessed. Note that it is the actual name of the

file, and not a file unit variable. This function requires the file name, regardless of whether or not the

file has been opened to a file unit variable.

key is an expression that evaluates to the record key, or item ID, of the record from which data is to be

accessed.

field# is the field number to be retrieved from the record.

action.code indicates the procedure if the field is null, or cannot find the if record. This is a literal.

The valid codes are:

X Returns a null string. This is the default action

V Prints an error message.

C Returns the value of key

NOTES

If the field being accessed is a dynamic array, XLATE will return the array with the delimiter

characters lowered by 1. For example, multivalue marks (ASCII-253) are returned as subvalue marks

(ASCII-252), and subvalue marks are returned as text marks (ASCII-251).

If you supply -1 for field#, it returns the entire record.

The XLATE function is the same as the TRANS function.

EXAMPLE

1. Retrieval of a simple field: Given a file called "VENDORS" containing a record with the record key

of "12345" and which contains the value of "ABC Company" in field 1,

VENDOR.ID = "12345"

VENDOR.NAME = XLATE("VENDORS",VENDOR.ID,1,"X")

CRT VENDOR.NAME

will display: ABC Company

2. Retrieval of an array: Suppose field 6 of the VENDORS file contains a multivalued list of purchase

order numbers, such as

 414

10011]10062]10079

use the XLATE function to retrieve it:

PO.LIST = XLATE("VENDORS",VENDOR.ID,6,"X")

CRT PO.LIST

will display: 10011\10062\10079

Notice that the backslashes (\) were substituted for brackets (]), indicating that the delimiter is now

CHAR(252).

3. Retrieval of an entire dictionary item: Given a dictionary item called "VENDOR.NAME" with the

following content

001 A

002 1

003 Vendor Name

004

005

006

007

008

009 L

010 30

these statements

DICT.ID = "VENDOR.NAME"

DICT.REC = XLATE("DICT VENDORS",VENDOR.ID,-1,"C")

PRINT DICT.REC

will display

A]1]Vendor Name]]]]]L]30

 415

XMLTODYN

COMMAND SYNTAX

XMLTODYN(XML,XSL,result)

SYNTAX ELEMENTS

Converts the XML to a dynamic array using the optional XSL to transform

Array = XMLTODYN(XML,XSL,result)

If result = 0 Array will contain a dynamic array built from the xml / xsl

If result <> 0, Array will contain an error message

There is no requirement for xsl if you are reconverting from generic xml to dynarray

a = "Tom" : @AM : "Dick" : @AM : "Harry"

 xml = DYNTOXML(a,"",result)

 b = XMLTODYN(xml,"",result

 CRT CHANGE(b ,@AM," ")

SCREEN OUTPUT

Tom Dick Harry

If passing a stylesheet in the second parameter, it performs a transform to give a different format of the

array.

XML CONTENTS

<?xml version="1.0" encoding="UTF-8"?>

<mycustomer>

 <firstname>Tom</firstname>

 <lastname>Dick</lastname>

 <address>Harry</address>

</mycustomer>

EXAMPLE

a = XMLTODYN(xml,xsl,rc)

 CRT CHANGE(a,@AM," ")

XSL CONTENTS

<xsl:template match="mycustomer">

<array>

<xsl:apply-templates/>

 416

</array>

</xsl:template>

<xsl:template match="firstname">

<data>

<xsl:attribute name="attribute">1</xsl:attribute>

<xsl:attribute name="value">

 <xsl:number level="single"/>

</xsl:attribute>

<xsl:attribute name="subvalue">1</xsl:attribute>

<xsl:value-of select="."/>

</data>

</xsl:template>

Etc

 417

XMLTOXML

COMMAND SYNTAX

XMLTOXML(xml,xsl,result

SYNTAX ELEMENTS

Transform the XML using the XSL

If result=0, newxml will contain a transformed version of xml using xsl

If result=1, newxml will hold an error message

XSL CONTENTS

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="person">

<p><xsl:value-of select="name" /></p>

</xsl:template>

</xsl:stylesheet>

XML CONTENTS

<list>

<person>

 <name>Bob</name>

</person>

<person>

 <name>Amy</name>

</person>

<list>

EXAMPLE

newxml = XMLTOXML(xml,xsl,rc)

 CRT newxml

SCREEN OUTPUT

<p>Bob</p><p>Amy</p>

 418

XTD

The XTD() function converts hexadecimal numbers into its decimal equivalent.

COMMAND SYNTAX

XTD(expression)

SYNTAX ELEMENTS

expression should evaluate to a valid hexadecimal string.

NOTES

The conversion process will halt at the first character that is not a valid base 16 character in the set [0-

9, A-F or a-f].

See also: DTX.

