iBASE BASIC

Programmers Reference Guide

Functions and Statements Guide for 4.1

Copyright

Copyright (c) 2007 TEMENOS HOLDINGS NV

All rights reserved.

This document contains proprietary information fkairotected by copyright. No part of this
document may be reproduced, transmitted, or madiahle directly or indirectly to a third party
without the express written agreement of TEMENOS Ukited. Receipt of this material directly
from TEMENOS UK Limited constitutes its express perinisgo copy. Permission to use or copy
this document expressly excludes modifying it fioy @urpose, or using it to create a derivative
therefrom.

Acknowledgements
Information regarding Unicode has been providegart courtesy of the Unicode Consortium. The
Unicode Consortium is a non-profit organizationrfded to develop, extend and promote use of the
Unicode Standard, which specifies the represemtatidgext in modern software products and
standards. The membership of the consortium reptesebroad spectrum of corporations and
organizations in the computer and information pssa®y industry. The consortium is supported
financially solely through membership dues. Membigrén the Unicode Consortium is open to
organizations and individuals anywhere in the wartth support the Unicode Standard and wish to
assist in its extension and implementation.
Portions of the information included herein regagdiBM’s ICU has been reprinted by permission
from International Business Machines Corporatiopycight 2001
JBASE, |BASE BASIC JED, JSHELL, jLP, JEDI, |CL, jQL, j3 j4 and jPLUS files are trademarks of
TEMENOS Holdings NV.

REALITY is a trademark of Northgate Solutions Limited.
PICK is a trademark of Raining Data Inc.

All other trademarks are acknowledged.

Java and all Java-based trademarks and logosadearks or registered trademarks of Sun
Microsystems, Inc. in the United States and otlentries.

Windows, Windows NT, and Excel are either registarademarks or trademarks of Microsoft
Corporation in the United States and/or other auesit

UNIX is a registered trademark in the United Statied other countries licensed exclusively through
X/Open Company Limited.

Other company, product, and service names usétsipablication may be trademarks or service
marks of others.

Errata and Comments
If you have any comments regarding this manualishwo report any errors in the documentation,

please document them and send them to the addriess: b

Technical Publications Department
TEMENOS UK Limited

2 Peoplebuilding

Maylands Avenue

Hemel Hempstead

Hertfordshire

HP2 ANW

England

Tel SB: +44 (0) 1442 431000

Fax: +44 (0) 1442 431001

Please include your name, company, address, apghtaie and fax numbers, and email address if

applicabledocumentation@temenos.com

Contents

Documentation CONVENTIONS.........cciuuees e s e e e e s eeseetesebeteeeaeeeeeeeeeeeaeessssasnssnsssesssnseeeeeeeeaeaeeaeees 1
Organization Of thiS MANUAIcceiiiiiii e e e e e eee s 3
JBASE BASIC LaNQUAJE OVEIVIEWuuutiiiiiiaaaaaaeeaaaaaaaaasaaaaaeaiasabbebbeseeeeeeaaaaasaasaaaaaaannnnsnnrenes 3
Features Of JBASE BASIC ...ttt e e e ettt e e e s e b e e e e e e e ennrees 4
Benefits of USING JBASE BASICiceeee e e e e e e e e e e e s s bbb er e e e eeeeeees 4
J1S NS S 27 NS (@ = o1V o] o 41T o | 5
JBASE BASIC ProgramMiNgcccoooiieiiiiecemmemeientieeeeeeereeeeesesaeeeeaeessassssssnnnsnssseeeeseesaaeeeseessssnnns 5
JIBASE BASIC COMPAIISONS ...ueviiiiiiiiieeieeee s iianiasteeseeeereeeaaaaaaeaaeassessasssssssreseeeateeasaeaaaaeseenanns 7
WIEN BASIC ..ottt st e+ e ettt e e e e e ettt e e e e e s eat b e e e e e e santeeeeesestaaeeeaeesnstaaeaeeesansraneeeeeeaans 7
L1 ST PRRR 7
File and Directory OrganiZatiOn e oooooiiuueeiiiieiieeeeeeee e taaaaeaaaaaaasrnsreereeseeeeeeeeeaaaaaaaaas 7
(oSO RPR P OPPURS 9
@ (SCREENCODE)cciiiiiiiiiiiiite ettt eseeee e ettt e e e e s sttt e e e s s s bt e e e e eeanaeeaessanbbaeeeaesannsnreeeaess 10
@APPLICATIONLID ...ttt ettt rre ettt ettt e e s sttt e e e s nae e e e s s nbbee e e e e s annareeaaens 12
@ CALLSTACK L.ttt ettt ettt ettt e e e ettt e e e e e st b e et e e e e s anbbe e e e e s anneeeeesaanbbeeeeeeeanbbeeeeaenans 12
@ CODEPAGEoiiii ettt s eeeee et e e e e et e e e e e e e e e e s e e e e e ———taeea i ———eaesaaaaaaaen 12
@ D AT A ettt ————— ettt e e e e e ————taeeaa—————taaaa———taeeaattartaeeaaatraraaeeaannrraes 12
(@ N I TP ERR 12
@I DAY .ttt ———— ettt e e a4 e bttt e e e e e et ta—eeeeeaaa—aeeeeeanEbreeaeeeaatbareeeeeeannrreeaaeenanes 12
(@] = PR PPRPR 12
@FILENAME ...t s ettt e e 4 ettt e e e e 4 e a bttt e e e e s st be e e e e ssbaeeeeesansbbneeaesannbnneeas 12
@FOOTER.BREAK ..ottt ettt sttt e ettt e e e e s sab bttt e e e e s s beeeeessnbbseeeeesanbbeeeeeesanne 12
@HEADER.BREAK ...ttt eeme e et e e e e sttt e e e e e et e e e e eet e e e e e e st e e e e e e nraees 12
@ILEVEL ... ettt e e e e e e ettt e e aaa———— e e e e e atbaaraeeeaaaraaaaeeeanrres 12
(@ 0 1 Y I PRSP 12
(@ I I = 4 |] PRSP SRR 12
(@201 N I I PP 12
@PARASENTENCE......cetiiiiiiiiiiie ettt sttt e e e e ettt e e e e s asb e eeeessasbeeaaesasbbseeeeesaantaeeeeeesanses 12
(@0 = AN I o PP PRR 12
(@0 = 1 5 L PP POTTPPRPTN 12

(@ R { =L@ ®] =4 L PPROP 12
@ SELECTED ... cuiiiiii ittt ettt e e e et e e e e s st e e e e et et a e e e e eaaareaeeeaantbaeeaeeeannraaaaaaeaans 13
@TERMTYPE ... ttiiiie ettt sttt s+ 44ttt a e e e e es bt e e e e e s as e baeeeeeaasseeeeeessntbaeeeeesanstbaeaeaesans 13

@TIMEZONEcoiiiiiee ittt et e e s st e e sttt e e esta e e s st e e e sae e e e ssteeeanseeesnseeeesstaeaesnsaeesanseeeennes 13
S I SRR STRR 13
010 OSSPSR 31
@USER.ROOT ... ciiieiiiie s iiiee e etee e sttt e st e e s tae e e ssaeeaanteeeeasteeeesnseeesasteeaanseeeanseeeeanseneeaneeesanseneans 13
@ USE R ST AT S .. ittt e e e et e e et et a e e e e e s s ata e et e e e sas b b eeeeaaabae et aeeaaaaraaeaesannaaaaeas 17
Y =] = P SPRR 23
A B S e e e e e e e o et e et —— e e a——eaaat—e e e e —ee e e e taeeaatbeeeaaaaaeeaaaraen 24
AB S e em———— e e e ettt e et —e e e e —eaaatae e e e t—e e e ataeeeataeeearaeeearraen 25
I 3 RSP 62
I SRS 27
N5 OSSPSR 82
N 1 | PR 29
ASSIGINEDcci ittt e e e e e e e e e e e e e —a e e e e e ——raaeeaaararraeeaaanres 30
2 0 12 N PR 31
BITCHANGEoeiiiiitiiee et e+ttt e bt e e et e e e e eab e e e eata e e easeeeaateeeeeabeeesatbaeessneaesaneeens 32
2] 1 O o = SR OPPS 33
2] 8 I A I PSPPSR 34
2 01 PSPPSR 35
2] 01 = TR 36
2 I] i PSR 37
2 N IS PP PRRR 38
2] I I PSPPSRI 39
2] 10O = RSP PRP 40
2] PSPPSR 41
S I I PSSR 42
L I PSR 34
O A I OSSO 44
(@ I o [0 1)1 = PRSPPI 46
O N PRSP 50
CALLONEXIT ..ttt ettt e et seee e e st e e et e e et e e e et e e e sabe e e e saneeasseeeesaabeeesntaeeessaeeesseeeas 60
CASE ...ttt e———— e e e e e et — e e e — e aa b e e ——e e e ——e e e e —ae e e abeeeaaabeeeatreeeaaaees 61
CATALOG COMMANG.......cittiiiieeeiiiiieeeee s s st eeeaesssstaeeeeeesaasbaeeeaaessstaeeassssssseeeessanssseeesessanses 62
O 1 OSSPSR 46
CHAIN . ettt sttt ettt e ettt e e e srt e e e s s e e e ensee e e e seeennseeeeanteeesnsteeeanseeeesnneeeanneneenn 56
CHANGE ...ttt tee et e et e e st e e s r et e e s et e e ss st e sanne e e anseeeeanteeeeanteeessnseneannnenennns 66
CHANGETIMESTAMP ...ttt ettt a4 ettt e a2 e et et e e e s s bbb e e e e e e s nneeeesannsbaeeaeeaaannraes 67
(O 2 PO PRPR 86

CHDIR ...ttt et eemm et e s et e e ettt e e e sat e e e st be e e e tte e e e seeaaseeesasteaesnsbeeeantaeeesnneeeennreeeennd Q7
CHECKSUM ...ttt ettt e ettt e e st e e st e e et e e e e aste e e st beesnnneeeasteeeeanteeesanseeeansteneennnes 71
O I Y SR SURSTR 72
CLEARGCOMMONccitiiieiiiie ettt stee e s e e e sttt e e sttt e e s steeeanseeeeansseannneeeanseeesasseneeseeeesnnees 73
(O I N) AN 1 PP RRPR 74
CLEARFILE ..ottt ettt e e e ettt e e e e s ettt e e e e e e st e e e e asssbaeeeaessasseaaeeaesannsaeaneaens 75
L@ Iy Y 4| = PRSP 76
O Iy Y 8 I 3 LTRSS 77
O I SRS 78
O @ 2]] = USSR 79
(@70 0 = T3 To [] TR 80
(@0 I I T 5 AN 17 OSSR 81
(10 1Y 1Y []\ PSPPSR 82
COMPARE ... ottt e e e ettt e e e e s ettt e e e e e s e s e e e e e s et b aeeeaeeaaatbreeaaeeaanrraaeaaeaans 83
CONTINUE ...ttt ettt e e et e e et e e e e bt e e st e e e ssbeeaabeeesntbeeeaaseeesasbeeesnteeaesnreas 84
CONVERT ittt ettt e ettt e st e e et e e e e st et e e s ta e e e asteeeeasseeeasneeanbeeeesnteeesanteeeesnneeesansaeeans 85
CONVERT (STATEMENT) ...itiii ittt sttt e e sttt seneeeee e e stae e e staaassntaeeesntaeaesnsseesnenesssseessnsaeeesnnns 86
GO ittt ettt ———— ettt a2ttt e e ettt e aRtr e e e anteeaateeeaRaeeeatteeeataeaeataeeearaeeen 87
@0 115 | PR 88
(@10 11\ S PSP EP 89
(O = N PSSP 90
O] = SO OUPRPPPS al
DA T A ettt em———— et e e e e e e e et et e e ab e e e e ahtee e et teeaateeeaateeeeatbeeeatreeeaatreeearaeaen 29
DA PRSP a3
D 1 | ST 94
DEBUG. ...t ttiie ittt e st et ee e e ee e st e e st e e e entee e e e st e e e ante e e s anteeennnaeeaREee e e R te e e e anaee e e s reeeaneeeennnees 95
DECATALOG and DELETE-CATALOG COMMANGSuueiimmmmeeieeiiiiiiieeeessniiiieeeeesanneneeaeens 96

D O 2 = RSP EST 97
D PP PRRR 99
D] O SRR TPPP 101
DEFFUN ..ottt ettt et eeem e e e e e st e e e e bt e e e s tt e e e e eabe e e e sseeaeaneeeanbeeeesabeeeeantaeeesnteeeeanreeaans 102
DL ittt ettt ettt e e e e et — e et et e e e t—e e et te e e e et e e ter e e e teaeaanteeeantreeeeantaeennrreeeend 410
D I I SRR 105
D I I 1 SR 106
DELETESEQ .. it ittiieiiiiee ittt e ettt e e sttt s memee ssteeeasteeeassteeesasteeeanseeeesasseeeanneesanseeesasseneeansenesansenenns 107
DELETEU ...ttt e eet et e e e e sttt e e e e e sttt e e e e e s ssbaeeeesaasaeeeeesssbaeaeaeesansbraeaeeanas 108
DIMENSION ... cottiiieei ittt e e e e ettt e e e e e s ettt e e e e e e e et ba e e e e e eaaneneeeessntbaeeaeesastbaeaeeeannnseees 109

Vi

DYNTOXML ..ttt mmmm ettt e et e e e e e e e e e e s s e s s e e et ettt e e teeaeeeaeeeenesaaaaaas 116

EBCDIC ..ottt e e 118
ECH O e ———— et e e et e e a e e e e e e e an s 119
ENCRY P i a e e 120
ENTER oot e e e et ea e e e e e 122
B S et e e e s e e e n 231

B QU AT E ettt e e 124
EREPLACE ...t ettt e et e et e et e e e e e e e e e e nn e 125
EXECUTE .ottt me ettt et et e e e e e e e e se e r b e e e e e ettt e e taeaeeeeaaenna s 126
I TP PPPPPPTPPTP 812
E X P ettt e e e e e e e e 29
EXTRACT e 130
FADD .o e e a e e 131
FDIV e e 32
FIELD ..ot ettt ettt ettt e e e e e e e et e et e e e e e e e e e e e n s 133
FIELDS ..ttt ettt e e e e e e e et r e et e et e e e e e e e e a e e 134
FILEINFO ... ettt e e e e e s e e et e et raeaaeee e s 136
FILELOCK ...ttt ettt et a e e e e e s s e s s ere e e e e e eeee s 137
FILEUNLOGK ...ttt e e e e e raa e e e e e e e e 139
FIND Lo et 401
FINDSTR ..ottt s e e e e et e e e e e e s e e e e e s e e e e e e e e e nnnes 141
FORMLIST ..ottt ettt e e e s e e e e e e e n e e e e e r e e e e e e s ann e e e e e e s nnnnneeee e e e 142
LU S H . ettt e et e e e et r e et e et e e e e e e e e a e e 143
A I PP PP PPP PP 441
VT S et e e 147
O] I TP PPPPPPPTPPTP 814
FOOTING ... et e e e e e e e s s e e e e e e e e et e e n e e e e e e e e e eeeeas 150
O R e e a e 51
0 = PP PP PR 315
FUNGCTION ..ot mr ettt e e e e e e e e e s ennnres 154
LT OO P PP PP PP PPPPPPPPRPPPPPPPP 551
€T TP PP PP PRPPPPRPPPPTT PRI 615

vii

GETENV .ttt ettt e ookt e e ek bt e e s a b et e e ek e e e e E e e e e R r e e e abe e e e e br e e e nrr e e e e 158
(C o S TP PU PP PPPPRTPRIN 159
GETUSERGROUP ..ottt emmmrmne ettt nmn e s s e e s s e e e s e e s nnnneeas 160
C] 5 PSP PU PR PPRRP PRI 161
GOSUB ... ettt e e bt e e e e b et e e s e e b et e e e e e b s 162
(€10 O L PP PP P PPPPPPP PP 163
GROUP ..ttt ekt ekttt e 4ok bt e oot bt e e 4k b e e e et e e e abe e e e ehbb e e e ahbe e e e anbeeeeanbeeenan 164
HEADING ...ttt ettt e+ttt e e e skt £ 4o a bt e 44 a ke e a2k b et 2 e ne e e ea b e e e e embe e e e abbe e e e anbe e e e anneeas 165
HEADINGE and HEADINGNccoiiiiiiiiiiie ittt ettt et e bt e e sseeeseneeesnnneessnneeenns 166
HUSH L.ttt ek e e e ek e e e e r e e e s abr e e e s b b e e e anbr e e e sbr e e s nnnreeean 167
101 PP PU PP PRPRN 168
ICONNVS ettt et ekt e s s e e s R E et e e s e e et e e R e e e s n R et e n e e s e e e e 169
| 2= 1= 0 01T) TSP P PP RTPPPTPP 170
| TP PP PPPPPPPPRN 172

| T PO PUP PP OPPRTTPPP 173
INDEX ...ttt ettt ettt ekttt cmmne £+t 24kt £ 42kt e 44 oAb e £ o4k b e e a4k ka2 e E e e e e bt e e e eabbe e e anbe e e e ebreeeanrneaen 174
L1 T PP PP PP PRPP 175
INPUT etttk me e e ettt e s h et e ek bt e e e e a b e e e o b b et e e s b e e e st e e aabe e e e anbbe e e anbe e e e anbreeeannneeenn 176
INPUTCLEAR ..ottt sttt e et e e s s e e e e e s s e e s n e e e e anne e e s nnneeenas 178
INPUTNULL Lttt ettt e e e st et e e e e ne e e e s s e bbb et e e e e e st be e e e e e e annbeeas 179
1 PP P PP TPRPPPPPRN 180
1S] =1 = T U TP UP PP UUPRTOUPPPUPPIN 181
1 OO PU PR PUPR 182

[] O 1 TR P PP PRPPT 183
ISALPHA et et h e s R R e e R E e e e R et e e b e e e e e anr e e e nrre e e e 191
ISALNUM L.ttt et e et e e ne et e e s et e e n e e e s st e e s e e e e nn e e e e e s s 192
1S4 I I PSP PUPRPRRIN 193
(S]] (€ i TP PP PPPPP PP 194
ISLOWER......eeeeee ettt ettt ettt e e e o ekttt e e s o ame et ee s o nb b bttt e e s asbbe e e e e e s annnneeeens 195
(ST = 2 L\ OO PRSP UP PR UPPPPTO 196
ISSPACE ...ttt i 4tk e ekttt e e e bt e ook b et e ek Ee e et e e ek ee e e e ehbe e e ebbe e e abreaeanreaeas 197
ISUPPER ...ttt ettt e etttk et e ekt e e s s h e e e ekt e e e ne e e s Rt e e e e aabe e e e anbn e e e anre e e e anrreeaa 198
L I TP PP PP PP PR OPRPPPPPRPI 199
JBASECOREDUMPooiiiiiiiiiei ettt emmmm ettt smee e s ne e an e nn e e e nnneas 201
JBASETHREADCIEALEciiteieiiiieiee it eeeme et e st e smeeesnre e e s nn e e nn e e nnneas 204
JBASETHREADSEAIUScciiittiiiite ettt e ee ettt e ettt e e e sttt e e s s raneeee s s asbbae e e e e s snnrnneeeenan 205
JQLCOMPILE ...ttt e e ettt e e e e e e e s e e a bbb e e e e s e e b r e e e e e e nnnes 206

viii

JOQLEXECUTE ..ottt emmmmm ettt e e e e e e e e s e et e e et e e e e e e e e e e e s 207