EXAMPLES

A = "FF"

CRT XTD(A)

 419

Embedded SQL for jBASE BASIC
The name "SQL" is an abbreviation for "Structured Query Language". The SQL language enables the

defining, manipulating and controlling of data in a relational database. A relational database is a

database that appears to the user as a collection of tables. A table is defined to be an unordered

collection of rows. Finally the SQL terminology tends to refer to records as rows and fields within a

record as a columns within a row.

Embedded SQL is a version of SQL designed for direct incorporation into hosts programs or

specifically in the case of jBASE, into jBASE BASIC programs.

An Embedded SQL jBASE BASIC program contains normal jBASE BASIC code statements plus an

Embedded SQL declare section, zero or more embedded cursor definitions, zero or more embedded

exception declarations and one or more Embedded SQL statements.

Embedded SQL declarations, definitions and statements are prefixed by the reserved words EXEC

SQL. This part of the Embedded SQL standard also enables the jBASE BASIC preprocessor to

recognize and distinguish SQL statements from the normal jBASE BASIC code statements. The

Embedded SQL statements are terminated by a semicolon.

Embedded SQL statements can include references to jBASE BASIC variables. The jBASE BASIC

variables must be prefixed with a colon to distinguish them from SQL column names. The jBASE

BASIC variables cannot be qualified or subscripted and must refer to scalars, i.e. character strings or

numbers, not arrays or expressions.

All jBASE BASIC variables that will be referenced in Embedded SQL statements must be defined

within an Embedded SQL declare section, the jBASE BASIC variable definitions are limited to simple

forms. i.e. no expressions or arrays.

An Embedded SQL cursor must not appear in an Embedded SQL statement before it has been defined

by an Embedded SQL cursor definition.

Any jBASE BASIC variables that will be referenced in Embedded SQL statements must have a data

type that is compatible with the SQL data type of the column with which they are to be compared or

assigned. However this requirement does not prevent jBASE BASIC variables from using the same

name as Embedded SQL column references.

Embedded SQL statement exceptions can be handled either by utilizing the SYSTEM(0) function or

predetermined by the SQL WHENEVER statement.

The following jBASE BASIC code provides an example of using Embedded SQL for Oracle.

PartEntry.b listing (Oracle)

*

* Declare jBASE BASIC vars to use in Embedded SQL s tatements (A)

*

EXEC SQL BEGIN DECLARE SECTION;

INT PartNo;

STRING(20) PartName;

STRING(16) User;

 420

STRING(16) Passwd;

EXEC SQL END DECLARE SECTION;

*

* Predetermine action on SQLERROR (B)

*

EXEC SQL WHENEVER SQLERROR DO SQL_ERROR() ;

*

* Connect to database supplying user and password (C)

*

User = "demo" ; Passwd = "demo99"

EXEC SQL CONNECT :User IDENTIFIED BY :Passwd;

*

* Create Parts table (D)

*

EXEC SQL CREATE TABLE Parts

(

PartNo INTEGER NOT NULL PRIMARY KEY,

PartName CHAR(20)

);

*

* Loop until no more PartNos

*

LOOP

*

* Prompt for PartNo

*

 CRT "Part Number :":

 INPUT PartNo

WHILE PartNo NE '' DO

*

* Prompt for PartName

*

 CRT "Part Name :":

 INPUT PartName

*

* Add PartNo and PartName into Parts table (E)

*

 EXEC SQL INSERT INTO Parts VALUES (:PartNo, :Pa rtName);

REPEAT

*

* Commit updates to database (F)

*

 421

EXEC SQL COMMIT ;

(A) Declare jBASE BASIC variables to use within Embedded SQL statements

This section declares jBASE BASIC variables so that they can be used within Embedded SQL

statements. All references to jBASE BASIC within the Embedded SQL statement must be prefixed by

a colon. This feature of the Embedded SQL standard is used by the jBASE BASIC preprocessor to

identify jBASE BASIC variables when parsing the Embedded SQL statement. The jBASE BASIC

variables must be the same data type as the source or target Embedded SQL columns.

(B) Predetermine action on SQLERROR

This section configures the action to take on detecting an error with the previous executed Embedded

SQL statement. Every SQL statement should in principle be followed by a test of the returned

SQLCODE value. This can be achieved by utilizing the SYSTEM(0) function, which returns the result

of the last SQL statement, or alternatively using the Embedded SQL WHENEVER statement to

predetermine the action for all subsequent Embedded SQL statements. The SYSTEM(0) function will

return three different possible values.

< 0 Embedded SQL statement failed.