JOLFETCH et et e e e s r e e ra e s e e e e e 208
JOLGETPROPERTY .ottt e e e s e nae 209
JOQLPUTPROPERTY ...ttt emmmmms sttt et e e s e e s s e e e e s nnnnneeeens 210
KEYIN Lt e 211
N 1 TP TP PRTPPPPPN 212
I OO PRPPPTTPTPP 213
LN et r e et e it e e e e e e e e 214
LEN S e et e e e e e e e 215
LENDP e 216
LS e 721
B PP 218
LOCALDATE ... ettt rmmmmr et e st e e s e e e e e mn e e e e s e e e e e e 219
LOCALTIME ...ttt et e ettt et e e e e e e ee e e s e b e e e e e e et e eaaeeeeeens 220
LO C AT ettt ettt e e e e e e e et ittt e et e e e e e e e e e s 221
L O K ittt e e e e et etr et it e e e e e e e e e e e n e 223
LOOP ..t aa et e et e e e e e e e e e 224
LOWER .ot e e e e e e 225
MAKETIMESTAMP ..ot e 226
AT e e 122
MATBUILD ...ttt ettt ettt e e e e e e e e e e e e s e e s s ettt et e et e e e e e e e e e e e s e s aa e 228
MATCHES L.t e e et e e s s e s 229
MATCHRFIELD ...ttt e e e e e e se e e e e et e et e e aaeeeeee s 231
MATPARSE ...ttt e e e e e e st r e e e e 233
MATREAD. ...t e r et e e et e e e e e e e s st er e e e e e e 234
MATREADUo e e e e e e e s s e s s bbb 236
MATWRITE ..o e 238
MATWRITEU ..o 239
IMAXIMUDM L.ttt e oot oot e et e et et e e e e e e e s e s sa s r e s re e e e e e eeee s 240
IMINTIMIUM Lttt ettt ettt e e e et e et e et e et e e ettt et e e e e e e e e e e e s e s n e s saennnnnn 241
1Y I TP PP PPPPTPPTP 24
MODSS ..o er ettt et e e e e e e e e e e n s 243
MSLEEP ..ot e e 244
MULS bbb et e e e e e e e ar e e e e e e e e 245
NEGS ...ttt oot e e e e e e e e e e e e e 246
N PP P PP TPPRTRRY 42
NOBUFR .ttt ettt et e e e e e e e e e st e e e r e et e et e e e e e e e e a e e 248
[TP PRPPPPPRPP PP 4P

OPENINDEX ...ttt 262

OPENPATH ettt e s et e e s e e e e e e e e s e e e 263
OPENSEQ ..ot 265
OPENSER . ..o 269
O RS e —————— 1444414444 e E e e e e e e e e e e e s e e n e reeee e 72
OSBREAD ...ttt r ettt e et e e e e e e 272
OSBWRITE ...t r ettt e e e e e e e e s e a s e e e ettt e et e e e e e e eeeeenee s 273
OS CLOSE e e 274
OSDELETE ...ttt et e s 275
OSOPEN ...ttt e et e e e e s e e s 276
OSREAD ..ottt ettt e e e e e e e e e e n e 277
L0 1S VT] I PP PPPPPPPPPP 278
L 1O PP PPPOPPOTPPPPP 7P
PAGE ... e e e e e e e @8
PAUSE ... e 281
PCPERFORM ..ottt 282
PERFORM ...t mm ettt et e e e e et e e e e n e e e e e s e enn e e e e e s nennrneeee e e e 282
PRECISION ..ottt et e e e st e e e e e st e e e sn e e e e e e sannne e e e e e s annrneeeeennans 283
P R IN T ettt e e e oo e e e e r e e e e e e e e e e e e e e n e eee e 28
PRINTER ...t e e ettt e e e e e s e n e e e et e et e e e e e e e e s 285
PRINTERR ..ottt ettt et e e e e e e e e e e e s e s n s s eeennaes 286
PROGCREAD ..ottt ettt et e e e e e e e e st e e ettt e et e e e e e e e e e e e 287
PROCWRITE ...ttt r e e a e e e e e e e e e e s s 288
PROGRAM. ... e e a s e e e e e e e e e e 289
PROMPT ettt et e e et e e e et e e e e e s e e e e e e e e 290
PUTENV e 291
P Y R Lttt e e e e e e e e e ettt et it e e e e e e e e e e e aen e 922
QUOTE / DQUOTE / SQUOTE ... ittt mmmr ettt e 293

READ ...ttt s e s e s e e et e ettt ettt ettt ettt r ettt 295
READBLE ...ttt eeee e eeee s eeeeesseee e s et ese s eee s et eee e s e ee et eeseesee s e s ee et eseeeeeeee s eseneeees 297
READL ..ottt emeee ettt e et ee et e et se et st ee et 299
READLIST <.ttt ettt meeem e et e s e et s e e s ee et eeeesee s e s ee et esee s s 301
RT3 5N =3 TSSO 302
READPREV ..ot e e ee e eemeees et e s ee e e e et e e s st ee e e e eeaee e e ee s s e eseee e ee e e 303
READSELECT «...veeevee et veee e sees e ot et seees e s e s eseee et ees e seneseeseees e seeseeeseeseeseeese 305
READSEQ ...t eveeeee et eeeee e seessmmmem e eseee e eseeseees et eee e esees e s eeseesese s eseeseseseseeeseeseesereneeees 306
READT ...ttt e e e ee et e e e st e s e e et et e e et et eesene e e e ee et es s s ee et er e eeees 307
READU. ... oot eeee e eeeeeee s ee e s ee e s et s e e e s et eseee e e s s eesenes e s ee e s et eeee e s ee e eeeee 308
READV ... oottt emeee et ee et e et e et e et eet ettt 310
READVL ...t eeame et e e s e e s eeaee s e e s ee e ee et 312
READNU ... amem et e e e e e ee e e st e s e eeaees e e e e es e s e e s eeee s eee e enes 313
READXML ...ttt eseee e s e e e e eseeeeee s e s eee e e s e e e s e eeeseee s e s ee et eseeeeeseeseeene e 315
RECORDLOCKED ...t veeeeess e s s e s eseee et eseee s esees et eeseesene s eseeseeeseseeeeeaees 316
REGEXP ... oeeeeeeeee e eeeeeeeeseeveee e s ammemm s ee e sees s e s e s et eseee e eseeseeeseneseseeeseeseeseees e s ee e s e eeeeee 317
RELEASE ...t eeee e s et e et et e e s ee et eeseesee st e s es et eeseeeeeeseeeeseneeees 318
REMOVE ..ot ee e et e e e e es s s et e s e e et eee et aee e st e s es et e s eeeeses e eesae 319
REPLACE ...ttt eemems et e et e e e e ee et eee e et e e ee et ee e es e eeae 321
RETURN ..ot eeee e e eeeeees e e e e e s s e s e s ee e e eeeee e e aee et e e e s ee e s e s s eseeseeenesee 322
REWIND .ot emeee s e e e e s s eee e e e s ee et esseeeeeseses e seeeseeseseeeeeeeeeees e erenee 323
RIGHT oot et eeeee et ee e e e s e e s e s et ee e eeee e et e s eeesene s eseee e s eseeeseeseee et ee e sesene 324
RIND oot eee e et aee e s s e s et ee e e e et e e er et ee et s ee e et e e er et e e e 253
ROM <.ttt et et ee et et e ee s et e s e e ee e et e e e s ee s ee e e ee e s ee e ee e s eneesan 632
RTNDATA oottt et eeeeee s ee e e et e s e s ee st e e s e e e s e aeesee s e s ee et eseeeeeeseeseseseeees 327
SADD ..ottt ettt ettt ettt r et 328
SDIV ettt eeeee ettt ettt ettt ettt 2B
SEEK oot eeee et et eeee e e et e ettt ettt e e ee et et ee e et er ettt 330
] =118 = xS O s T T OT P O T 332
SEND oot ee et s e e oemeeet e et e e et ettt ettt et er et ee e e e r et eereeees 334
SENDX oo eeee et eseee e s eeeeeeeses et s s eee s e e st eeeee et et ee e ee et ettt e s et ee et er e 335
SENTENCE ..ottt e e et eeemes e s e e e s es e s e s et e s ee e s eeeeese e s eseee et eeseeeeeeseeseseseeees 336
SEQ ettt ettt ettt eeeeem ettt ettt ettt ettt ettt e et 373
SEQS ettt ettt ettt ettt et ettt ettt 338
SIN ettt ettt ettt ettt ettt ettt ettt 339
T = = =TSR 340
SIMIUL vt emeee e e e e st ee et et e e ee et e et et ee e e e e 341

Xi

ST LU N PRSP 343
SP ACKE .t ——— ettt e ettt e e ettt e ettt e e e et aaate e e e antaee et reeeatreeeanrraeearaeeaans 344
SPACES ...ttt ae e e e et e e ettt e e n et e aa—r e e e tee e e e teeeeanteeeeanneeeaanreeeans 345
S L OSSPSR 346
Y @@ I SRR 347
SR T it ittt ———— 122 a e a4 ettt e e e e e ettt teeeeeaanraeeeeaanttaeeeaeeaantraeeaeeeannrrneeeeesinsd B5

LTS o I 3 PSPPSR 351
TS I O I D OSSR SUPRR 353
RS L O3 N SRS 353
L1 U SRS OPRPSPR 435

STATUS FUNCLON ...eiiieiiitiiiiee ettt cmme ettt et e e e s sttt e e e s s sab b et e e e saaneeeeessambbeeeeeesannbbeeeeeesans 355
STATUS TUNCHON ...ttt e e st e e e bt e e e e e s snbb e eeeesannnreeeas 356

TRANSQUERY ..ot 384
TRANST ART o e e s ea e 385
TRANSEND ... e e e e e e e e 386
TRIM L e 387
IR L] = Z OO P PP P PRP PP PPTPRIN 388
TRIMBS .ot e et e e e e e e e et e et e e e e eeeaeas 389

Xii

TRIMES et e e e e e e r e 391
UNASSIGNED ..o e e e a e e e e e e e e e s s s 392
UNIQUEKEY ...ttt ettt e e s et e e e s e e e e e s s e e e e e s e e en e e e e e e e nnneeas 393
UNLOCK ...ttt ettt 41ttt e e e et e e e e st e e e e e e e e e nn e e e e e e e nn e e e e e e ennnes 394
UDTEXECUTE ..ottt ettt e e e e e e e e e e e e s s e e e et e et e e e e eeeeeaenens 395
UP C A SE ...ttt ettt e e e e e e oo R e r e et e e e e e e e e e e e n e e 395
O I TP PPPPPPTPPTP 639

L AT S TP TP T PRI 397
WEOF e a e 398
WEOFSEQ ..ottt 399
WRITE . 400
WRITEBLK ..ottt 401
WRITELIST oottt ettt et et e e e e e e e et e s s r e e e et e e et e e e e e e eeeeenesna s 402
WRITESEQ .. oottt 44t ettt et e e e e e e ee s e s bbb bbb e e s e e e et e et e e e aeeeeaeenanns 403
WRITESEQF ...ttt ettt et e e e e e e e e e e s s b e e ettt e e et e e aeeeeeeeeneena s 404
WRITEU ..o ettt e e e e e e e e e e e et reereeaeeeeeeas 406
WRITEV L e e e a e e e e e e 408

XIMLTODY N ettt ettt ettt et e e e e e e e e e e st e s s e e sr e e et e et e e aeeeeeeesaessaanannnnes 415
XIMLTOXML L.ttt ettt et e et e e e e e e e et e st s b rr e e et e e et e e e e e eeaeessessaesaaennes 417
D I PO PP PP P PP PO PP PPPPPUPPTPPRP A1

Xiii

Documentation Conventions

This manual uses the following conventions:

Convention

Usage

BOLD

UPPERCASE

UPPERCASE

Italic

Courier

Courier Bold

it

ItemA |itemB

In syntax, bold indicates commands, function naraas, options. In text,
bold indicates keys to press, function names, nsiections, and MS-

DOS commands.

In syntax, uppercase indicates JBASE commands, kelgyand options;
BASIC statements and functions; and SQL statemands keywords. In
text, uppercase also indicates JBASE identifiers sucfilenames, account

names, schema names, and Windows NT filenames &magpaes.

In syntax, italic indicates information that youpgly. In text, italic also

indicates UNIX commands and options, filenames, @atinames.

Courier indicates examples of source code and system butpu

Couri er Bol d In examples, courier bold indicates characters tiat

user types or keys (for example, <Return>).

Brackets enclose optional items. Do not typehlhackets unless indicated.

Braces enclose nonoptional items from which youtreakect at least one.

Do not type the braces.

A vertical bar separating items indicates that yam choose only one

item. Do not type the vertical bar.

Three periods indicate that more of the same typeof can optionally

follow.

A right arrow between menu options indicates yoausth choose each
option in sequence. For example, “Chobde =Exit” means you should
chooseFile from the menu bar, and then chodsdt from the File pull-

down menu.

Syntax definitions and examples are indented fee éareading.

All punctuation marks included in the syntax—foraeple, commas, parentheses, or

guotation marks—are required unless otherwise atdit

Syntax lines that do not fit on one line in thismaal are continued on subsequent lines.
The continuation lines are indented. When enterimjax, type the entire syntax entry,

including the continuation lines, on the same inme.

Preface

This manual is a comprehensive reference for BASEEAand is intended for experienced
programmers. The guide includes explanations gBAISE BASIC statements and functions
supported by BASE and descriptive information relijag the use of BASE BASIC in the UNIX
environment.

If you have never used jBASE BASIC, read this mafmedbre using any statements or functions.

Organization of this manual

This manual contains statements and functions imadgtical order, each beginning on a new page. At
the top of each page is the syntax for the stateoreianction, followed by a detailed descriptidiite
use, often including references to other statenmmfigsnctions that can be used with it or are hélff

know about. Examples illustrate the applicatiothef statement or function in a program.

JBASE BASIC Language Overview

» is a UNIX resident programming language supporiethb jBASE Database Independent
Management Engine

* can access database files of any UNIX residentn@ystems database

e is aimed primarily at writing business applicatipasd contains all the constructs needed to access
and modify files and their data efficiently

» is a sophisticated superset of Dartmouth BASIC ettpp structured programming techniques

» is aflexible and user extendible language

» contains the functionality needed to write effi¢ci&iNIX applications. It can spawn child
processes, access environment variables and icgeidaother UNIX programs

» programs can call external functions written inrfGBRASE BASIC. C programs can be made to
call functions written in JBASE BASIC

e programs can mix with Embedded SQL statements wralewing queries and updates on any
SQL Database

» object code is link compatible with C and so a paogmer has the tools of both available to him
to produce the most efficient code for his appiaat

* Allows the application programmer working in a UN&dvironment to write code without
needing to consider memory management, variablagygr floating-point arithmetic corrections:
all of which need to be dealt with when using 'C’

e Has other advantages over C such as the in-bialigiger and easy file 1/0O;

e Programs may declare external functions, whicHiaked into the application by the UNIX
linker-loader. This means that BASE BASIC offersesxto specialized functions written in C or

any language that is link compatible with C

Features of IBASE BASIC

Optional statement labels

Multiple statements on one line

Local subroutine calls

Branching on result of complex value testing

String handling with variable lengths

External calls to 'C' libraries

External subroutine calls

Direct and indirect calls

Magnetic tape input and output

String, number, and date data conversion capapbility

File access and update capability for any UNIXdest file, such as j-files or C-ISAM)
File and record level locking capability

Pattern matching capability

Capability of processing file records in any format

Sophisticated BASE BASIC debugger

Ability to EXECUTE any jBASE system or database enquiry command
The standard UNIX command set is available to maade libraries

Support for networking and inter-process commuiocat

Benefits of using JBASE BASIC

Applications are running on an Open Systems pliaifor

Applications are very efficient as the executiorespof] BASE BASIC code is close to that of
hand crafted 'C'

Applications are portable between binary compatsleironments, however moving applications
to an alternative operating system requires treafsplication be recompiled on the target system.
No modifications to the application source are neglias any operating specific modifications

will have been implemented by jBASE in the runtintedries.

Applications integrate easily with other UNIX syste

Applications benefit from the steady improvemenggdmin compiler optimization.

Use of BASE BASIC offers tremendous productivitygrovements over 'C'

The close compatibility with UNIX allows the JBASE EAC developer to produce libraries of
standard subroutines or function calls, which amgpam can use

The standard UNIX command set is available to maeade libraries

The provision of Database access is to applicatlmosigh generic read/write/lock statements that
divorce the application from the database itsedttks are maintained across remote systems and
communication links thus allowing the applicatimogrammer to concentrate on the application

not the database or its location

JBASE BASIC will import and compile BASIC code frad@ipen Systems RDBMS systems with
little or no modification

Applications ported from PICK or Reality run asdpplications with all the related performance
and seamless inter-operability advantages ovelimgron an emulation type implementation
written in C

Investments in existing jBASE BASIC applications ateelopment and programming skills in
BASIC are fully retained

No need for costly retraining of programmers tov@iich can also be freely used within the
application system, thus allowing more flexibility

JBASE BASIC provides connection to external deveed external databases in a manner that is

transparent to existing applications

jBASE BASIC Environment

JBASE BASIC will run on any standard UNIX system anith any standard shell or editor. Also
provided is an easy to use]SHELL.

JBASE BASIC allows the programmer to choose his wglenvironment to suit. It works equally
with the Bourne, C or Korn shell. Kernel configuoatis not required to use the BASE BASIC-
programming environment.

You can write JBASE BASIC programs using any UNIXtedusing the provided context
sensitive screen editor (JED), designed specifjciall BASE BASIC programmers and jBASE
users.

Utilities are supplied to access database fileatecteunder jBASE.

The final size of executable code is minimized, dnplication avoided, by sharing external object
libraries between all application programs.

Specify a file or directory to hold the entire BEBASIC source; you can hold the finished
executables in a different file or directory if téepd.

Use a global user library to hold globally accelssitser routines.

JBASE BASIC Programming

You can write the] BASE BASIC source code using aystem editor. Users unfamiliar with
UNIX editors may wish to use the JED editor

Use the JBASE BASIC compiler to produce intermegliabject code or a UNIX executable file;
use Makefiles to simplify the compilation processpecially if many files are involved. Their use
will also make upgrading and software maintenamceassier task

If the system allows, use should be made of linkedries when calling subroutines and
functions. This will reduce the size of the compitedie that would otherwise be produced
Applications accessing jBASE files should make usth@ existing routines held in the
/usr/iBASE BASIC/lib directory.

JBASE BASIC Comparisons

With BASIC
Derived from Dartmouth Basic JBASE BASIC is an enteoh variant of BASIC, which contains all the

commands and constructs necessary for compatitility other versions of BASIC. It also provides

full interaction with UNIX system and databasedil& ou can modify BASE BASIC quickly to retain
compatibility with any future enhancements to tHeSBC language or its derivatives

On UNIX systems, the] BASE BASIC compiler producede that runs many times faster than the
same BASIC code compiled and run on any other UbA¥ed RDBMS environment. jBASE BASIC
can access JBASE, C-ISAM, and UNIX files as wellasords and files of other databases The jBASE
BASIC debug facilities are greatly superior to thgsovided with other versions of BASIC

With 'C'

The JBASE BASIC compiler uses all the features ofdbeompiler and can compile 'C' source and
object files, as well as BASE BASIC source codeuan halt the source compilation at any stage, to
examine the resultant code:

External 'C', and jBASE library access is available

The executables produced by the BASE BASIC compitef cc is identical

* JBASE BASIC has a sophisticated debugger availablstandard

* JBASE BASIC is able to provide full and easy accesEINIX or any third party database files

* JBASE BASIC has the tools to provide sophisticateihg handling

e JBASE BASIC handles system signals and events autoatls

File and Directory Organization
To run jBASE BASIC on a UNIX system, there are selgirectories and files already set up, which

ensure the smooth and efficient use of the BASE BASogramming environment; all the BASE
BASIC files are held under the UNIX /opt/iBASIC datory.

The main body of the JBASE BASIC program and librfilgs are held in the /opt/i[BASIC directory,
which contains all the run-time code, error anddlilp files, as well as default system and termae
up limit.

XML Functions and Statements

JBASE is incorporating new XML capabilities builtanBASE BASIC based on the Xalan and Xerces

libraries.

XML Functions
DYNTOXML
XMLTODYN
XMLTOXML

XML Statements
READXML
WRITEXML

JBASE Funtions and Statement @ Variables
@

Use the @ function to position the cursor to a gjegooint on the terminal screen

COMMAND SYNTAX

@ (col{, row})
SYNTAX ELEMENTS

col and row can be any expression that evaluates to a nuverie.

col specifies, to which column on the screen the ewskould be moved.

row specifies which row (line) on the screen to posithe cursor.

Specifying col on its own will locate the cursorth@ required column on whichever row it currently

occupies.
NOTES

When specified values exceed either of the physioéts of the current terminal, then unpredictable
results will occur.

The terminal address starts at (0,0), that beingajhéeft hand corner of the screen.

Cursor addressing will not normally work when disgtat a printer. If you wish to build printer
independence into your programs, achieve this bgssing the terminfo database through the
SYSTEM () function.

EXAMPLES

FORI=1TO5

CRT @(5,)™

NEXT |

Home = @(0,0) ;* Remember the cursor home position

CRT Home:"Hi honey, I'm HOME!":

@ (SCREENCODE)

Use @(SCREENCODE) to output control sequences ditgpto the capabilities of the terminal
COMMAND SYNTAX
@ (ScreenCode)

SYNTAX ELEMENTS

Control sequences for special capabilities of énminal are achieved by passing a negative nunsber a

its argument. ScreenCode is therefore any expresisad evaluates to a negative argument.

NOTES

The design of BASE allows you to import code fromnyalder systems. As these systems have
traditionally not co-ordinated the developmentha$ function they expect different functionality in
many instances. In the following table, you shawitk that different settings of the
JBASICEMULATE environment variable would elicit diffsmt functionality from this function.

Where the emulate code is printed with strikethhoitgndicates that the functionality is deniedhé

emulation.

Emulation Code Function

all -1 clear the screen and home the cursor

all -2 home the cursor

all -3 clear screen from the cursor to the endhefdcreen
all -4 clear screen from cursor to the end of tmreent screen line
ros -5 turn on character blinking

ros -6 turn off character blinking

ros -7 turn on protected field mode

ros -8 turn off protected field mode

all -9 move the cursor one character to the left
all -10 move the cursor one row up the screen
ros -11 turn on the cursor (visible)

ros -11 enable protect mode

ros -12 turn off the cursor (invisible)

ros -12 disable protect mode

ros -13 status line on

ros -13 turn on reverse video mode

ros -14 status line off

ros -14 turn off reverse video mode

ros -15 move cursor forward one character

ros -15 turn on underline mode

ros -16 move cursor one row down the screen
ros -16 turn off underline mode

10

Emulation Code Function

all -17 turn on the slave (printer) port

all -18 turn off the slave (printer) port

ros -19 dump the screen to the slave port
ros -19 move the cursor right one character
ros -20 move the cursor down one character
ros -311 turn on the cursor (visible)

ros -312 turn off the cursor (invisible)

ros -313 turn on the status line

ros -314 turn off the status line

If a color terminal is in use, -33 to -64 will cooitcolors.
The codes from -128 to -191 control screen attrialf¢here Bit O is least significant, you may
calculate the desired code by setting Bit 7 and B&i#:

Bit 0 dimmed mode when set to 1
Bit 1 flashing mode when set to 1
Bit 2 reverse mode when set to 1
Bit 3 blanked mode when set to 1
Bit 4 underline mode when setto 1
Bit 5 bold mode when set to 1

Bit 7 always setto 1

Thus, Reverse and Flashing mode is -134.

To turn off all effects use -128

EXAMPLE

CRT @ (-1):@(30):@(132):"|BASE Heading":@(-128):

CRT @ (5,5):@(-4):"Prompt: ": ; INPUT Answer

11

@APPLICATION.ID

@CALLSTACK
@CODEPAGE
@DATA

@DATE

@DAY

@EOF
@FILENAME
@FOOTER.BREAK
@HEADER.BREAK
@LEVEL
@LOCALE
@LPTRHIGH

@MONTH
@PARASENTENCE
@PATH

@PID

@RECORD

@ID Dataname used to reference the record-id inemyglanguage

statement:

SORT STOCK BY-DSND @ID

LIST STOCK WITH @ID ="1000"

LIST STOCK WITH @ID LIKE AB...

Returns current space information for DEBUG purposes
Returns cuurnt codepage config jbase_codepage

Data statements used in conjunction with INPUT estents are
stored in a data stack or input queue. This stai@ccessible in the
@DATA variable

internal date returns the internal date — on soyatems, this differs
from the DATE function in that the variable is sehem program

execution starts, whereas the function reflectcthreent date
Day of month from @DATE

End of File character from TTY characteristics

Current filename

For B options in heading

For B options in heading

The nesting level of execution statements — norksthc
Returns current Locale as jbase_locale

Number of lines on the device to which you are tprgn (that is,

terminal or printer).

Current Month

The last sentence or paragraph that invoked thermuprocess.
Pathname of the current account

Returns current process ID

Entire current record

12

@SELECTED
@TERMTYPE
@TIME

@TIMEZONE
@TTY

@UID
@USER.ROOT

13

Number of elements from the last select list — Ntatked
The Terminal type

Returns the internal time — on some systems, tiffisrsl from the
TIME function in that the variable is set when pragraxecution

starts, whereas the function reflects the curierd t

As per |JBASE Timezone

Returns the terminal port name.

Returns information from ROOT.THREAD for port @user

The use of the @USER.ROOT command allows a jBASE BASIC
program to store and retrieve a string of up tio@es that is unique
to that user. The intention is to really "publishformation that

other programs can find.
For example

@USER.ROOT = "Temenos T24 Financials"

PRINT "root user declaration is " : @USER.ROOT

See attribute <28> , USER_PROC_USER_ROOT, in thgogec

"Layout of user record"

The @USER.THREAD is similar except a value exists dach
PERFORM level. So one program can set/retrieve ft ibihe
program does a PERFORM of a second program thesetbend
program gets a different set of values.

See attribute <52>, USER_PROC_USER_THREAD, in theasec

"Layout of user record"

The @USERSTATS allows a program to retrieve all sarfts
miscellanous information about itself. For examile program
wants to find out how many database I/O's it penfmt it could do
this ...

INCLUDE JBC.h

infol = @USERSTATS

readl = infol<USER_PROC_STATS_READ>
EXECUTE 'COUNT fbl WITH *Al1 EQ "X"
info2 = @USERSTATS

read? = info2<USER_PROC_STATS_READ>

PRINT "The COUNT command took ":(read2-readl):" REA
from the database"

So a program can set a user-definable string taevba value it
likes , up to 63 bytes, and other programs canvaseus methods

(see "User Information Retrieval” below) to accéss data.
User Information Retrieval

There are 3 ways of finding information about onenore users on

a JBASE system

1. Using the @USER.ROOT, @USER.THREAD and
@USERSTATS variables in your BASE BASIC code you fiad
information about yourself. You cannot find infortio@ about

other users.

2. The "WHERE (V)" command can be used to display the
@USER.ROOT and @USER.THREAD data for specified users.

3. Using some jBASE BASIC code you can find out lofs
information about each user on the system. Thiexictly the
mechanism that the WHERE command uses. For exampligplay

all users logged on you could write this.

* Open the special JEDI file to access the userrimfation.

*OPEN SYSTEM(1027) TO PROC ELSE STOP
201,SYSTEM(1027)

* For each user logged on read in their user in&drom

SELECT PROC

14

15

LOOP WHILE READNEXT key DO

READ rec FROM PROC key THEN

PRINT "Port "rec<USER_PROC_PORT_NUMBERis"
logged on by user ":rec<USER_PROC_ACCOUNT>

END
REPEAT
Layout of user record

The information retrieved by either the READ in theee example
or the @USERSTATS is the same and is as follows.

The first 40 attributes are data attributes thatetate to the entire
user. Attributes 41 onwards are multi-valued angetane value per
program being PERFORM'ed by that user

All the numbers below can be replaced by symbaferences in
JBC.h, look for those that begin USER_PROC _

<1> The port number
<2> The number of programs running in this port.

<3> Time the user started in Universal Co-ordindfiede or UTC
(not a dyslexic mistake). This is raw UNIX time. Yoan convert
this to jBASE internal time format using the UOFFRéheersion or
to internal date format using the UOFF1 conversion.

<4> The process ID

<5> Account name

<6> User name. Normally the operating system name.
<7> Terminal name in jBASE format

<8> Terminal name in Operating system format.

<9> Database name

<10> TTY device name
<11> Language name.
<12> Time in UTC the listening thread last found ttimead alive.

<13> Amount of heap space memory in free spacenchai a

process wide basis. Not real-time, only updatedye¥® seconds.

<14> Amount of heap space memory in use on a psogite basis.

Not real-time , only updated every 15 seconds
<15> Thread type as an internal integer.

<16> Type of thread as a text string.

<17> License counters

<18> Number of OPEN'’s performed.

<19> Number of READ’s performed.

<20> Number of WRITE's performed.

<21> Number of DELETE's performed

<22> Number of CLEARFILE's performed
<23> Number of PERFORM/EXECUTE's performed.
<24> Number of INPUT's performed.

<25> Not used.

<26> Number of BASE files the application thinkshias open at

the moment.

<27> Number of jBASE files actually opened by theeiging

system at the moment.
<28> Any data set by the application using @USER.ROO

<29> Process Identifier. A string created by theraping system to
identify the process. It is O/S specific. Currenly IBM i-series

platform only.

<30> to <40> Reserved.

16

@USERSTATS

17

Attributes 41 onward are multi-valued, one value perform level,

and there are <2> perform levels active.
<41,n> Program name and command line arguments.

<42,n> The line number in BASE BASIC the prograntisrently

executing.

<43,n> The source name in jBASE BASIC the prograeuisently

executing.

<44,n> Not used.

<45,n> Not used.

<46,n> Status of program execution as a readaxiestiéng.
<47,n> Status of program execution as an intemager.

<48,n> User CPU time . Depending upon the hardwrasewill be

either for the entire process or just the singteal.

<49,n> System CPU time.Depending upon the hardtsevill be
either for the entire process or just the singteal.

<50,n> User CPU time used by any external childcgsses it

might have spawned.

<51,n> System CPU time used by any external chifitgsses it

might have spawned.
<52,n> Any data set by the application using @USEREAD

The @USERSTATS allows a program to retrieve miscellaseo
information about itself. For example if a programnts to find out

how many database 1/O's it performed it could d® th
infol = @USERSTATS
readl = info1<19>
EXECUTE 'COUNT fbl WITH *Al1 EQ "Xx™
info2 = @USERSTATS
read?2 = info2<19>

PRINT "The COUNT command took ":(read2-read1)EAD's

from the database"

The following definitions have been added to JBQlé Which
defines the layout of data returned either througfe
@USERSTATS variable or by opening file SYSTEM(1027) an

reading the items in like that.

* Definitions for the data returned from the @USERITFA
variable or from

* the record read in from the PROC file (using SYSTEBR7) as

file name)

EQUATE USER_PROC_PORT_NUMBER TO 1;* The port

number

EQUATE USER_PROC_NUM_PROGRAMS TO 2;* Number of

programs running in this port

EQUATE USER_PROC_START_TIME TO 3;* Time user started
in UTC format

EQUATE USER_PROC_PID TO 4 ;* Process ID
EQUATE USER_PROC_ACCOUNT TO 5;* Name of the account
EQUATE USER_PROC_USER TO 6 ;* Name of the user

EQUATE USER_PROC_TERMINAL_JBASE TO 7;* Name of

terminal according to jBASE

EQUATE USER_PROC_TERMINAL_OS TO 8;* Name of
terminal as seen by OS

EQUATE USER_PROC_DATABASE TO 9;* Name of database
connected to

EQUATE USER_PROC_TTY TO 10;* Name of TTY device
EQUATE USER_PROC_LANGUAGE TO 11;* Language

EQUATE USER_PROC _LISTENING _TIME TO 12;* Time in
UTC the listening thread last worked

EQUATE USER_PROC_MEM_FREE TO 13;* Amount of

18

19

memory in heap space free chain

EQUATE USER_PROC_MEM_USED TO 14;* Amount of heap

space memory in use

EQUATE USER_PROC_THREAD_TYPE_INT TO 15;* Thread

type expressed as an integer

EQUATE USER_PROC_THREAD_TYPE_TXT TO 16;* Thread

type expressed as a text string
EQUATE USER_PROC_LICENSE TO 17;* License counters

EQUATE USER_PROC_STATS _OPEN TO 18;* Number of
OPEN's performed.

EQUATE USER_PROC_STATS_READ TO 19;* Number of
READ's performed.

EQUATE USER_PROC_STATS_WRITE TO 20;* Number of
WRITE's performed.

EQUATE USER_PROC_STATS_DELETE TO 21;* Number of
DELETE's performed.

EQUATE USER_PROC_STATS_CLEARFILE TO 22;* Number
of CLEARFILE's performed.

EQUATE USER_PROC_STATS_PERFORM TO 23;* Number of
PERFORM's / EXECUTE's performed.

EQUATE USER_PROC_STATS INPUT TO 24;* Number of
INPUT's performed.

EQUATE USER_PROC_UNUSED_1 TO 25;* Unused

EQUATE USER_PROC_OPEN_FILES_VIRTUAL TO 26

;* Number of files application thinks open

EQUATE USER_PROC_OPEN_FILES REAL TO 27 ;* Number
of files really open by OS

EQUATE USER_PROC_USER_ROOT TO 28;* Application data
set by @USER.ROOT

EQUATE USER_PROC_PROCESS_TXT TO 29;* Text string to

identify process

EQUATE USER_PROC_PROGRAM TO 41;* Program name and

command line arguments

EQUATE USER_PROC_LINE_NUMBER TO 42;* Line number

currently being executed.

EQUATE USER_PROC_SOURCE_NAME TO 43;* Name of

source currently being executed.
EQUATE USER _PROC_UNUSED 2 TO 44;* Unused
EQUATE USER_PROC_UNUSED_3 TO 45;* Unused

EQUATE USER_PROC_STATUS_TXT TO 46;* Status of

program as a readable text

EQUATE USER_PROC_STATUS_INT TO 47;* Status of

program as an integer
EQUATE USER_PROC_CPU_USR TO 48;* User CPU time
EQUATE USER_PROC_CPU_SYS TO 49;* System CPU time

EQUATE USER_PROC_CPU_USR_CHILD TO 50;* User CPU

time used by child processes

EQUATE USER _PROC CPU_SYS CHILD TO 51;* System
CPU time used by child processes

EQUATE USER_PROC_USER_THREAD TO 52;* Application
data set by @USER.THREAD

1=PORT 2=count of 3=Starttime in UTC 4=Process @ 5=Account hame
programs on ID
this port

6=user name 7=terminal 8=terminal name (OS) 9=database 10=tty device name
name 9Jbase name

11=Language 12=time in 13=free heap space (15l4heap 15=thread type
uTC last: secs) space used
found alive (15 secs)

16=thread 17=license | 18=count of opens 19=count of 20=count of writes

20

type (string) counters reads
21= count of 22=count of 23=count of, 24=count of. 256=NOT USED
DELETES Clear Files = PERFORMS/EXECUTES INPUTS
26=number of 27=number | 28-@USER.ROOT 29=Process: 30-40 reserved
files open; of files identifier
(IBASE) open(Actual)
41=program 42=Current = 42=source name 46=status | 47=status of progran
name and line number of program: (flag)
sentence text
48=USER 49=System | 50=USER CPU from 51=System | 52=@USER.THREAD
CPU time CPU time child processes CPU time
from child
procs

@USER.THREAD

21

A value exists for each PERFORM level. So one @ogrcan

set/retrieve it but if the program does a PERFORMaddecond

program then the second program gets a differemif s@lues.

Allows an application to store simple statisticaformation about

the thread level part of their data.

JBASE BASIC Functions and Statements A - X

The following pages show the syntax of every statgragd function in the language together with

examples of their use.

22

ABORT

The ABORT statement terminates the current runnmgrnam and the program that called it.
COMMAND SYNTAX
ABORT {message.number{, expression ...}

SYNTAX ELEMENTS

The optional message.number provided with the seiemust be a numeric value, which corresponds
to a record key in the |BASE error message file.

A single expression or a list of expression(s) rizdpw the message.number. Where more than one
expression is listed, they must be delimited byube of the comma character. The expression(s)
correspond to the parameters that need passihg rtor file record to print it.

The optional message.number and expression(s) gibrthe command are parameters or resultants

provided as variables, literal strings, expressiongunctions.
NOTES

Use this statement to terminate the executionjBASE BASIC program together with any calling
program. It will then optionally display a messaged return to the shell prompt.

The error file holds the optional message displayeterminating the program. For successful printing
of the message, parameters such as linefeedssalean, date and literal strings may also be reduir

Setting the Command Level Restart option can afteration of this command.

EXAMPLE

CRT "CONTINUE (Y/N) ?":;; INPUT ANSIF ANS NE "Y" THE N ABORT 66,

"Aborted"

This will terminate the program and print error naggs66 passing to it the string "Aborted”, which
will be printed as part of error message 66.

23

ABS

ABS returns the mathematical absolute of the (Jesgion
COMMAND SYNTAX
ABS (expression)

SYNTAX ELEMENTS

expressioncan be of any form that should evaluate to a niom&he ABS function will then return the

mathematical absolute of the expression. Thisamitlvert any negative number into a positive result.
NOTES
express this as: value <0 ? 0 - value : value

EXAMPLES

CRT ABS (10-15)
Displays the value 5
PositiveVar = ABS (100-200)

Assigns the value 100 to the variable PositiveVar

24

ABSS

Use the ABSS function to return the absolute vabfed! the elements in a dynamic array. If an

element in the dynamic array is null, it returnd far that element.
COMMAND SYNTAX
ABSS (dynamic.array)

EXAMPLE

Y = REUSE(300)

Z = 500:@VM:400: @VM:300:@SM:200:@SM:100
A =SUBS (Z,Y)

PRINT A

PRINT ABSS (A)
The output of this program is:

200]100]0\-100\-200
200]100]0\100\200

25

ADDS

Use ADDS to create a dynamic array of the elemgrdibment addition of two dynamic arrays.
Added to each element of array1 is the correspgnelement of array2, which returns the result & th
corresponding element of a new dynamic array. lament of one array has no corresponding
element in the other array, it returns the exisélggmnent. If an element of one array is the nuli@ait
returns null for the sum of the corresponding eletsie

COMMAND SYNTAX
ADDS (arrayl, array?2)
EXAMPLE
A=2:@VM:4:@VM:6:@SM:10

B=1.@VM:2:@VM:3:@VM:4
PRINTADDS (A,B)

The output of this program is:

3]6]9\10]4

26

ALPHA

The ALPHA function will check that the expression ssits entirely of alphabetic characters.
COMMAND SYNTAX
ALPHA (expression)

SYNTAX ELEMENTS

The expression can return a result of any type AltlRHA function will then return TRUE (1) if the
expression consists entirely of alphabetic charaalkse returns false (0) if any character in espion

is non alphabetic.
INTERNATIONAL MODE

When using the ALPHA function in International Moitleletermines the properties of each character
in the expression according to the Unicode Standeneth in turn describes whether the character is

alphabetic or not.
NOTES
Alphabetic characters are in the set a-z and A-Z

EXAMPLE

Abc = "ABC"
IF ALPHA (Abc) THEN CRT "alphabetic”
Abc = "123"

IF NOT (ALPHA(Abc)) THEN CRT "non alphabetic”

Displays:
alphabetic

non alphabetic

27

ANDS

Use the ANDS function to create a dynamic arrasheflogical AND of corresponding elements of
two dynamic arrays.

Each element of the new dynamic array is the log\¥D of the corresponding elements of arrayl
and array2. If an element of one dynamic arrayntwasorresponding element in the other dynamic
array, it returns a false (0) for that element.

If both corresponding elements of arrayl and areag2null, it returns null for those elements.ngo

element is the null value and the other is zeramempty string, it returns false for those element

COMMAND SYNTAX
ANDS (arrayl, array?2)
EXAMPLE
A=1.@SM:4.@VM:4:@SM:1
B =1:@SM:1-1:@VM:2

PRINT ANDS (A,B)

The output of this program is: 1\0]1\0

28

ASCII

The ASCII function converts all the characters ia ¢éxpression from the EBCDIC character set to the
ASCII character set.

COMMAND SYNTAX
ASCII (expression)

SYNTAX ELEMENTS

The expression may return a data string of any fdime. function will then assume that the characters
are all members of the EBCDIC character set andlasthem using a character map. The original

expression is unchanged while the returned restitteofunction is now the ASCII equivalent.

EXAMPLES

READT EbcdicBlock ELSE CRT "Tape failed!"; STOP

AsciiBlock = ASCII (EbcdicBlock) ;* convert to ASCI I

29

ASSIGNED

The ASSIGNED function returns a Boolean TRUE or FALB&uit depending on whether or not a
variable has an assigned value.

COMMAND SYNTAX
ASSIGNED (variable)

SYNTAX ELEMENTS

ASSIGNED returns TRUE if the variable named has aigasd value before the execution of this

statement. If the variable has no assigned valer tifie function returns FALSE.

NOTES

Provision of this function is due to its implemeida in older versions of the language. You are
advised to program in such a way, to avoid usimgdtatement.
See alsoUNASSIGNED

EXAMPLES

IF ASSIGNED (Varl) THEN
CRT "Varl has been assigned a value"

END

30

BITAND

Use the BITAND function to perform the bitwise ANIDmparison of two integers specified by

numeric expressions.

SYNTAX

BITAND (expressionl, expression2)
DESCRIPTION

The bitwise AND operation compares two integerdpibit. It returns a bit of 1 if both bits are 1se
it returns a bit of 0.