0 Embedded SQL statement successful.

100 NOT FOUND. No rows where found.

The format of the Embedded SQL WHENEVER statement is as follows:

EXEC SQL WHENEVER Condition Action ;

where

Condition
NOT FOUND

SQLERROR

Action

DO Function - Oracle implementation.

CALL Function - Ingres and Informix implementations.

GOTO proglab_Label – IBM DB2 and Microsoft SQL Server implementations.

CONTINUE

Function

User defined function.

SQLERROR() - Display Embedded SQL error then return to program.

SQLABORT() - Display Embedded SQL error then exit program.

Label

Label in executing program:

DOSQLERR:

 DEFC INT SQL_ERROR

 CALL SQL_ERROR

 STOP

(C) Connect to database supplying user and password

This section connects the specified user and or passwd combination to the SQL database. This

 422

command can be Embedded SQL implementation dependent. The user must be correctly configured for

the target database.

(D) Create Parts table.

This section creates an SQL table called Parts. The table has two constituent data types, these are

defined as an integer value PartNo and a character string PartName. The PartNo is defined as a non null

unique value and is defined as the primary key. This definition provides a close match to the usual

format of a record and id. The only data type that is truly common to all hosts and their languages is

fixed length character strings, the integer value used here is for demonstration purposes and is not

recommended.

(E) Add PartNo and PartName into table Parts.

This Embedded SQL statement inserts the values entered for PartNo and PartName into the SQL table

Parts. PartNo is inserted as the first column whereas PartName is inserted as the second column of each

row. Effectively PartNo is the record id and PartName is the first field in the record PartNo. The

jBASE BASIC pre-processor parses the Embedded SQL statements and provides code to convert any

specified jBASE BASIC variables to the format required by the Embedded SQL implementation. Any

returned parameters are then converted back into jBASE BASIC variables.

(F) Commit updates to database.

This Embedded SQL statement makes all updates by Embedded SQL statements since the last SQL

commit statement visible to other users or programs on the database. If a program executes an

Embedded SQL statement and no transaction is currently active then one is automatically started. Each

subsequent SQL statement update by the same program without an intervening commit or rollback, is

considered part of the same transaction. A transaction terminates by either an Embedded SQL

COMMIT, normal termination, or an Embedded SQL ROLLBACK statement, abnormal termination.

An abnormal termination does not change the database with respect to any of the Embedded SQL

updates executed since the last commit or rollback. Database updates made by a given transaction do

not become visible to any other distinct transaction until and unless the given transaction completes

with a normal termination. i.e. an Embedded SQL COMMIT statement.

 EMBEDDED SQL COMPILER OPTION

In order to compile jBASE BASIC programs containing Embedded SQL statements the jBASE

compiler option "Jq" must be invoked with the jBASE BASIC compiler command. The "Jq" option

also expects an SQL implementation specifier, as described below.

-Jq<type> RDBMS

d IBM DB2

m Microsoft SQL Server (Windows only)

o Oracle

 423

i Ingres

s Sybase

x Informix

e.g. To compile the jBASE BASIC example program PartEntry.b for an Oracle SQL implementation

database.

jcompile -Jqo PartEntry.b

In this example the SQL specifier is "o" for Oracle. Other specifiers are added as and when Embedded

SQL implementations are required. e.g. The "i" option informs the jBASE compiler to invoke

mechanisms for the Ingres Embedded SQL implementation. Although the Embedded SQL standard is

the same, each SQL provider requires different manipulative techniques in order to compile and

connect to the database.

The jcompile compiler pre-processes the jBASE BASIC program parsing the normal jBASE BASIC

and Embedded SQL statements to produce an intermediate C program. The SQL implementation

dependent pre-processor is then invoked to convert the Embedded SQL statements to the

implementation defined internal functions. The resulting program is then is then compiled and linked.

The jBASE BASIC compilation should be executed in a user account which has been enabled for the

required Embedded SQL implementation. Attempting to compile in an account not enabled for the

required SQL implementation may cause compilation failure as certain environment variables for the

implementation may not have been modified for the correct directory paths, etc.

 TROUBLESHOOTING

When attempting to compile a program with Embedded SQL and you get an error along the lines of...

Command failed: nsqlprep PartEntry.sqc

SQL Pre Processor error -1

...this is an indication that either you have not loaded the Embedded SQL Kit and do not have the

'nsqlprep' command, or the 'nsqlprep' command does exist but it is not visible to the PATH

environment variable.

 424

Comment Sheet

Please give page number and description for any errors found:

Page Error

Please use the box below to describe any material you think is missing; describe any material, which is

not easily understood; enter any suggestions for improvement; provide any specific examples of how

you use your system, which you think, would be useful to readers of this manual. Continue on a

separate sheet if necessary.

Copy and paste this page to a word document and include your name address and telephone number

and send to: documentation@temenos.com