If either expressionl or expression2 evaluatekaaull value, null is returned.

Non integer values are truncated before the oper&iperformed.

The BITAND operation is performed on a 32-bit twosamdement word.

NOTE: Differences in hardware architecture can nihkause of the high-order bit non portable.

EXAMPLE

PRINT BITAND(6,12)

* The binary value of 6 = 0110

* The binary value of 12 = 1100

This results in 0100, and the following output ispdayed:
4

31

BITCHANGE

BITCHANGE toggles the state of a specified bit ia thcal bit table, and returns the original valfie o
the bit.

COMMAND SYNTAX

BITCHANGE (table_no)

SYNTAX ELEMENTS

table_nospecifies the position in the table of the bibtochanged.
NOTES

For each process, it maintains a unique table 82 (hnumbered 1 to 128) and treats each bkten t
table as a two-state flag - the value returnedalillays be zero or one.

BITCHANGE returns the value of the bit before it veéenged. You can therefore check and set (or
reset) a flag in one step.

BITCHANGE also provides some special functions if yrse one of the following table_no values:

-1 toggles (enables/disables) the BREAK key InHikit
-2 toggles (enables/disables) the Command LevebRdsature.
-3 toggles (enables/disables) the Break/End Restttire.

EXAMPLE

OLD.VAL = BITCHANGE (100)

CRT OLD.VAL

If bit 100 in the table is zero, it sets to one digplays zero; the reverse will apply if set t@on

32

BITCHECK

BITCHECK returns the current value of a specifiedftmin the local bit table.
COMMAND SYNTAX

BITCHECK (table_no)

SYNTAX ELEMENTS

table_no specifies the position in the table oftihdor checking.

NOTES

For each process, it maintains a unique table 82 (numbered 1 to 128) and treats each bkén t
table as a two-state flag - the value returnedalillays be zero or one.
BITCHECK also provides some special functions if yse one of the following table_no values:

-1 returns the setting of the BREAK key Inhibit bit

-2 returns the setting of the Command Level Refaattire
-3 returns the setting of the Break/End Restarufeat
EXAMPLE

BIT.VAL = BITCHANGE (100)

CRT BIT.VAL

If bit 100 in the table is zero, it displays zeifaset to one, it displays one.

33

BITLOAD

BITLOAD assigns all values in the local bit table retrieves all the values.

COMMAND SYNTAX

BITLOAD({bit-string})

SYNTAX ELEMENTS

bit-string is an ASCII string of characters, which represehexadecimal value. It is interpreted as a
bit pattern and used to assign values to the fednte left to right. Assignment stops at the endhaf
string or when a non-hexadecimal character is found

If the string represents less than 128 bits, theaneing bits in the table are reset to 0 (zero).

If bit-string is omitted or evaluates to null, as&lIl hex character string is returned, which defitree

value of the table. Trailing zeroes in the string uncated.
NOTES

A unique table of 128 bits (numbered 1 to 128) @é@ntained for each process. Each bit in the table is

treated as a two-state flag - the value will alwag$ (zero) or 1.

EXAMPLE 1

NEW.VALUE = "0123456789ABCDEF"
OLD.VALUE = BITLOAD(X)

Loads the bit table with the value of ASCII hex str ing NEW.VALUE
After assignment, the contents of the bit table is:

0000 0001 0010 0011
0100 0101 0110 0111
1000 1001 1010 1011
1100 1101 1110 1111
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

NOTE: that all values beyond the 64th bit have beset to O (zero).

EXAMPLE 2

TABLE.VALUE = BITLOAD()

Loads variable TABLE.VALUE with the hexadecimal valwéghe bit table

34

BITNOT

Use the BITNOT function to return the bitwise negatof an integer specified by any numeric
expression.
COMMAND SYNTAX

BITNOT (expression],bit#])

DESCRIPTION

bit# is an expression that evaluates to the numbédredbit to invert. If bit# is unspecified, BITNOT
inverts each bit. It changes each bit of 1 to @b@ and each

bit of 0 to a bit of 1. This is equivalent to reting a value equal to the followingexpressiort)

If expression evaluates to the null value, nutkisirned. If bit# evaluates to the null value, the
BITNOT function fails and the program terminates vathun-time error message.

Non integer values are truncated before the operéiperformed.

The BITNOT operation is performed on a 32-bit twosaptement word.

NOTE: Differences in hardware architecture can nthkause of the high-order bit non portable.
EXAMPLE

PRINT BITNOT(6),BITNOT(15,0),BITNOT(15,1),BITNOT(15,2)
This is the program output:
7141311

35

BITOR

Use the BITOR function to perform the bitwise ORnparison of two integers specified by numeric

expressions.

COMMAND SYNTAX

BITOR (expressionl, expression2)
DESCRIPTION

The bitwise OR operation compares two integers\bliib It returns the bit 1 if the bit in either both
numbers is 1; else, it returns the bit 0.

If either expressionl or expression2 evaluatekaaull value, null is returned.

Non integer values are truncated before the oper&iperformed.

The BITOR operation is performed on a 32-bit twos-ptament word.

NOTE: Differences in hardware architecture can nihkause of the high-order bit non portable.

EXAMPLE

PRINT BITOR(6,12)

* Binary value of 6 = 0110

* Binary value of 12 = 1100

This results in 1110, and the following output ispdayed:
14

36

BITRESET

BITRESET resets the value of a specified bit in tlealldit table to zero and returns the previouse&alu
of the bit.

COMMAND SYNTAX
BITRESET (table_no)

SYNTAX ELEMENTS

table_no specifies the position in the table oftihdor reset. If table_no evaluates to zeroestats all

elements in the table to zero and returns the \&ue
NOTES

For each process, it maintains a unique table 82 (humbered 1 to 128) and treats each bkten t
table as a two-state flag - the value returnedaiillays be zero or one.
BITRESET returns the previous value of the bit — yan reset and check a flag in one step.

BITRESET also provides some special functions if ysel ane of the following table _no values:

-1 resets the BREAK key Inhibit bit
-2 resets the Command Level Restart feature

-3 resets the Break/End Restart feature

See alsoBITSET.

EXAMPLE

OLD.VALUE = BITRESET (112)

PRINT OLD.VALUE

If table entry 112 is one, it returns a value o omesets bit 112 to 0, and prints one. If tableyehl 2

is zero, returns a value of 0, and prints 0.

37

BITSET

BITSET sets the value of a specified bit in the &lil¢ to one and returns the value of the bit before

was changed.
COMMAND SYNTAX
BITSET (table_no)

SYNTAX ELEMENTS

table_no specifies the bit to be SET. If table_nduatas to zero, it sets all elements in the tablenie
and the returned value is one.

NOTES

For each purpose, it maintains a unique table 8ftis (numbered 1 to 128) and treats each bhen t
table as a two-state flag - the value returnedaiillays be zero or one.
BITSET returns the previous value of the bit - yon check and set a flag in one step.

BITSET also provides some special functions if yoe aise of the following table no values:

-1 sets the BREAK key Inhibit bit
-2 sets the Command Level Restart feature
-3 sets the Break/End Restart feature

See alsoBITRESET

EXAMPLE

OLD.VALUE = BITSET (112)

PRINT OLD.VALUE

If table entry 112 is zero, returns a value of zeats bit 112 to one, and prints zero. If tableyehl2

is one, returns a value of one, and prints one.

38

BITTEST
Use the BITTEST function to test the bit number & ititeger specified by expression.

COMMAND SYNTAX
BITTEST (expression, bit#)
DESCRIPTION

The function returns 1 if the bit is set; it retufh# it is not; Bits are counted from right totleThe
number of the rightmost bit is 0.

If expression evaluates to the null value, nutkisirned. If bit# evaluates to null, the BITTEST
function fails and the program terminates with @-time error message.

Non integer values are truncated before the oper&iperformed.
EXAMPLE

PRINT BITTEST(11,0),BITTEST(11,1),BITTEST(11,2),BITTEST(11,3)
* The binary value of 11 = 1011

This is the program output:

1101

39

BITXOR
Use the BITXOR function to perform the bitwise X@Bmparison of two integers specified by

numeric expressions. The bitwise XOR operation ameptwo integers bit by bit. It returns a bit 1 if

only one of the two bits is 1; else, it returnst0b
COMMAND SYNTAX
BITXOR (expressionl, expression2)

DESCRIPTION

If either expressionl or expression2 evaluatekaaull value, null is returned.

Non integer values are truncated before the operétiperformed.

The BITXOR operation is performed on a 32-bit twosptement word.

NOTE: Differences in hardware architecture can nihkause of the high-order bit nonportable.

EXAMPLE

PRINT BITXOR(6,12)

* Binary value of 6 = 0110

* Binary value of 12 = 1100

This results in 1010, and the following output ispdayed:
10

40

BREAK

Allows configuration of the BREAK statement
COMMAND SYNTAX

BREAK / BREAK ON / BREAK OFF / BREAK expression
SYNTAX ELEMENTS

When used with an expression or the keywords O8I the BREAK statement enables or disables
the BREAK key for the current process. In UNIX teriiee BREAK key is known more commonly as
the interrupt sequence intr defined by the stty mamd.

Used as a standalone statement, BREAK will termitta¢ currently executing loop. The EXIT

statement is functionally equivalent to the BREAHKtsinent used without arguments.
NOTES

The use of BREAK is to terminate the innermost loglpich it ignores if used outside a loop construct.

The compiler will issue warning message 44, andrigitioe statement.

EXAMPLES

LOOP
READNEXT KEY FROM LIST1 ELSE BREAK

REPEAT
* Program resumes here after BREAK

41

BYTELEN

The BYTELEN function will return the length of the egpsion as the number of bytes rather than the

number of characters.

COMMAND SYNTAX
BYTELEN (expression)

SYNTAX ELEMENTS

The expression can return a result of any type.BYiEELEN function will then return the byte count

of the expression.
NOTES

The BYTELEN function will always return the actual bytount for the expression; irrespective of the
International Mode in operation at the time. Thimpares with the LEN function, which will return a
character count. The character count may diffenftioe byte count when processing in International
Mode.

42

CALL

The CALL statement transfers program execution texdarnal subroutine.
COMMAND SYNTAX
CALL {@}subroutine.name {(argument {, argument ..} })

SYNTAX ELEMENTS

The CALL statement transfers program execution tcstiheoutine called subroutine.name, which can
be any valid string either quoted or unquoted. TB&.L @ variant of this statement assumes that
subroutine.name is a variable that contains theenafithe subroutine to call.

The CALL statement may optionally pass a number cdrmpaters to the target subroutine. These
parameters can consist of any valid expressiorapable name. If a variable name is used then the
called program may return a value to the varialgletianging the value of the equivalent variablgsn

own parameter list.
NOTES

When using an expression to pass a parameter subreutine, you cannot use the built-in functions

of BASE BASIC (such as COUNT), within the expressi

An unlimited number of parameters can be passad &xternal subroutine. The number of parameters
in the CALL statement must match exactly the nungxpected in the SUBROUTINE statement
declaring the external subroutine.

It is not required that the calling program andéhternal subroutine be compiled with the same
PRECISION. However, any changes to precision inbaaiine will not persist when control returns

to the calling program.

Variables passed, as parameters to the subroutigenat reside in any COMMON areas declared in

the program.

EXAMPLES

CALL MySub

SUBROUTINEMySub
CALL Hello("World")

SUBROUTINE Hello (Message)
CALL Complex(i, j, k)

SUBROUTINE Complex(ComplexA, ComplexB, ComplexC)

43

CALLC

The CALLC command transfers program control to anragi€unction (c.sub.name).
The second form of the syntax calls a function whws®e is stored in a JBASE BASIC variable
(@var). The program could pass back return valugariables. CALLC arguments can be simple

variables or complex expressions, but not arrage. CALLC as a command or function.
COMMAND SYNTAX

CALLC c.sub.name [(argumentl[,argument2]...)]
CALLC @var [(argumentl[,argument2]...)]

Callinga C Programin jBASE
You must link the C program to jBASE before callihfrom a BASIC program. Perform the
following procedure to prepare jBASE for CALLC:

e Write and compile the C program.

e Define the C program call interface

e Build the runtime version of BASE (containing thiekied C program).

* Write, compile, and execute the Basic program

Calling a Function in Windows NT

The CALLC implementation in jBASE for Windows NT or Wiiows 2000 uses the Microsoft
Windows Dynamic Link Library (DLL) facility. This fadily allows separate pieces of code to call one
another without permanently binding together. Ligkbetween the separate pieces occurs at runtime
(rather than compile time) through a DLL interface.

For CALLC, developers create a DLL and then call Biat from jBASE.

EXAMPLES

In the following example, the called subroutinevasaa circle with its center at the twelfth row and

twelfth column and a radius of 3:

RADIUS =3
CENTER ="12,12"

CALLC DRAW.CIRCLE(RADIUS,CENTER)
In the next example, the subroutine name is stioréue variable SUB.NAME, and is indirectly called:

SUB.NAME = DRAW.CIRCLE

CALLC @SUB.NAME(RADIUS,CENTER)

The next example uses, CALLC as a function, assigthiegeturn value of the subroutine

44

PROGRAM.STATUS in the variable RESULT:

RESULT = CALLC PROGRAM.STATUS

45

CALLdOtNET
The CALLdotNET command allows BASIC to call any .NETeambly and is useful when using third

party applications.

COMMAND SYNTAX

CALLdotNET NameSpaceAndClassName, methodName, param SEfidt [ON ERROR
errStatment]

In order to use CALLdotNET, you need:

The .NET Framework

The dotNETWrapper.dll installed somewhere to wherg YWATH points.

NOTE:

The dotNETWrapper is loaded dynamically at runtirheréfore, a compiled basic application has no
dependencies on the .NET Framework. Loading the frametakes between (~5 -7 sec.). However,

this only occurs when calling the .NET method forfirs time.

SYNTAX ELEMENTS

NameSpaceAndClassName The “full” NameSpace (e.gNameSpace.myClass)
methodName The name of the .NET in this class (exyMethod”)
Param Any parameter (eg DynArray)

EXAMPLE

In C#:
using System;
using System.Windows.Forms;

namespace myNameSpace

{

public class Class1

{
public string sayHello(string str)
{

return “Thank you, | received : “ + str;

}
public Class1(){}

}

46

In VB.NET:
Namespace myNameSpace
Public Class Classl
Public Function sayHello(ByVal str As Stf)rAs String
Dim sAnswer As String
sAnswer = InputBox(str)
sayHello = sAnswer
End Function
End Class

End Namespace

Note: Create the .NET project as a ‘Class Library’.

If using the visual studio IDE, this option is orested when creating a new project:

If using .NET SDK (instead of the IDE) to
x|
—..(| compile class libraries into a ‘DLL’ file,
Project Types: Templatef: Ej p
3 Visual Basic Frojects = =l | the ‘csc’ (C# Compiler) or ‘vbc’ (Visual
{10 Visual C# Projects = E
{3 visual C++ Praject i 5 ary i i
"2 Setup and Deployment Prajects el B Ahows Basic .NET compiler) command can be
{:I Other Projects)
{0 visual stuio Sclutirs = & used from the command line:
g i
ASP.MET Web ASP.MET Web web Control
Application Service Library LI
A project For creating classes to use in other applications csc /Out myN ameSpace . d” /target | | brary
Mame; | ClassLibraryz fl
Location: it 5 eowse.. | sourcetiie.cs
Project will be created at C:itemplClassLibraryz,
_ vz | >x] @ | vk || The name of the *.DLL’ created must be

the same as the ‘namespace’ as used in the diaasyli locate the ‘dotNetWrapper.dIl’ library:

After creating the library, place it in the samevate directory as the application. (i.e. the same
directory as the BASE BASIC executable that will tike class) This is a requirement of the .NET

paradigm and not jBASE. The directory should alsinktee PATH environment variable.

INNT " System32,cmd.exe

C:\CALLdotNET_Basic>csc fout:myNameSpace.dll /target:library Classl.cs
Hicrosoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .MET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

C:\CALLdotMET Basic>DIR myMameSpace.DLL
Volume in drive C has no label.
Yolume Serial Number 1s 8872-3388

Directory of C:\CALLdotMET_Basic

B5/04/2003 13:31 4,096 myNameSpace.dll
1 File(s) 4,096 bytes
0 Dirl(s) 7,724,974,080 bytes free

47

To call these methods from Basic:
CALLdotNET "myNameSpace.Class1","mymethod”, p SETTING re
CRT ret

ON ERROR

You can manage any errors, which occur during #tle at the BASIC level by getting the

SYSTEM(0) variable.

This variable can have the following values:

Not a Windows platform.

Cannot load the dotNETWrapper
Cannot get assembly

Cannot get Class

Cannot get Method

Cannot Create Instance
Unhandled Error in the .NET library

N o g s~ DN e

EXAMPLE

BASIC code using the ON ERROR would look like this:

PROGRAM testCALLdotNET
ns.className ="
methodName ="
param ="
CRT "Please enter NameSpace.ClassName :
INPUT ns.className
CRT "Please enter a Method Name : "
INPUT methodName
CRT "Please enter a Parameter : "
INPUT param

CALLdotNET ns.className, methodName, param SETTING
GOSUB errHandler

CRT "Received back from .NET : " : ret

ret ON ERROR

48

STOP
errHandler:

err = SYSTEM(0)

BEGIN CASE
CASE err=2
CRT "Cannot find dotNETWrapper.dil”
CASE err=3
CRT "Class " : className : "doesn't exist !"
CASEerr=5
CRT "Method " : methodName : "doesn't exist !"
END CASE
RETURN

49

CALLJ

The CALLJ command allows BASIC to call a Java metl@@AlLLJ is useful when using third party

applications offering a Java API (for example, jmtbhnd subscribe, messaging, etc.)

COMMAND SYNTAX

CALLJ packageAndClassName, [$)methodName, param SET TING ret [ON
ERROR] errStatment

In order to use CALLJ, you need:

* A Java virtual machine

» CLASSPATH environment variable set to point on tles€ you want to invoke
NOTES

The Java virtual machine is loaded dynamically atinbe, so a compiled basic application has no
dependencies on any Java virtual machine. By dethael program will search for:

jvm.dll on Windows platforms

libjvm.sl on HP UNIX

libjvm.so for other platforms

Although it is not usually necessary, it is possitd specify a Java library by setting the JBCIJVMLIB
environment variable:

set JBCIJVMLIB= C:\jdk1.3.1\jre\bin\classic\jvm.dll

PERFORMANCE CONSIDERATIONS

The first call to CALLJ carries the overhead of loagihe Java Virtual Machine into memory.
Susequent calls do not have this overhead andet@mmended that programs are structured in such a

way that the Java Virtual Machine is only loadedean

In addition, calls to non static methods carrydkierhead of calling the constructor for the class.

Wherever possible, static methods should be used.:

SYNTAX ELEMENTS

packageAndClassNamdhe “full” class name (e.g., com.jbase.util.utilGas

methodNameThe name of the Java method in this class (e.g/M&thod”)

NOTE: If the method is static, you must append @#fore the name. This ‘$’ will be removed from
the method name before calling it.

Param Any parameter (eg DynArray)
EXAMPLE

In Java:

50

package mypackage;
public class mytestclass {
static inti=0;
private mytestclass() {
}
public String mymethod(String s){
return (“Java Received : “ +s) ;
}
public static String mystaticmethod(String s){
i++;

returns+"" +i;

To call these methods from jBASE BASIC:

CALLJ "mypackage.mytestclass”,"mymethod”, p SETTING ret

CRT ret

CALLJ "mypackage/mytestclass”,"$mystaticmethod",p S ETTING ret
CRT ret

ON ERROR

Use the SYSTEM(0) variable to manage any errorseaBASIC level, which occur during the call.

This variable can have the following values:

Fatal error creating thread

Cannot create JVM

Cannot find class

Unicode conversion error

Cannot find method

o O &~ W N| B

Cannot find object constructor

51

7 Cannot instantiate object

EXAMPLE

JBASE BASIC code using the ON ERROR wiill look likégh

PROGRAM testcallj
className ="
methodName ="
param ="
CRT "Please enter a Class Name : " INPUT className
CRT "Please enter a Method Name : " INPUT methodNa me
CRT "Please enter a Parameter : " INPUT param

CALLJ className,methodName, param SETTING ret ON E RROR GOTO
errHandler

CRT "Received batch from Java : " : ret
RETURN
errHandler:
err = SYSTEM(0)
IF err =2 THEN
CRT "Cannot find the JvM.dIl "
RETURN
END
IF err =3 THEN
CRT "Class " : className : "doesn't exist !"
RETURN
END

IF err=5THEN

CRT "Method " : methodName : "doesn't exist !"
RETURN
END

END

The CALLJ function provides access to a JavaVM froithinithe BASIC environment. For it to be
able to start a JavaVM (JVM) the environment ndedsiow where the JVM is located. Specifically it

needs to know where certain libraries are located.

WINDOWS

Windows: looking for jvm.dll'

Add "c:\jdk1.3.1_07\jre\bin\server" to the PATH eroriment variable.
A generic format might be %JDKDIR%\jre\bin\server.
UNIX

For UNIX it is possible to configure generic symbdinks to make profiles portable.

Location of JDK export JDKDIR=/opt/javal.3

Symbolic link for JRE libs /opt/javal.3/jrelib
Symbolic link for JVM library /opt/javal.3/jvnidi
Linux
/opt/javal.3/jrelib -> /opt/javal.3/jre/lib/i88
/opt/javal.3/jvmlib -> /opt/javal.3/jre/lib/iBB&erver

.profile:

Add “/opt/javal.3/jrelib:/opt/javal.3/jvmlib” to thLD_LIBRARY_PATH
HP-UX
/opt/javal.3/jrelib -> /opt/javal.3/jre/lib/PRISC2.0
/opt/javal.3/jvmlib -> /opt/javal.3/jre/lib/PRISC2.0/server

.profile:
Add “/opt/javal.3/jrelib:/opt/javal.3/jvmlib” to thSHLIB_PATH

AIX -- (IBM JDK)

/opt/javal.3/jrelib ->/opt/javal.3/jre/bin
/opt/javal.3/jvmlib -> /opt/javal.3/jre/bin/sksic

53

.profile:
Add “/opt/javal.3/jrelib:/opt/javal.3/jvmlib” to thLIBPATH

Solaris
/opt/javal.3/jrelib -> /opt/javal.3/jre/lib/gpa

/opt/javal.3/jvmlib -> /opt/javal.3/jre/lib/sméserver

.profile:
Add “opt/javal.3/jrelib:/opt/javal.3/jvmlib” to theD_LIBRARY_PATH

Examples using JVM WITHOUT symbolic links as above:

Linux: looking for 'libjvm.so'

Add 2 directories to LD_LIBRARY_PATH.
/opt/javal.3/jre/lib/i386/server:/opt/javal.3/jib/1386

Solaris: looking for 'libjvm.so’

Add 2 directories to LD_LIBRARY_PATH.
/opt/javal.3/jrellib/sparc/server:/opt/javal.3ljE@sparc

HP-UX 11: looking for 'libjvm.slI'

Add 2 directories to SHLIB_PATH.
/opt/javal.3/jre/lib/PA_RISC2.0/server:/opt/javajrdlib/PA_RISC2.0

OPTIONS:

JBCJIVMLIB

If the searched for library appears incorrect fouryplatform, then you can override it by settihg t
JBCJVMLIB environment variable.

e.g. "export JBCIVMLIB=jvm.shared_lib"

and then CALLJ will try to locate the library ‘jvrhared_lib' at runtime.

JBCIVMPOLICYFILE

You can specify a policy file for the IMV. The pmlifor a Java application environment (specifying

which permissions are available for code from wagisources) is represented by a Policy object. More

54

specifically, it is represented byPalicy subclass providing an implementation of the albstra
methods in th@olicy class (which is in thpva.security package). You can override it by
setting the JBCIJVMPOLICYFILE environment variable.
The source location for the default policy informatis
WINDOWS

%JBASERELEASEDIR%\config\policy.all

UNIX
$IJBASERELEASEDIR/config/policy.all

e.g. "export IBCIVMPOLICYFILE =/usr/jbase/mypolialy:

JBCJVMENCODING

Internally, the Java virtual machine always operatih data in Unicode. However, as data trandters
or from the Java virtual machine, the Java virtnathine converts the data to other encodingself th
you want to change the default encoding of the Brour platform, then you can override it by
setting the JBCJVMENCODING environment variable.

e.g. "export JBCIVMENCODING = Cp1257"

JBCIVMNOOPTS

Internally, the CALLJ is optimum to start the JVM lvibptions (see below the table). If the you don’t

want to pass these options for the JVM, then youcserride it by setting the JBCIJVMNOOPTS
environment variable. In this case no more optigitishe pass to the JVM.

DEFAULT OPTIONS

Win32: -Xrs

TRUEG4: -Xcheck:jni

Solaris: -XX:+AllowUserSignalHandlers
Linux: -Xrs -XX:+AllowUserSignalHandlers
AlX 32 bits: -Xrs -Xnocatch

AlX 64 bits: -Xrs -d64

HPUX 32 bits:

HPUX 64 bits: -Xrs -XX:+AllowUserSignalHandlers
JBCJVMOPTI1..5]
If the you want to pass some options for the J\iMntyou can set by setting the JBCIJVMOPT[1..5]

environment variable

e.g. "export IBCIVMOPT1=-Xrs"

55

KNOWN LIMITATIONS

HP-UX
There is a problem with HP-UX due to it's dynamiader. See man dlopen(3C) for detail of the TLS

limitation.

This means that the JVM library must be linked asfzine calling program, there are no known

problems caused by this.

'ldd progname' lists current external librarferences and we need to add libjvm.

The result looks like this:

JVM: dl_error [Can't dlopen() a library cainting Thread Local Storage: libjvm.sl]

If the program is built with the required link asléw then it works.

jbc =Jo callj.b -ljvm -L/opt/javal.3/jre/lib/PRISC2.0/server

If the CALLJ statement is inside a subroutine, thengrogram that calls the subroutine must be built

as above.

Examples using JVM WITHOUT symbolic links as above:

Linux: searching for 'libjvm.so'

Add 2 directories to LD_LIBRARY_PATH.

/opt/javal.3/jre/lib/i386/server:/opt/javal.3/jre/l ib/i386

Solaris: searching for 'libjym.so’

Add 2 directories to LD_LIBRARY_PATH.

/opt/javal.3/jre/lib/sparc/server:/opt/javal.3/jre/ lib/sparc

HP-UX 11: searching for 'libjym.sl'

Add 2 directories to SHLIB_PATH.

/opt/javal.3/jre/lib/PA_RISC2.0/server:/opt/javal.3 firellib/PA_RISC2.
0

56

OPTIONS

JBCJVMLIB

If the search for the library appears incorrectyfour platform, then you can override it by settihg
JBCJVMLIB environment variable.

e.g. 'export JBCIVMLIB=jvm.shared_lib "

and then CALLJ will try to locate the library 'jvrhared_lib' at runtime.

JBCIVMPOLICYFILE

You can specify a policy file for the JMV. The polifor a Java application environment (specifying
which permissions are available for code from wagisources) is represented by a Policy object. More
specifically, it is represented by a Policy subglpsoviding an implementation of the abstract mésho

in the Policy class (which is in the java.secupickage). You can override it by setting the
JBCJIJVMPOLICYFILE environment variable.

The source location for the default policy informatis:

WINDOWS

%JBASERELEASEDIRY\config\policy.all

UNIX

$JBASERELEASEDIR/config/policy.all

e.g. "export IBCIVMPOLICYFILE =/usr/jbase/mypoliay:

JBCJVMENCODING

Internally, the Java virtual machine always opeyatith data in Unicode. However, as data trandters
or from the Java virtual machine, the Java virtnathine converts the data to other encodingself th
you want to change the default encoding of the Brour platform, then you can override it by
setting the JBCJVMENCODING environment variable.

e.g. "export JIBCIVMENCODING = Cp1257"

JBCIVMNOOPTS

57

Internally, CALLJ is optimized to start the JVM witiptions (see the table below). If you don’t want
to pass these options for the JVM, then you camrigheit by setting thdBCIVMNOOPTS

environment variable. In this case no more optisitihe passed to the JVM.

DEFAULT OPTIONS

Win32: -Xrs

TRUEG64: -Xcheck:jni

Solaris: -XX:+AllowUserSignalHandlers
Linux: -Xrs -XX:+AllowUserSignalHandlers
AIX 32 bits: -Xrs -Xnocatch

AlX 64 bits: -Xrs -d64

HPUX 32 bits:

HPUX 64 bits: -Xrs -XX:+AllowUserSignalHandlers

JBCJVMOPT[L..5]

If the you want to pass some options for the J\iMdntset thdBCIVMOPT[1..5] environment

variable

e.g. "export JIBCIVMOPT1=-Xrs "

KNOWN LIMITATIONS

HP-UX

There is a problem with HP-UX due to its dynamiadea See man dlopen(3C) for detail of the TLS

limitation.

This means that the JVM library must be linked asfatiine calling program, there are no known

problems caused by this.

'ldd progname' lists current external librarferences and we need to add libjvm.

The symptom looks like this:

JVM: dl_error [Can't dlopen() a library cainting Thread Local Storage: libjvm.sl]

If the program is built with the required link asléw then it works.

58

jbc =Jo callj.b -ljvm -L/opt/javal.3/jre/lib/PRISC2.0/server

If the CALLJ statement is inside a subroutine, thengrogram that calls the subroutine must be built

as above.

59

CALLONEXIT
The CALLONEXIT function call allows you to specify tiiame of a SUBROUTINE to call when the

program terminates.
COMMAND SYNTAX

rc = CALLONEXIT("ErrorExit")

The subroutine definition would look like this

SUBROUTINE CALLONEXIT(parm1l)

You can add parameters to the error subroutinedtdiyng multi-values to the parameter to

CALLONEXIT, which are passed to the called subroutmthe first parameter.

If you execute CALLONEXIT multiple times with the sarsubroutine name, it discards other calls.
If you execute CALLONEXIT multiple times with a diffent subroutine name, then upon exit multiple
subroutines will be called in the order that CALLONHEXvas called.

EXAMPLES

For example, consider the simple programs below.@logram enters the debugger. If at this point the
login session terminates for any reason (the Inopsl the program is killed, the user enters atfthe
debugger prompt) , the two specified subroutinesofExit and EndProgram) will still be called just a

they would if the program were allowed to terminademally.

PROGRAM PROG1
rc = CALLONEXIT("ErrorExit")

EXECUTE "PROG2"

PROGRAM PROG2
rc = CALLONEXIT("EndProgram")

DEBUG

All efforts are made to call the subroutine undeciecumstances. However, if a SIGKILL (signal 9)
terminates the program, which cannot be trappebhdas not call the subroutine. This is a feature of
operating systems, not a limitation. In additidrthe program terminates due to say a memory error,

then calling the subroutines depends upon how khdlynemory error has corrupted the memory.

60

CASE

The CASE statement allows the programmer to execptaticular sequence of instructions based

upon the results of a series of test expressions.
COMMAND SYNTAX

BEGIN CASE

CASE expression statement(s)
CASE expression
statement(s)

END CASE

SYNTAX ELEMENTS

The BEGIN CASE and END CASE statements bound theEEgtBicture. Within this block, an
arbitrary number of CASE expression statements enast followed by any number of JBASE BASIC
statements. The expression should evaluate to a T®RBBLSE result. The evaluation of each
expression at execution time is in order. If thpression returns a TRUE result, it then executes the
statements below. On completion of the associdtdrmaents, execution will resume at the first
statement following the END CASE.

NOTES: A default action (to trap error conditions iftstance) may be introduced by using an
expression that is always TRUE, such as CASE one.shiisld always be the last expression in the
CASE block.

EXAMPLE
BEGIN CASE
CASEA=1
CRT "You won!"
CASE 1
CRT "You came nowhere"

END CASE

A single comment is printed depending on the valua.

NOTE: that if A is not 1 then the default CASE 1 rnaldl be executed as a "catch all".

61

CATALOG Command

Cataloging and Running your Programs

Use the CATALOG command to create UNIX executablessirared libraries from the application
source code. Once you have cataloged your progsaus;an run them like any other command on
the system.

The RUN command which is sometimes used to exeampited BASE BASIC programs without
cataloging them can still be used but is reallyonéintained for compatibility. Whenever possible,

you should catalog your programs rather than RUnth

The CATALOG command should be executed from the agfidin directory rather than using link
names and the application id should be used. Tls®nedor executing the CATALOG command from
the application directory and application id arattthe .profile script will have set up the reqdire
environment variables correctly and that the caikrpermission will be used when creating and

deleting UNIX executables and directories.

The format of the CATALOG command is as follows.
CATALOG SourceFilename Itemlist

When first invoked the CATALOG command will creat@ldOME/bin directory into which the UNIX
executables will be placed. A $HOME/Iib directorylmiso be created into which any subroutines will
be placed. The lib directory contains a jLibDefimitifile, which describes how to build the subroesin

into shared libraries. The entries in the jLibDefon file are described below:

libname naming convention for shared object files.
exporthame export list of shared objects. Used@ssaeference to find subroutine functions.

maxsize maximum size of a shared object librarpteetreating another.

When the maximum size of a shared library objectéched then a new shared library object will be
created by the CATALOG command. The new shared {fwbjects are named according to the

definition of libname and are numbered sequenti<yr example:

libname=lib%a%n.so
where
%a = account or directory name

%n = number in sequence.

If subroutines were cataloged in the user accoama; fred then the shared object libraries produced
would be named, libfred0.so libfred1.so libfred2asm so on.

62

Note: To guard against libraries being catalogedrirectly, perhaps under the wrong user account
name, the definition of libname should be changdibfred%n.so. This will ensure that any shared

objects are created using the proper user acceumné n

The shared library objects, .so files, contain tiNdXJexecutables for subroutine source code. The
shared library objects are linked at runtime byjB%SE call function, which utilises the dynamic
linker programming interface. The dynamic linkerlWiik shared libraries at the start of program
execution time, or when requested by the [BASH function. For example, each executable cteate
using the jBASEcompiler will be linked with the [BASEEDI library functions, libjedi.so, at
compilation time. This shared library enables datalracord retrieval and update and will be loaded
into memory by the dynamic linker when an applmatexecutable starts execution. However the
shared library containing any subroutines requingthe executing program will only be loaded into
memory when initially requested by the subroutiakk ©nly one copy of any shared library is regdire
in memory at any time, thus reducing program memegquirements.

The $HOME!/lib directory also contains a directory wehall the subroutine objects, .o files, are held.
These are required for making the shared libraoyfilss.

The $SHOME!/lib directory also contains an export list file, built by the CATALOG command,

which is used as a cross reference when dynamiaatiyg shared objects at run time.

The main application program executables are pladedhe $HOME/bin directory.

To enable the application executables to be foua@HOME/bin path should be added to the PATH
environment variable.

To enable the executing application to call theexrapplication subroutines the JBCOBJECTLIST or
LD_LIBRARY_PATH environment variable should be assdro the application shared library path,
$HOME/lib. If the main application program or anypsoutine programs make calls to subroutines in
other directories then the path of the sharedryjbd&ectories should also be added to the
JBCOBJECTLIST or LD_LIBRARY_PATH environment variable.

It is recommended that executables or subroutiibteecsame name are not available from different
directories. This can make application executiory eenfusing and is reliant on assigning the lib or
bin directories to the environment variable in therect sequence. The assignment of the environment
variables should be included and exported in thafilp script file.

Executables and shared library objects can be resrioom the bin and lib directories by using the
DECATALOG command.

63

CATS

The CATS function concatenates the correspondingegitsin two dynamic arrays.
COMMAND SYNTAX

CATS (DynArrl, DynArr2)

SYNTAX ELEMENTS

DynArrl and DynArr2 represent dynamic arrays.

NOTES

If one dynamic array supplied to the CATS functiomull then the result of the CATS function is the

non-null dynamic array.

EXAMPLES

X ="a":@VM :"b": @VM : "c"
B=1:@VM:2: @VM:3

Z = CATS(X, Y)

The assigned value to variable Z is:

al: @VM :b2: @VM: c3
A="a": @SVM:"b": @VM :"c": @VM : "d"
B="X":@VM:"y": @SVM : "z"

C = CATS(A, B)

The assigned value to variable C is:

ax: @SVM:b: @VM:cy: @SVM:z: @VM : d

64

CHAIN

The CHAIN statement exits the current program aandifers process control to the program defined

by the expression. Process control will never retarthe originating program.
COMMAND SYNTAX
CHAIN expression

SYNTAX ELEMENTS

The expression should evaluate to a valid UNIX ondféiws command (this may be another BASE
BASIC program). The command string may be suffixétth whe (I option, which will cause any
COMMON variables in the current program to be itieerby the new program (providing it is a
JBASE BASIC program).

NOTES

There are no restrictions to the CHAIN statementyandmay CHAIN from anywhere to anywhere.
However, it is advisable that your program follcaviogical path easily seen by another programmer.
If the program, which contains the CHAIN commartte(turrent program) was called from a JCL
program, and the program to be executed (the targgtam) is another BASE BASIC program,
control will return to the original JCL program whtre target program terminates. If the target

program is a JCL program, control will return to tmenmand shell when the JCL program terminates.

EXAMPLES

CHAIN "OFF" ;* exit via the OFF command

I Progl
COMMON A,B
A =50; B=100

CHAIN "NEWPROG (I"
I NEWPROG
COMMON I,J

I'l and J inherited

CRTIJ

65

CHANGE

The CHANGE statement operates on a variable andagegplall occurrences of one string with another.
COMMAND SYNTAX

CHANGE expressionl TO expression2 IN variable

SYNTAX ELEMENTS

expressionl- may evaluate to any result and is the stringhafracters that will be replaced.
expression2- may also evaluate to any result and is thegwifrcharacters that will replace

expressionl- The variable may be any previously assigned i the program.
NOTES

There is no requirement that strings be of the dangth. The BASE BASIC language also supports
the CHANGE function for compatibility with older stems.

EXAMPLES

Stringl = "Jim"

String2 = "James"

Variable = "Pick up the tab Jim"
CHANGE Stringl TO String2 IN Variable

CHANGE "tab" TO "check" IN Variable

66

CHANGETIMESTAMP

Use CHANGETIMESTAMP to adjust existing timestamp éturn new timestamp value.
COMMAND SYNTAX

CHANGETIMESTAMP (Timestamp, Array)

SYNTAX ELEMENTS

The CHANGETIMESTAMP function generates a hew timestdayjadjusting an existing timestamp

value using the elements specified in the dynamaya

The format of the adjustment array is as follows:
Years"Months"Weeks"Days"Hours"Minutes"Seconds”$4ilibnds

67

CHAR

The CHAR function returns the ASCII character spediby the expression.
COMMAND SYNTAX
CHAR (expression)

SYNTAX ELEMENTS

The expression must evaluate to a numeric argumeheirange 0-255, which is the entire ASCII

character set.
INTERNATIONAL MODE

The CHAR function will return Unicode values enco@asdUTF-8 byte sequences as follows:
Expression values 0 — 127 return UTF-8 single bytgadters equivalent to ASCII.
Expression values 127 — 248 return UTF-8 double blyégacter sequences.

Expression values 249 — 255 return system delimibei® — Oxff

Expression values > 255 return UTF-8 multi byte ctimrasequences

When system delimiter values are not specificatyuired, generate UTF-8 byte sequences using the
UTFS8 function. i.e. X = UTF8(@AM) will generate a UBbyte sequence in variable X for the

system delimiter equating to Unicode value 0x006€00
NOTES

JBASE BASIC variables can contain any of the ASClaracters 0-255, thus there are no restrictions
on this function.

Use this function to insert field delimiters witharvariable or string; these are commonly equated t
AM, VM, SV in a program.

See alsoCHARS

EXAMPLES

EQUATE AM TO CHAR (254) ;* field Mark
EQUATE VM TO CHAR(253) ;* value Mark
EQUATE SV TO CHAR(252) ;* sub Value mark

CRT CHAR (7): ;* ring the bell

CHARS

The CHARS function accepts a dynamic array of nutrexpressions and returns a dynamic array of

the corresponding ASCII characters.

COMMAND SYNTAX

68

CHARS (DynArr)

SYNTAX ELEMENTS

Each element of DynArr must evaluate to a numegamuent in the range 0-255.
NOTES

If any of the dynamic array elements are non-nuenerrun-time error will occur.
See alsoCHAR ().

EXAMPLE
y=58: @AM : 45 : @AM : 41
z = CHARS (y)
FORi=1TO3

CRT z<i>:

NEXT i

This code displays: :-)

69

CHDIR

The CHDIR function allows the current working dirast, as seen by the process environment, to be

changed.
COMMAND SYNTAX
CHDIR (expression)

SYNTAX ELEMENTS

The expression should evaluate to a valid path nwithén the file system. The function returns a
Boolean TRUE result if the CHDIR succeeded and a&ooFALSE result if it failed.

EXAMPLES

IF CHDIR ("/ust/jBASIC/src") THEN
CRT "JBASE development system INSTALLED"
END
IF GETENV("JBASICGLOBALDIR", jgdir) THEN
IF CHDIR (jgdir:"\config") ELSE
CRT "JBASE configuration cannot be found."”

ABORT
END
END

70

CHECKSUM

The CHECKSUM function returns a simple numeric chaok®f a character string.
COMMAND SYNTAX
CHECKSUM(expression)

SYNTAX ELEMENTS

The expression may evaluate to any result but willblly be a string. The function then scans every

character in the string and returns a numeric ewiddf the characters within the string.
NOTES

The function calculates the checksum by summingpthduct of the ASCII value of each character

and its position within the string.

EXAMPLES

INPUT DataBlock,128:
IF CHECKSUM(DataBlock) = ExpectedChk THEN
CRT AckChar:

END

71

CLEAR

The CLEAR statement will initialize all the variablEesnumeric 0.
COMMAND SYNTAX
CLEAR

NOTES

Use CLEAR at any time during the execution of thegpam.
EXAMPLES

Varl =99

Var2 =50

CLEAR

72

CLEARCOMMON

The CLEARCOMMON statement initializes all unnamed ooon variables to a value of zero.
COMMAND SYNTAX
CLEARCOMMON

SYNTAX ELEMENTS

None

73

CLEARDATA
The CLEARDATA statement clears data stacked by the DAfAement.

COMMAND SYNTAX
CLEARDATA

SYNTAX ELEMENTS

None

74

CLEARFILE

Use the CLEARFILE statement to clear all the datenfeofile previously opened with the OPEN
statement.

COMMAND SYNTAX

CLEARFILE {variable} {SETTING setvar} {ON ERROR statemets

SYNTAX ELEMENTS

The variable should be the subject of an OPEN stateb®fore the execution of CLEARFILE upon it.
If the variable is omitted from the CLEARFILE staterjéhassumes the default file variable as per the
OPEN statement.

NOTES

The CLEARFILE statement will remove every databaserckon the file against which it is executed,
therefore, use with caution.

If the variable argument does not describe a ptsiyoopened file, the program will enter the
debugger with an appropriate message.

If the SETTING clause is specified and the CLEARFILE fatlsets setvar to one of the following
values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error
EXAMPLES

OPEN "DATAFILE" ELSE ABORT 201, "DATAFILE"

OPEN "PROGFILE" TO FILEVAR ELSE ABORT 201, "PROGFIL E"

CLEARFILE
CLEARFILE FILEVAR

75

CLEARINPUT

The CLEARINPUT command clears the terminal type-atlméter to allow the next INPUT statement

to force a response from the user.
COMMAND SYNTAX
CLEARINPUT

EXAMPLE

In the following example, the CLEARINPUT statementctethe terminal type-ahead buffer to
provoke a response from the user to the prompt:

CLEARINPUT
PRINT "DO YOU WANT TO DELETE THIS FILE?(Y OR N)"; | NPUT X,1

NOTE: The CLEARINPUT command is synonymous with INPUEZR.

76

CLEARSELECT
Use the CLEARSELECT statement to clear active selsst li

COMMAND SYNTAX
CLEARSELECT {ListName | ListNumber}

SYNTAX ELEMENTS

ListName must evaluate to a [JBASE BASIC list varialilistNumber is one of the numbered lists in

the range 0 to 11. If neither ListName nor ListNumdwe specified then it clears the default list (0)

EXAMPLE

A ="good": @AM : "bad" : @AM : "ugly"
B ="night" : @AM : "day"
SELECTATO 3

SELECT B TO blist

adone = 0; bdone =0

LOOP
READNEXT Ael FROM 3 ELSE adone =1

READNEXT Bel FROM blist ELSE bdone =1
UNTIL adone AND bdone DO

CRT Ael, Bel

CLEARSELECT 3

CLEARSELECT blist

REPEAT

This program displays: good night

77

CLOSE
Use the CLOSE statement to CLOSE an opened fileshwikino longer required

COMMAND SYNTAX

CLOSE variable{, variable ...}

SYNTAX ELEMENTS

The variable list should contain a list of previguspened file variables that are no longer neetikd.

variables will be cleared and may be reused asargivariables.

NOTES: You can open an unlimited amount of filehimiBASE BASIC; however leaving them
open consumes valuable system resources.

Use good practice to hold open only those file dp&irs to which you have constant access.

EXAMPLES
OPEN "DATAFILE" TO FILEVAR ELSE ABORT 201, "DATAFIL E"

CLOSE FILEVAR

78

CLOSESEQ
CLOSESEQ closes the file previously opened for setipleaccess.

COMMAND SYNTAX
CLOSESEQ FileVvar

SYNTAX ELEMENTS

FileVar contains the file descriptor of the prevdlyuopened sequential file

79

COL1 and COL2

Use these functions in conjunction with the FIELDdtion to determine the character positions 1

position before and 1 position after the locatibthe last field.
COMMAND SYNTAX
COL1()/ COL2()

NOTES

When a field has been located in a string, it metimes useful to know its exact position withie th
string to manipulate either it, or the rest of gtreng. COL1() will return the position of the chater
immediately before the last field located. COL2{)} veturn the position of the character immedigtel

after the end of the last field located. Use themrmanipulate the string.

EXAMPLES
A="AB,C,DE"

Fld = FIELD(A, ",", 2)
CRT COL1()

CRT COL2()

Displays the values 2 and 4

80

COLLECTDATA

Use the COLLECTDATA statement to retrieve data passed the PASSDATA clause of an
EXECUTE statement.

COMMAND SYNTAX

COLLECTDATAvariable

SYNTAX ELEMENTS

variable is the name of the variable, which is to storerttigeved data.
NOTES

Use the COLLECTDATA statement in any program, whicBXECUTEd (or PERFORMed) by
another program where the calling program uses@3PMTA clause. The EXECUTEd program uses
a COLLECTDATA statement to retrieve the passed data.

If a PASSDATA clause is not in effect, variable Mié assigned a value of null.

EXAMPLE

FIRST
001 EXECUTE "RUN JBASIC_PROGS SECOND" PASSDATA "Han dover"

SECOND
001 COLLECTDATA PassedMessage

002 CRT PassedMessage

In the above example, program FIRST will EXECUTE prog&BCOND and will pass the string
"Handover" in the PASSDATA clause. Program SECONIiDeaees the string to a variable

PassedMessage and prints the string on the Terstregn.

81

COMMON

The COMMON statement declares a list of variablasraatrices that can be shared among various

programs. There can be many common areas includilefeallt, unnamed common area.
COMMAND SYNTAX
COMMON {/CommonName/} variable{, variable ... }

SYNTAX ELEMENTS

The list of variables should not have been declaredferenced previously in the program file. The
compiler will detect any bad declarations and dig@uitable warning or error messages. If the
common area declared with the statement is to beddhen the first entry in the list should be a

string, delimited by the / character.
NOTES

The compiler will not, by default, check that vatedbdeclared in COMMON statements are initialized
before they have been used as this may be beyerattipe of this single source code check. The -JCi
option, when specified to the BASE BASIC compileill force this check to be applied to common
variables as well. The initialization of named conmni®controlled in the Config_ EMULATE file.
Variables declared without naming the common aragp omly be shared between the program and its
subroutines (unless CHAIN is used). Variables dedan a named common area may be shared across
program boundaries. When any common area is shaltgmtpgrams using it should have declared the
same number of variables within it.

Dimensioned arrays are declared and dimensionddnvilie COMMON statement.

EXAMPLES

COMMON A, B(2, 6, 10), c

COMMON/Commonl/ A, D, Array(10, 10)

82

COMPARE

The COMPARE function compares two strings and retarmalue indicating whether or not they are
equal.

COMMAND SYNTAX

COMPARE(expressionl, expression2{, justification})

SYNTAX ELEMENTS

expressionlis the first string for comparison

expression2is the second string for comparison

justification specifies how the strings are to be compared.ritlicates a left justified comparison.
"R" indicates a right justified comparison. Thealdf is left justification.

The function returns one of the following values:

-1 The first string is less than the second

0 The strings are equal

1 The first string is greater than the second
EXAMPLE

A ="XY999"

B ="XY1000"

R1 = COMPARE(A,B,"L")
R2 = COMPARE(A,B,"R")

CRT R1,R2

The code above displays 1 -1, which indicates théQ99 is greater than XY1000 in a left justified
comparison and XY999 is less than XY1000 in a rjghktified comparison.

INTERNATIONAL MODE

When using the COMPARE function in International Mothe function will use the currently
configured locale to determine the rules by whiablestring is considered less than or greatertth@an

other will.

83

CONTINUE

The CONTINUE statement is the complimentary staterteetite BREAK statement without

arguments.
COMMAND SYNTAX

Use the statement within a loop to skip the renngjrgiode in the current iteration and proceed direct

on to the next iteration.
NOTES

See alsoBREAK, EXIT
The compiler will issue a warning message and igtitrestatement if it is found outside an iterative
loop such as FOR...NEXT, LOOP...REPEAT.

EXAMPLES

FORI1=1TO 30
IF Pattern(l) MATCHES "ON" THEN CONTINUE
GOSUB ProcessText

NEXT |

The above example will execute the loop 30 timesabiibnly call the subroutine ProcessText when

the current array element of Pattern is not a niowatue or null.

84

CONVERT

The CONVERT function is the function form of the COBNT statement. It performs exactly the

same function but may also operate on an expresatbar than being restricted to variables.
COMMAND SYNTAX
CONVERT (expressionl, expression2, expression3)

SYNTAX ELEMENTS

expressionlis the string to which the conversion will apply.
expression2is the list of all characters to translate in exgsionl.

expression3is the list of characters that will be converted t

NOTE: For Prime, Universe and Unidata emulations:
expressionlis the list of all characters to translate in egsionl.
expression2is the list of characters that will be converted t

expression3dis the string to which the conversion will apply.

See also: thEONVERT statement.

EXAMPLES

Value = CONVERT (Value, "#.,", "$,.")
Value = CONVERT(PartCode, "abc", "ABC")

Value = CONVERT(Code, "1234567890", "0987654321")

85

CONVERT (STATEMENT)

The CONVERT statement converts one or more characterstring to their corresponding

replacement characters.
COMMAND SYNTAX
CONVERT expressionl TO expression2 IN expression3

SYNTAX ELEMENTS

expressionlis the list of all characters to translate in egsion3
expression2is the list of characters that will be converted t

expression3is the string to which the conversion will apply.
NOTES

There is a one to one correspondence between thectdrs in expressionl and expression2. That is,
conversion of character 1 in expressionl to chardcin expression2, etc.
See also: th€ONVERT function.

EXAMPLE

Value = '"ABCDEFGHIJ'

CRT 'Orignal: ":Value
CONVERT 'BJE' TO ~+!"IN Value
CRT 'Converted: Value

Orignal: ABCDEFGHIJ

Converted: AACD!FGHI+

86

COS

The COS function calculates the cosine of any angjieg floating point arithmetic, then rounds to the
precision implied by the BASE BASIC program, whiciakes it very accurate.

COMMAND SYNTAX

COS(expression)

This function calculates the cosine of an expression

SYNTAX ELEMENTS

The expression must evaluate to a numeric resaltrontime error will occur.
NOTES

Assumes the value returned by expression is inegsgr

EXAMPLES

FORI1=1TO 360
CRT COS(l) ;* print cos i for 1 to 360 degrees

NEXT |

87

COUNT

The COUNT function returns the number of times thra string occurs in another.
COMMAND SYNTAX
COUNT (expressionl, expression2)

SYNTAX ELEMENTS

Both expressionl and expression2 may evaluateytoaa type but logically they will evaluate to

character strings.
NOTES

The count is made on overlapping occurrences agerpanatch from each character in expressionl.

See als@COUNT.

EXAMPLES

Calc ="56 * 23 /45 * 12"

CRT "There are ":COUNT(Calc, "*"):" multiplications

88

COUNTS

Use the COUNTS function to count the number of timaesibstring is repeated in each element of a
dynamic array. The result is a new dynamic arraysehelements are the counts corresponding to the

elements in the dynamic array.
COMMAND SYNTAX

COUNTS (dynamic.array, substring)

dynamic.array specifies the dynamic array whose elements doe gearched.

substring is an expression that evaluates to the subswig tounted. substring can be a character
string, a constant, or a variable. Each charactanialement is matched to substring only once.
Therefore, when substring is longer than one charactd a match is found, the search continues with
the character following the matched substring. Bid pf the matched element is recounted toward
another match. If substring does not appear inement, a 0 value is returned. If substring is Bupty
string, the number of characters in the elemerdtigned. If substring is null, the COUNTS function
fails and the program terminates with a run-tirreremessage. If any element in dynamic.array i§ nul

null is returned.

EXAMPLE

ARRAY="A"@VM:"AA":@SM:"AAAAA"
PRINT COUNTS (ARRAY, "A")

PRINT COUNTS(ARRAY, "AA")
The output of this program is:

1]2\5
0]1\2

89

CREATE

Use the CREATE statement after@RENSEQstatement to create a record in a BASE directibey f
or to create a UNIX or DOS file. CREATE creates theord or file if theOPENSEQstatement fails.
An OPENSEGQstatement for the specified file.variable mustkecuted before the CREATE
statement to associate the pathname or record Redfle to be created with the file.variable. If
file.variable is null, the CREATE statement fails dhd program enters the debugger.

Use the CREATE statement wh&PENSEQcannot find a record or file to open and the next
operation is to be READSEQor READBLK. If the first file operation is &VRITESEQWRITESEQ

creates the record or file if it does not exist.

If the record or file is created, it executes theENHstatements; if no record or file is created, it

executes the ELSE statements.

COMMAND SYNTAX

CREATE file.variable {THEN statements [ELSE statemenE]$E statements}
EXAMPLE

In the following example, RECORD does not yet exighenOPENSE(Yails to open RECORD to the
file variable FILE, the CREATE statement creates RECORiDeé type 1 file DIRFILE and opens it to
the file variable FILE.

OPENSEQ 'DIRFILE', 'RECORD' TO FILE
ELSE CREATE FILE ELSE ABORT
WEOFSEQ FILE

WRITESEQ 'SOME DATA' TO FILE ELSE STOP

90

CRT

The CRT statement sends data directly to the tetpeman if a PRINTER ON statement is currently

active.
COMMAND SYNTAX
CRT expression {, expression..} {:}

SYNTAX ELEMENTS

An expression can evaluate to any data type. The E&&ment will convert the result to a string type
for printing. Expressions separated by commasheilsent to the screen separated by a tab character.
The CRT statement will append a newline sequendwetfirtal expression unless it is terminated with
a colon ":" character.

NOTES

As the expression can be any valid expressionajt have output formatting applied to it.

A JBASE BASIC program is normally executed usingfergd output mode. This means that data is
not flushed to the terminal screen unless a nevgladmgience is printed or terminal input is requested
This makes it very efficient. However you can foocgput to be flushed to the terminal by printing a
null character CHAR (0). This has the same effea aewline sequence but without affecting screen
output.

For compatibility, use DISPLAY in place of CRT.

EXAMPLES

CRT A "L#5"
CRT @ (8,20):"Shazza was here";
FORI1=1TO 200

CRT @ (10,10):1:CHAR (0):

NEXT |

91

DATA

The DATA statement stacks the series of expressinmsterminal input FIFO stack. Terminal input

statements will then treat this data as if entatettie keyboard.
COMMAND SYNTAX
DATA expression {, expression ...}

SYNTAX ELEMENTS

The expression may evaluate to any data type; viagb comma-separated expression as one line of

terminal input.
NOTES

The data stacked for input will subsequently betéas input by any BASE BASIC program.
Therefore use it before PERFORM/EXECUTE, CHAIN or arheoimethod of transferring program
execution. Use also to stack input for the curyeaiecuting program; do not use to stack input ack
an executing program.

When a jBASE BASIC program detects stacked datatitken as keyboard input until the stack is
exhausted. The program will then revert to the teafdevice for subsequent terminal input.
Stacked data delimited by field marks (XFE) willtbeated as a series of separate terminal inputs.
See alsoCLEARDATA

EXAMPLES

DATA "Y", "N", "CONTINUE" ;* stack input for prog

EXECUTE "PROGRAML1" ;* execute the program

92

DATE

The DATE() function returns the date in internal eysform. This date is expressed as the number of

days since December 31, 1967.
COMMAND SYNTAX
DATE()

NOTES

The system and your own programs should manipulgtteféelds in internal form. They can then be
converted to a readable format of your choice usie®@ CONV() function and the date conversion
codes.

The year 2000 is a leap year

See alsoTIMEDATE()

EXAMPLES

CRT OCONV (DATE(), "D2")

displays today's date in the form: 14 JUL 64

93

DCOUNT

The DCOUNT() function counts the number of fieldraknts in a string that are separated by a

specified delimiter.
COMMAND SYNTAX
DCOUNT (expressionl, expression2)

SYNTAX ELEMENTS

expressionlevaluates to a string in which fields are to bented.

expressionZevaluates to the delimiter string used to couaffigslds.
NOTES

The delimiter string may consist of more than onarabter.

If expressionl is a NULL string, the function retsianvalue of zero.

The delimiter string may consist of any characteeluding system delimiters such as field marks or
value marks.

See alsoCOUNT.

EXAMPLES

A="A:B:C:D"

CRT DCOUNT(A, ":")

displays the value 4

94

DEBUG
The DEBUG statement causes the executing programt¢o the BASE BASIC debugger.

COMMAND SYNTAX
DEBUG

NOTES

Describes the debugger here.

EXAMPLES

IF FatalError = TRUE THEN
DEBUG ;*enter the debugger

END

95

DECATALOG and DELETE-CATALOG Commands

The DECATALOG and DELETE-CATALOG commands are used to karthe run-time versions of
cataloged jBASE BASIC programs.

COMMAND SYNTAX

DECATALOG SourceFilename ProgramName

DECATALOG ProgramName

96

DECRYPT
The DECRYPT function encrypts strings.

COMMAND SYNTAX
DECRYPT(string, key, method)

SYNTAX ELEMENTS

string specifies the string to be encrypted.
key is the value used to encrypt the string. Its wegedds on method.

method is a value, which indicates the encryption mecharto use (See below):

The ENCRYPTand DECRYPT functions that are part of JBASE BASI@vrsupport the following
cipher methods (Defined in JBC.h)

JBASE_CRYPT_GENERAL General-purpose encryption scheme

JBASE_CRYPT_ROT13 Simple ROT13 algorithm. (Key not)se

JBASE_CRYPT_XOR11 XOR MOD11 algorithm. Uses thstfaharacter of a
key as a seed value.

JBASE_CRYPT_RC2 RC2 algorithm

JBASE_CRYPT_DES DES algorithm

JBASE_CRYPT_3DES Three Key, Triple DES algorithm

JBASE_CRYPT_BLOWFISH Blowfish algorithm

JBASE_CRYPT_BASEG64 (See below)

BASE®64 is not really an encryption method, but mafran encoding. The reason for this is that the
output of an encryption often results in a bindring. It allows binary data to be represented as a
character string. BASE64 operation is not requiretlis performed in addition to the primary
algorithm. e.g. JBASE_CRYPT_RC2_BASE64

ENCRYPT with this method is the same as a DECRYPT mithod JBASE_CRYPT_RC2 followed
by DECRYPT with method JBASE_CRYPT_BASEG64.

DECRYPT with this method is the same as a DECRYPT migthod JBASE_CRYPT_BASEG64
followed by DECRYPT with method JBASE_CRYPT_RC2.

JBASE_CRYPT_RC2_BASE64 RC2 algorithm
JBASE_CRYPT_DES_BASE64 DES algorithm
JBASE_CRYPT_3DES_BASE64 Triple DES algorithm
JBASE_CRYPT_BLOWFISH BASEG64 Blowfish algorithm
NOTES

See alsoENCRYPT

97

EXAMPLES

INCLUDE JBC.h

X = DECRYPT(X, Ekey, JBASE_CRYPT_GENERAL)

IF DECRYPT("rknzcyr”,"™, JBASE_CRYPT_ROT13) = "exam
CRT "ROT13 ok"

END

IF ENCRYPT("g{ehvkm","9", IBASE_CRYPT_XOR11) = "exa
CRT "XOR.MOD11 ok"

END

cipher = JBASE_CRYPT_BLOWFISH_BASE64

key ="Our Very Secret Key"

str ="String to encrypt"

enc = ENCRYPT(str, key, cipher)

CRT "Encrypted: ":enc

dec = DECRYPT(enc, key, cipher)

CRT "Decrypted: ":.dec

Displays as output:

Encrypted: xuy6DXxUkD32spyfsKEvUtXrsjP7mC+R

Decrypted: String to encrypt

ple" THEN

mple" THEN

98

DEFC

Use the DEFC statement to declare an external Qifumio the] BASE BASIC compiler, define its
arguments, and return types. The DEFC statementnassilnat the C functions will need to manipulate
JBASE BASIC variables and hence will also require thread data pointer. As such, all C functions
require recoding to include the data pointer aargament to the C function. The location of the data

pointer argument depends upon the function retpe.t

COMMAND SYNTAX
DEFC {FuncType} FuncName ({ArgType {, ArgType ...}})

SYNTAX ELEMENTS

FuncType and ArgType are selected from one of INT, KL@r VAR. FuncType specifies the type of
result that the function will return. Assumes INTFiincType is omitted. The optional list of ArgTypes
specifies the argument types that the C functidhexpect. The compiler must know this in advance,

as it will automatically perform type conversionstbese arguments.

EXAMPLE

#include <jsystem.h>

#include <assert.h>

#ifdef DPSTRUCT_DEF
#define JBASEDP DPSTRUCT *dp,
#else
#define JBASEDP
#endif
VAR *MyString(VAR *Result, JBASEDP VAR *VarPtr)
{
char *Ptr;
assert(dp '= NULL);
Ptr = (char *) CONV_SFB(VarPtr);

printf("MyString: %s - %d\n", Ptr, strlen(Ptr))

99

STORE_VBI(Result, strlen(Ptr));

return(Result);

}

INT32 MyCalc(INT32 Valuel, INT32 Value2)

{

INT32 Result;
Result = (Valuel / Value2);
printf("MyCalc: %d\n", Result);

return(Result);

NOTES

Compile a DEFC for each C function before making @ference to it else the compiler will not
recognize the function name.

The function is called in the same manner, as itldvbe in a C program, which means it can be used
as if it was an intrinsic function of the | BASE BKSlanguage and therefore returns a value. However,
specifying it as a standalone function call cadsesompiler to generate code that ignores any
returned values.

When passing |BASE BASIC variables to a C functigyy must utilize the predefined macros to
access the various data types it contains. C fametare particularly useful for increasing the
performance of tight loops that perform specifindtions. The BASE BASIC compiler must cater for
any eventuality within a loop (such as the conimglivariable changing from integer to floating pin
A dedicated C function can ignore such eventfidf/tare guaranteed not to happen.

The JBASE BASIC programmer may freely ignore the tgpargument used when invoking the C

function, as the jBASE BASIC compiler will automatily perform type conversion.

100

DEFCE

With jBASE 4.1 the DEFCE statement should be uselerahan th&©EFC statement, for calling
external C programs, which are pure ‘C’ code andatause the |BASE library macro’s and functions.

EXAMPLE 1

For C functions that do not require JBASE functiarse the DEFCE statement, however the passing
arguments can only be of type INT, FLOAT and STRING.

DEFCE INT MYFUNC3(INT)
INT32 MYFUNC3(INT32 Count)

{

INT32 Result;

return Result;

EXAMPLE 2

DEFCE INT cfunc(INT, FLOAT, VAR)
Varl = cfunc(A, 45, B)

cfunc(34, C, J)

You can call standard UNIX functions directly byctiging them with the DEFC statement according
to their parameter requirements. You can onlytbalin directly providing they return one of the type

int or float/double or that the return type mayidm@ored.

EXAMPLE 3

DEFCE INT getpid()

CRT "Process id =":getpid()

101

DEFFUN
Use the DEFFUN statement to declare an external BB&SIC function to the jBASE BASIC

compiler and optionally define its arguments. UsEFBUN in the program that calls the function.
COMMAND SYNTAX
DEFFUN FuncName ({ {MAT} Argumentl, {MAT} Argument2.})

SYNTAX ELEMENTS

FuncNameis the name used to define the function. It mesthie same as the source file name.
Argument specifies a value passed to the function by tHmggrogram. To pass an array, the
keyword you must use the MAT before the argumentendrhese parameters are optional (as
indicated in the Command Syntax) but can be sgetffir clarity. Note that if the arguments are not

initialized somewhere in the program you will reea compiler warning.
NOTES

The DEFFUN statement identifies a user-written fuorcto the BASE BASIC compiler, which must
be present in each program that calls the funcbefgre the function is called. A hidden argument i
passed to the function so that a value can benexdiuio the calling program. The return value isrset
the function using the RETURN (value) statementhdéf RETURN statement specifies no value then
the function returns an empty string.

EXAMPLE 1
DEFFUN Add()
A=10
B=20

sum = Add(A, B)

PRINT sum
X =RND (42)
Y = RND(24

)
PRINT Add(X, Y)

FUNCTION Add(operandl, operand?2)
result = operandl + operand2

RETURN(result)

102

Call standard UNIX functions directly by declaritigem with the DEFCE statement according to their
parameter requirements. However, they may onlyallecdirectly providing they return one of the

type int or float/double or that the return typeyrhe ignored.

EXAMPLE 2

DEFCE INT getpid()

CRT "Process id =":getpid()

103

DEL

Use the DEL statement to remove a specified eleofemtlynamic array.
COMMAND SYNTAX
DEL variable<expressionl{, expression2{, expressi¢n3}

SYNTAX ELEMENTS

The variable can be any previously assigned vari@abieatrix element. The expressions must evaluate
to a numeric value or a runtime error will occur.

expressionlspecifies the field in the array to operate upaeh must be present.

expression2specifies the multivalue within the field to opterapon and is an optional parameter.
expression3dis optionally present when expression2 has bednded. It specifies which subvalue to

delete within the specified multivalue.
NOTES

Truncates non-integer values for any of the expoesdio integers

Ignores invalid numeric values for the expressiiteout warning

The command operates within the scope specifiedf specifying only a field then it deletes the
entire field (including its multivalues and subvedi). If specifying a subvalue, then it deletes dhéy

subvalue leaving its parent multivalue and fieldat.
EXAMPLES
FORI1=1TO 20
Numbers<I> =1 ;*generate numbers
NEXT |
FOR1=19TO 1 STEP -2
DEL Numbers<I> ;*remove odd numbers

NEXT |

104

DELETE

Use the DELETE statement to delete a record from &SjBAle.
COMMAND SYNTAX
DELETE {variable,} expression {SETTING setvar} {ON ERRORi&ements}

SYNTAX ELEMENTS

If specified, variable should have been the sulijéetprevious OPEN statement. If variable is ogxlitt
then it assumes the default file variable.
The expression should evaluate to the name of adatored in the open file.

If the SETTING clause is specified and the deletes fédilsets setvar to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error
NOTES

The statement will have no effect if the record names not exist within the file.

If the program against the file record was holdngck, it will release the lock.

EXAMPLES

OPEN "DAT1" TO DatFilel ELSE ABORT 201, "DAT1"

DELETE DatFilel, "record1”

will delete the record "record1" from the file DAT1

105

DELETELIST

The DELETELIST statement will delete the previously etblist named by expression.
COMMAND SYNTAX
DELETELIST expression

SYNTAX ELEMENTS

The expression should evaluate to the name of thisthas been stored with either the WRITELIST

statement or the SAVE-LIST command from the shell.

NOTES

If POINTER-FILE is accessible then it saves lists witbise are saved in the jBASE work file.

EXAMPLES

List = "JobList"

DELETELIST List

Will delete the pre-saved list called JobList

106

DELETESEQ
DELETESEQ deletes a sequential file.

COMMAND SYNTAX

DELETESEQ Expression {SETTING setvar} {ON ERROR statemefit§CKED statements}
THEN | ELSE statements

or

DELETESEQ Expression, Filename {SETTING setvar} {ON ERRO&Reshents} {LOCKED
statements} THEN | ELSE statements

SYNTAX ELEMENTS

Expressionspecifies the variable to contain next record fsaquential file.
FileVar specifies the file descriptor of the file openeddequential access.

Statementsconditional]BASE BASIC statements

107

DELETEU

Use the DELETEU statement to delete a record withdeasang the update record lock set by a

previousREADU statement

See als®READ statements.

Use the OPEN statement to open a file. If spedifrfile variable in the OPEN statement, use tha
DELETEU statement. You must place a comma between thediiable and the record ID expression.

If specifying no file variable in the DELETEU statemethie statement applies to the default file.

See alsoOPENSstatement for a description of the default file.

108

DIMENSION

Use the DIM statement to declare arrays to the demipefore referencing.
COMMAND SYNTAX
DIM{ENSION} variable(number{, number... }){, varidb(number {,number...}) ...}

SYNTAX ELEMENTS

Thevariable may be any valid variable name neither declaregreviously used. The numbers
define the size of each dimension and must beraithestants or the subject of an EQUATE statement.

A single DIM statement may declare a number ofyartey separating their declarations with a comma.
NOTES

Declare the array before it is referenced in tligy@m source (compilation as opposed to execution).
If using a variable as an undeclared dimensionexydhe compiler will display an error message.

Do not use the array variable as a normal variabtiynamic array before dimensioning, as the
compiler will detect this as an error.

A dimension size may not be specified as one ashtié no logical meaning. The compiler will detect
this as a warning.

When arrays are referenced directly as in A = Aifgythe compiler will optimize the reference a# if
was a single undimensioned variable.

See alsoCOMMON

EXAMPLES

EQUATE DimSizel TO 29
DIM Array1(10,10), Array2(5, 20, 5, 8)

DIM Age(DimSizel)

109

DIR

Use the DIR function to return information abodile
COMMAND SYNTAX

DIR (filename)
The filename is a string argument representing #&tle and filename of a file. This function returns a

dynamic array with four attributes.

Attribute Description

1 File size in bytes

2 last modified date (in internal format)

3 last modified time (in internal format)

4 D if the filename is a directory, blank if théefiame is a file

EXAMPLE

F = DIR(".")
PRINT F

“0{am}0{am}0{am}D”: is the output of this program.

110

DIV

See also: Floating point Operations

Use the DIV function to calculate the value of tlustient after division of the dividend by the dior.
COMMAND SYNTAX

DIV (dividend, divisor)
The dividend and divisor expressions can evaluatamyonumeric value. The only exception is that the

divisor cannot be zero. If either dividend or dorigvaluates to null, it returns null.

EXAMPLE
1=400; K=200
J=DIV (I,K)

PRINT J

2: is the output of this program.

111

DIVS

See also: Floating point Operations
Use the DIVS function to create a dynamic arraytaioimg the result of the element-by-element

division of two dynamic arrays.
COMMAND SYNTAX

DIVS (arrayl, array2)

The division of each element of arrayl is by theesponding element of array2, which returns the
result in the corresponding element of a new dynarmay. If elements of arrayl have no
corresponding elements in array?2, it pads array2 @nes and returns the arrayl elements. If an
element of array2 has no corresponding elementay®, it returns zero. If an element of array? is
zero, it prints a run-time error message and retQrrif either element of a corresponding pairub, rit

returns null.
EXAMPLE
A=10:@VM:15:@VM:9:@SM:4

B=2:@VM:5:@VM:9:@VM:2
PRINT DIVS(A,B)

The output of this program is: 5]3]1\4]0

112

DOWNCASE / UPCASE

DOWNCASE converts all uppercase characters in gression to lowercase characters.

UPCASE converts all lowercase characters in anesgmn to uppercase characters.
COMMAND SYNTAX

DOWNCASE|LOWCASE(expression) / UPCASE (expression)
INTERNATIONAL MODE

When using the DOWNCASE or UPCASE function in Inté¢ioreal Mode the conversion from upper
case to lower case or vice versa will be determfoeéach character in the expression by the Urcod

standard, which describes the up or down case grepéor the character.
SYNTAX ELEMENTS
expressionin a string containing some alphabetic characters

NOTES

It ignores Non-alphabetic characters.

113

DROUND

See also: Floating point Operations
The DROUND function performs double-precision roumggdon a value. Double-precision rounding
uses two words to store a number, accommodatiaggan number than in single-precision rounding,

which stores each number in a single word.

COMMAND SYNTAX

DROUND(val.expr [,precision.expr])

NOTE: DROUND affects the internal representatiothef numeric value. It performs the rounding
without conversion to and from string variables.sTinicreases the speed of calculation.
SYNTAX ELEMENTS

val.expr specifies the value to round.
precision.expr specifies the precision for the rounding. Thedradinge is 0 to 14. Default precision is

four places.
EXAMPLE

In the following example, the DROUND statement tessim 18.84955596. The equation is resolved,

and rounds the result to eight decimal places.

A= DROUND((3.14159265999*2+3),8)

PRINT A

114

DTX

The DTX function will return the hexadecimal repnesdion of a numeric expression.
COMMAND SYNTAX

DTX(expression)

SYNTAX ELEMENTS

expressionmust evaluate to a decimal numeric value or ammgrror will occur.
NOTES

See alsoXTD.

EXAMPLES

Decimal = 254

CRT DTX(Decimal)

displays FE

115

DYNTOXML

COMMAND SYNTAX
DYNTOXML (array,xsl,result)

SYNTAX ELEMENTS

Convert the array to XML using the optimal xsl tartsform
XML = (DYNTOXML(array,”,result)

Takes the contents of the dynamic array held inrayaand returns a generic XML representation of

that array or an error

(result=0 OK; result<>0 Bad);
EXAMPLE

a="Tom": @AM : "Dick" : @AM : "Harry"
xml = DYNTOXML(a,", result)
CRT xml

SCREEN OUTPUT

<?xml version="1.0" encoding ="ISO-8859-1"?>

<array>
<data attribute="1" value="1" subvalue="1">Tom</d ata>
<data attribute="2" value="1" subvalue="1">Dick</ data>
<data attribute="3" value="1" subvalue="1">Harry< /data>
</array>

If a style sheet is passed in the second paraniigperforms a transform to give a different forrot
XML.

EXAMPLE

xml = DYNTOXML(a,xsl,result)
CRT xml

SCREEN OUTPUT

<mycustomer>
<firstname>Tom</firstname>
<lasthame>Dick</lastname>
<address>Harry</address>

</mycustomer>

XSL CONTENTS

<xsl:template match="/">
<mycustomer>

116

<xsl:for-each select="array/data">
<xsl:if test="@attribute=1">
<firsthame>
<xsl:value-of select="."/>
<[firstname>
</xsl.if>
<xsl:if test="@attribute=2">
<lastname>
<xsl:value-of select="."/>
</lastname>
</xsl:if>
<xsl:if test="@attribute=3">
<address>
<xsl:value-of select="."/>
</address>
</xsl.if>
<xsl:if test="@attribute=4">
<address2>
<xsl:value-of select="."/>
</address2>
</xsl:if>

117

EBCDIC

The EBCDIC function converts all the characters iregoression from the ASCII character set to the
EBCDIC character set.

COMMAND SYNTAX
EBCDIC(expression)
SYNTAX ELEMENTS

expressionmay contain a data string of any form. The functidlhconvert it to a character string,
assume that the characters are all members of 3@ Aet and translate them using a character map.
The original expression is unchanged while the netdresult of the function is now the EBCDIC

equivalent.

EXAMPLE

READT AsciiBlock ELSE CRT "Tape failed!"; STOP

EbcdicBlock = EBCDIC(AsciiBlock) ;* Convert to EBCD IC

118

ECHO

The ECHO statement will turn on or off the echoingladiracters typed at the keyboard.
COMMAND SYNTAX

ECHO ON

ECHO OFF

ECHO expression
SYNTAX ELEMENTS

Use the statement with the keywords ON and OFpéacify echoing or not. If used with an
expression, then the expression should evaluaémolean TRUE or FALSE result.
TRUE: echoing on

FALSE: echoing off.

NOTES

Use the SYSTEM function to determine the currertesté character echoing. SYSTEM(24) returns
Boolean TRUE if enabled and returns Boolean FALSEHs#loled.

EXAMPLES

ECHO OFF

CRT "Enter your password ":
INPUT Password

ECHO ON

This will disable the character input echoing wiylging in a password.

119

ENCRYPT
The ENCRYPT function encrypts strings.

COMMAND SYNTAX
ENCRYPT(string, key, method)

SYNTAX ELEMENTS

string specifies the string for encryption.
key is the value used to encrypt the string. Its wegedds on method.
method is a value, which indicates the encryption mecharto use (See below):

The ENCRYPT an@ECRYPTfunctions that are part of BASE BASIC now suppbs following
cipher methods (Defined in JBC.h)

JBASE_CRYPT_GENERAL General-purpose encryption scheme

JBASE_CRYPT_ROT13 Simple ROT13 algorithm. (Key notlse

JBASE_CRYPT_XOR11 XOR MOD11 algorithm. Uses thstfaharacter of a key as a seed
value.

JBASE_CRYPT_RC2 RC2 algorithm

JBASE_CRYPT_DES DES algorithm

JBASE_CRYPT_3DES Three Key, Triple DES algorithm

JBASE_CRYPT_BLOWFISH Blowfish algorithm
JBASE_CRYPT_BASEG64 (See below)

BASEG64 is more of an encoding method rather thaenanyption method. The reason for this is that
the output of an encryption often results in a birsdring, which allows the representation of bynar
data as a character string. Although not requined@ASE64 operation is performed in addition to the
primary algorithm. E.g. JBASE_CRYPT_RC2_BASE64

ENCRYPT with this method is the same as an ENCRYPH mitthod JBASE_CRYPT_RC2
followed by ENCRYPT with method JBASE_CRYPT_BASEG64.

DECRYPT with this method is the same as a DECRYPT mithod JBASE_CRYPT_BASE64
followed by DECRYPT with method JBASE_CRYPT_RC2.

JBASE_CRYPT_RC2_BASE64 RC2 algorithm
JBASE_CRYPT_DES_BASE64 DES algorithm
JBASE_CRYPT_3DES_BASE64 Triple DES algorithm

JBASE_CRYPT_BLOWFISH BASE64 Blowfish algorithm

NOTES

120

See alsoDECRYPT.

EXAMPLES

INCLUDE JBC.h

X = DECRYPT(X, Ekey, JBASE_ CRYPT_GENERAL)

IF DECRYPT("rknzcyr”,"", JBASE_CRYPT_ROT13) = "exam
CRT "ROT13 ok"

END

IF ENCRYPT("g{ehvkm","9", JBASE_CRYPT_XOR11) = "exa
CRT "XOR.MOD11 ok"

END

cipher = JBASE_CRYPT_BLOWFISH_BASE64

key ="Our Very Secret Key"

str ="String to encrypt"

enc = ENCRYPT(str, key, cipher)

CRT "Encrypted: ":enc

dec = DECRYPT(enc, key, cipher)

CRT "Decrypted: ":dec

Displays as output:

Encrypted: xuy6DXxUkD32spyfsKEvUtXrsjP7mC+R

Decrypted: String to encrypt

NOTES

See alsoDECRYPT.

121

ple" THEN

mple" THEN

ENTER

The ENTER statement unconditionally passes contrahtidher executable program.
COMMAND SYNTAX

ENTER program_name

ENTER @variable_name

SYNTAX ELEMENTS

program_nameis the name of the program for execution. The @iséngle or double quotes to
surround program_name is optional.
@ specifies that the program name is containednamaed variable.

variable_nameis the name of the variable, which contains tlegmm name.
NOTES

The |BASE BASIC COMMON data area can be passed tthangBASE BASIC program by
specifying the option "I" after the program namas®the COMMON data area only to another jBASE
BASIC program.

Use ENTER to execute any type of program.

If the program which contains the ENTER command ¢tiveent program) was called from a JCL
program, and the program for execution (the tgpgaegram) is another BASE BASIC program,
control will return to the original JCL program whte target program terminates. If the target

program is a JCL program, control will return to tmenmand shell when the JCL program terminates.

EXAMPLES

ENTER "menu"
ProgName = "UPDATE"

ENTER @ ProgName

122

EQS
Use the EQS function to test if elements of oneadyic array are equal to the elements of another

dynamic array.
COMMAND SYNTAX

EQS (arrayl, array?2)

EQS compares each element of arrayl with the camelipg element of array2 and returns, a one if
the two elements are equal in the correspondingesié of a dynamic array. It returns a zero if the t
elements are not equal. It returns zero if an et¢rmEone dynamic array has no corresponding
element in the other dynamic array. If either elethad a corresponding pair is null, it returns rfoll

that element.

EXAMPLE
A=1:@VM:45:@SM:3:@VM:"one"
B=0:@VM:45:@VM:1

PRINT EQS(A,B)

The output of this program is: 0]1\0]0

123

EQUATE

Use EQUATE to declare a symbol equivalent to adltevariable or simple expression.
COMMAND SYNTAX
EQU{ATE} symbol TO expression

SYNTAX ELEMENTS

symbolis the name of the symbol to use;.can be any rthatevould be valid for a variable.

expressioncan be a literal, a variable or a simple expressio
NOTES

Sensible use of EQUATEd symbols can make your progasier to maintain, easier to read, and
more efficient.

Efficiency can be enhanced because the addressE®BMATEd value is computed during
compilation and is substituted for each occurresfdae symbol name. Unlike the address of a
variable, which must be computed for each accessgitun time, the address of a symbol is always
known. This significantly reduces the processingrbead involved in accessing a particular value. Se
also: the example for a more detailed explanatfdheother benefits.

Enhance Readability by referring to say, QTY rathan INV_LINE(4). You would simply

"EQUATE QTY TO INV_LINE(4)" at an early stage in theogram. This can also help with
maintenance of the program, particularly in sitgi where record layouts might change. For
example, if the quantity field moves to INV_LINE(§u only have to change one line in your

program.
EXAMPLE

COMMON FLAG

EQUATE NO_CHARGE TO FLAG

EQUATE CR TO CHAR (13), TRUE TO 1, FALSE TO 0
EQUATE PRICE TO INV_LINE(7), TAX TO 0.175
EQUATE DASHES TO "-------"

IF NO_CHARGE = TRUE THEN PRICE = 0

CRT "Tax =":PRICE * TAX:CR:DASHES

124

EREPLACE

Use the EREPLACE function to replace substring inxqoresssion with another substring. If you do

not specify an occurrence, it replaces each ocsceref a substring.
COMMAND SYNTAX
EREPLACE (expression, substring, replacement [,ocooergbegin]])

SYNTAX ELEMANTS

occurrencespecifies the number of occurrences of substomgplace. To replace all occurrences,
specify occurrence as a number less thdedin specifies the first occurrence to replace. If hagi
omitted or less than one, it defaults to onsulbstring is an empty string, replacement is prefixed to
expression. If replacement is an empty stringgrtaoves all occurrences of substringexpression
evaluates to null, it returns null. If substringplacement, occurrence, or begin evaluates tothell,
EREPLACE function fails and the program terminate$ wirun-time error message. The EREPLACE

function behaves like the CHANGE function excepewlsubstring evaluates to an empty string.

EXAMPLE

A ="AAABBBCCCDDDBBB"
PRINT EREPLACE (A,"BBB","2ZZ")
PRINT EREPLACE (A,"™,"ZZZ")

PRINT EREPLACE (A,"BBB",")

The output of this program is:

AAAZZZCCCDDDZZZ
Z2ZZAAABBBCCCDDDBBB
AAACCCDDD

125

EXECUTE

See also: Floating point Operations
The EXECUTE oPERFORMstatement allows the currently executing prograpause and execute
any other UNIX/NT program, including another BASRASIC program or a JBASE command.

COMMAND SYNTAX

EXECUTE|PERFORM expression {CAPTURING variable} {RETURNINSETTINGvariable}
{PASSLIST {expression}} {RTNLIST {variable}}{PASSDATA vaiable} {RTNDATA variable}
Passes Data, Dynamic Arrays and lists to prograrittewin jBASE BASIC, you can intercept screen

output and error messages from any program.
SYNTAX ELEMENTS

The PERFORMed expression can be formed from any jBéd@isStruct. The system will not verify
that the command exists before executing it. UsevaBourne Shell to execute a command (sh) by
default. The shell type can be changed by precatimgommand with a CHAR(255) concatenated
with either "k", "c", or "s" to signify the Korn sii, C shell or Bourne Shell.

Variables used to pass data to the executed progitamid have been assigned to a value before using.
You can use any variable name to receive data.

CAPTURING variable

The capturing clause will capture any output thatdkecuting program would normally send to the
terminal screen and place it in the variable spetifA field mark in the variable replaces every
newline normally sent to the terminal.

RETURNING variable or SETTING variable

The returning and setting clauses are identicah Blatuses will capture the output associated with a
error messages the executing program issues. ighdidid of the variable will be set to the exiide

of the program.

PASSLI ST variable

The PASSLIST clause allows JBASE programs to exchédistgeor dynamic arrays between them. The
variable should contain the list that the prograishes to pass to the jBASE program it is executing.
The program to be executed should be able to prdisessotherwise the list will just be ignored ttie
variable name is not specified then the clausepailis the default select list to the executing ianog
RTNLIST variable

If the executed program sets up a list then us®ILIST clause to place that list into a specified
variable. It places the list in the default listiahle if omitted.

PASSDATA variable

Passes the data in the specified variable to anBASE BASIC program, the executing jBASE
BASIC program should retrieve the data using@i@l LECTDATA statement.

RTNDATA variable

126

The RTNDATA statement returns any data passed froexacuting jJBASE BASIC program in the
specified variable. The executing BASE BASIC pragrshould use the RTNDATA statement to pass
data back to the calling program.

NOTES

The clauses may be specified in any order withirsttement but only one of each clause may exist.
EXAMPLES

OPEN "DataFile" ELSE ABORT 201, "DataFile"

SELECT
PERFORM "MyProg" SETTING ErrorList PASSLIST

EXECUTE "Is" CAPTURING DirListing

127

EXIT

The EXIT statement halts the execution of a progaadhreturns a numeric exit code to the parent
process. For compatibility with older versionsod {fanguage, use the EXIT statement without an

expression. In this case, it is synonymous withBREAK statement.
COMMAND SYNTAX

EXIT (expression)
EXIT

SYNTAX ELEMENTS

Any expression provided must be parenthesized aald&e to a numeric result. The numeric result is
used as the UNIX or Windows exit code, which isineéd to the parent process by the C function
exit(). If the expression does not evaluate tomenic result the program will enter the debugget an

display a suitable error message.
NOTES

The expression has been forced to be parenthesizeaid confusion with the EXIT statement
without an expression as much as is possible. Titi@es apologize for having to provide two differen
meanings for the same keyword

See alsBREAK.

EXAMPLE
READ Record FROM FileDesc, RecordKey ELSE

CRT "Record ":RecordKey:" is missing"

EXIT(1)
END ELSE

CRT "All required records are present"

EXIT(0)
END

128

EXP

The EXP function returns the mathematical constattié¢ specified power.
COMMAND SYNTAX

EXP(expression)

SYNTAX ELEMENTS

The expression may consist of any form of BASE BABKpression but should evaluate to a numeric

argument or a runtime error occurs and the prognaters the debugger.
NOTES

The function returns a value that is accurate tmasy decimal places specified by fABECISIONof

the program.

EXAMPLE

zE10 = EXP(10) ;* Get e*10

129

EXTRACT

The EXTRACT function is an alternative method of asieg values in a dynamic array other than

using the <n,n,n> syntax described earlier.

COMMAND SYNTAX

EXTRACT(expressionl, expression2 {, expression3 {ression4}})
SYNTAX ELEMENTS

expressionlspecifies the dynamic array to work with and widkrmally be a previously assigned
variable.

The expressions 2 through 4 should all return a migmealue or a runtime error will occur and the
program will enter the debugger.

expression2specifies the field to extract, expression3 tHee#o extract and expression4 the sub-

value to extract.

EXAMPLES

A="0"; A<2>="1"; A<3>="2"

CRT EXTRACT(A, 2)

Will display the value "1".

130

FADD

The FADD function performs floating point additiohtevo numeric values.

COMMAND SYNTAX

FADD(expressionl, expression2)

SYNTAX ELEMENTS

Both expressionl and expression 2 must evaluatertenull numeric values.

NOTES

If either of the arguments evaluates to null thearatime "non-numeric” error will occur.

EXAMPLES

PRECISION 7
CRT FADD(0.5044,23.7290002)

displays 24.2334002

131

FDIV

The FDIV function performs floating point divisiomdwo numeric values.

COMMAND SYNTAX
FDIV(expressionl, expression2)
SYNTAX ELEMENTS

Both expressionl and expression 2 must evaluatertenull numeric values.

NOTES

If either of the arguments evaluates to null thearatime "non-numeric" error will occur.

If the second argument evaluates to zero then imen"divide by zero" error will occur.
The calculation is not subject to the PRECISION sgtti

EXAMPLES

CRT FMUL(1,7)

displays 0.1428571429

132

FIELD

The FIELD function returns a multi-character delirdifeeld from within a string.
COMMAND SYNTAX

FIELDS(string, delimiter, occurrence{, extractCount}

SYNTAX ELEMENTS

string specifies the string, from which the field(s)adste extracted.

delimiter specifies the character or characters that defiraifields within the dynamic array.
occurrenceshould evaluate to an integer of value 1 or highepecifies the delimiter used as the
starting point for the extraction.

extractCount is an integer that specifies the number of fiétdextract. If omitted, assumes one.

NOTES

If the emulation option, jbase_field, is set thiea field delimiter may consist of more than a sing|
character, allowing fields to be delimited by coexptodes.
See alsotGROUP

EXAMPLES
Fields = "AAAA:BBJIMBB:CCCCC"
CRT FIELD(Fields, ":", 3)

CRT FIELD(Fields, "JIM", 1)
displays:

CCccCcC
AAAA:BB

133

FIELDS

The FIELDS function is an extension of the FIELD fuoet It returns a dynamic array of multi-

character delimited fields from a dynamic arraginings.
COMMAND SYNTAX
FIELDS(DynArr, Delimiter, Occurrence{, ExtractCount})

SYNTAX ELEMENTS

DynArr should evaluate to a dynamic array.

Delimiter specifies the character or characters that defiwifields within the dynamic array.
Occurrenceshould evaluate to an integer of value 1 or highepecifies the delimiter used as the
starting point for the extraction.

ExtractCount is an integer that specifies the number of figddsxtract. If omitted, assumes one.
NOTES

If the emulation option, jbase_field, is set thire field delimiter may consist of more than a sing|

character, allowing fields to be delimited by coexptodes.
EXAMPLES

The following program shows how each element ofrzadyic array can be changed with the FIELDS

function.

—_
t<1> = "a:b:c:d:e:f"

t<2> = "aa:bb:cc:dd:ee:ff" : @VM: "1:2:3:4" : @SVM: W:Xy:z"
t<3> = "aaa:bbb:ccc:ddd:eee:fff">@VM:@SVM

t<4> = "aaaa:bbbb:cccc:dddd:eeee:ffff"

rl = FIELDS(t,":",2)

r2 = FIELDS(t,":",2,3)

r3 = FIELDS(t,"bb",1,1)

The above program creates three dynamic arrays.

V - represents a value mark.

S - represents a sub-value mark.

rl <1>b
<2>bbv2sW

134

135

r2

r3

<3>bbb

<4>bbbb

<1>b:c:d

<2>bb:cc:dd v 2:3:4 s W:X:Y<3>bbb:ccc:ddd v s
<4>bbbb:cccc:dddd

<l>a:b:c:d:e:f

<2>aa:v 1:2:3:14 sW:X:Y:Z

<3>aaa:Vvs

<4>aaaa.

FILEINFO

Use the FILEINFO function to return information abthe specified file variable.
COMMAND SYNTAX

FILEINFO (file.variable, key)

This function is currently limited to return valusdetermine if the file variable is a valid file
descriptor variable.

Key Return Status
01 if file.variable is a valid files variable zeotherwise.

136

FILELOCK

Use the FILELOCK statement to acquire a lock on dineefile. This prevents other users from
updating the file until the program releases iEIRELOCK statement that does not specify lock.type
is equivalent to obtaining an update record loclkeweery record of the file. An open file is spedifiey
file.variable. If no file.variable is specified aliefault file is assumed; if the file is neithecessible

nor open, the program enters the debugger.
COMMAND SYNTAX

FILELOCK filevar {LOCKED statements} {ON ERROR statensh
FILEUNLOCK filevar {ON ERROR statements}

DESCRIPTION

When the FILELOCK statement is executed, it will aipé to take an exclusive lock on the entire file.
If there are any locks currently outstanding onfileg then the statement will block until there aro

more locks on the file. The use of the LOCKED claukaa the application to perform an unblocked
operation.

When the FILELOCK statement is blocked waiting fdoek, other processes may continue to perform
database operations on that file, including theoneahof record locks and the taking of record locks
Once the FILELOCK is taken, it will block ALL databazecesses to the file whether or not the access
involves record locks. i.e. a READ will block on¢das been executed, as will, CLEARFILE etc,. The
lock continues until the file is closed, the progreerminates, or a FILEUNLOCK statement is
executed.

NOTE: The FILELOCK statement might differ to those fdwm other vendors systems. You should
also not that the use of these statements for ttheradministration work, for example, within batc

jobs, is not recommended. The replacement of suithmore judicious use of item locks is advised.

IMPLEMENTATION NOTES

The FILELOCK command is implemented using the natiekihg mechanism of the operating system
and is entirely at its mercy. Because of this, g@y see some slight implementation differences
between operating systems. These comments on tatkiag do not apply to the NT platform as
JBASE uses the NT locking mechanism.

The uses of the native (UNIX) locking mechanism nsethie file in question MUST NOT use the
JBASE locking mechanism. You can set a file to usenative locking mechanism by using the
jchmod command:

jchmod +N filename {filename ...}

Alternatively, like this when the file is originglkcreated:

CREATE-FILE filename 1,1 23,1 NETWORK=TRUE

If the file continues to use the |BASE record lockithen the ON ERROR clause will be taken and the
SYSTEM(0) andSTATUS() functions will set to 22 to indicate the error.

137

EXAMPLES

OPEN ",'SLIPPERS' TO FILEVAR ELSE STOP "CAN'T OPEN

FILELOCK FILEVAR LOCKED STOP 'FILE IS ALREADY LOCKE

FILEUNLOCK DATA

OPEN ",'SLIPPERS' ELSE STOP "CAN'T OPEN FILE"

FILELOCK LOCKED STOP 'FILE IS ALREADY LOCKED'

PRINT "The file is locked."

FILEUNLOCK

FILE"

D'

138

FILEUNLOCK
Use the FILEUNLOCK statement to release a file laetdyy the FILELOCK statement.

COMMAND SYNTAX

FILEUNLOCK [file.variable] [ON ERROR statements]

file.variable specifies a file previously lockedtlwa FILELOCK statement. If file.variable is not
specified, the default file with the FILELOCK statamhés assumed .If file.variable is not a valid file
variable then the FILEUNLOCK statement will enter trebugger.

The ON ERROR Clause

The ON ERROR clause is optional in the FILELOCK statetm&he ON ERROR clause lets you
specify an alternative for program termination wieeeountering a fatal error during processing ef th
FILELOCK statement. If a fatal error occurs, with@dl ERROR clause specified, the program enters
the debugger.

If the ON ERROR clause is used, the value returnettidd STATUS function is the error number.

EXAMPLE

In the following example, the first FILEUNLOCK statent unlocks the default file. The second
FILEUNLOCK statement unlocks the file variable FILE.

OPEN ",'SLIPPERS' ELSE STOP "CAN'T OPEN SLIPPERS"
FILELOCK

FILEUNLOCK

OPEN 'PIPE' TO FILEVAR ELSE STOP

FILELOCK FILEVAR

FILEUNLOCK FILEVAR

139

FIND

The FIND statement allows the location of a spedifiing within a dynamic array.
COMMAND SYNTAX

FIND expressionl IN Varl {, expression2} SETTING V4ra/ar3 {, Var4}} THEN | ELSE
statement(s)

SYNTAX ELEMENTS

expressionlevaluates to the string with which to compare gedement of the dynamic arrayarl is

the dynamic array that will be searched. The FINBimand will normally find the first occurrence of
expressionlunless expression2 is specified. If specified twgpression2 will cause a specific
occurrence of expressionl to be located. The tradaehles Var2, Var3, Var4 are used to record the
Field, Value and Sub-Value positions in which esgienl was found.

If expressionl is found in any element of Varl tNams 2, 3 and 4 are set to the position in which i
was found and any THEN clause of the statementasig®d. If expressionl is not found within any
element of the dynamic array then Vars 2, 3 anctdiadefined and the ELSE clause of the statement

is executed.
NOTES

The statement may omit either the THEN clause or theERil&use but may not omit both. It is valid
for the statement to contain both clauses if reglir
See alsoLOCATE, FINDSTR

EXAMPLES

Var = "ABC":VM:"JAC":AM:"CDE":VM:"WHOQO"
FIND "JAC" IN Var SETTING Ap, Vp THEN
CRT "JAC is in Field ":Ap:", value ":Vp
END ELSE
CRT "JAC could not be found"

END

Will display: JAC is in Field 1, value 2

140

FINDSTR

The FINDSTR statement locates a string as a subsifiaglynamic array element. It is similar in

operation to the FIND statement.
COMMAND SYNTAX

FINDSTR expressionl IN Varl {, expression2} SETTINGr¥4,Var3 {, Var4}} THEN | ELSE

statement(s)
SYNTAX ELEMENTS

expressionlevaluates to the string with which to search eeeynent of the dynamic arrayarl is

the actual dynamic array that will be searched.IFBNR will normally locate the first occurrence of
expressionl unless expression?2 is specified. Kifpd then expression2 will cause a specific
occurrence of expressionl to be located. The tradehles Var2, Var3, Var4 are used to record the
Field, Value and Sub-Value positions in which esgienl was found.

If expressionl is found as a substring of any efgroéVarl then Vars 2, 3 and 4 are set to thetjposi
in which it was found and the THEN clause of theesteent is executed if it is present. If expressionl
is not found within any element of the dynamic prfeen Vars 2,3 and 4 are undefined and the ELSE

clause of the statement is executed.
NOTES

The statement may omit either the THEN clause or theERil&use but may not omit both. It is valid
for the statement to contain both clauses if reglir

EXAMPLES

Var = "ABC":VM:"OJACKO":AM:"CDE":VM:"WHO"
FINDSTR "JAC" IN Var SETTING Ap, Vp THEN
CRT "JAC is within Field ":Ap:", value ":Vp

END ELSE

CRT "JAC could not be found"

END

Displays: JAC is within Field 1, value 2

141

FORMLIST

The FORMLIST statement creates an active seledtdist a dynamic array.
COMMAND SYNTAX
FORMLIST variablel {TO variable2 | listhum}

SYNTAX ELEMENTS

variablel specifies the dynamic array from which the actigkect list is to be created
If variable2 is specified then the newly created list will Baged in the variable. Alternatively, a
select list number in the range 0 to 10 can beifipaovith listhum. If neither variable2 nor listruis

specified then the default list variable will besasied.
NOTES

See alsoDELETELIST, READLIST, WRITELIST

EXAMPLES

MyList = "keyl":@AM:"key2":@AM:"key3"
FORMLIST MylList TO ListVar

LOOP
READNEXT Key FROM ListVar ELSE EXIT

READ Item FROM Key THEN
* Do whatever processing is necessary on ltem

END
REPEAT

142

FLUSH

Writes all the buffers for a sequential I/O filenmadiately. Normally, sequential I/O uses bufferiog

input/output operations, and writes are not immiediidlushed.
COMMAND SYNTAX

FLUSH file.variable {THEN statements [ELSE statemeh&LSE statements}

file.variable specifies a file previously opened for sequemtiacessing. If file.variable evaluates to
null, the FLUSH statement fails and the programrarttee debugger. After the buffer is written to the
file, it executes the THEN statements, ignoringEh&SE statements.

If none of the above can be completed, it exedhie& L SE statements.

EXAMPLE

OPENSEQ 'DIRFILE', 'RECORD' TO FILE THEN
PRINT "DIRFILE' OPENED FOR SEQUENTIAL PROCESSING"

END ELSE STOP
WEOFSEQ FILE

*

WRITESEQ 'NEW LINE' ON FILE THEN
FLUSH FILE THEN

PRINT "BUFFER FLUSHED"

END ELSE PRINT "NOT FLUSHED"

ELSE ABORT

*

CLOSESEQ FILE

END

143

FMT

Join lines on U in mask code definition.
Expand on syntax to formatting superset. i.e. we atbow [Width] [Background] [Justification]

INTERNATIONAL MODE

When using the FMT function in International Modie tWidth” fields refer to character display
widths, such that a character may take up moredrsingle display position. This is typical of the
Japanese, Chinese, and characters whereby thetehatiaplay requires possibly two display
positions.

Additional date formatting codes have been providedise in Internationalized programs.

See alsoOCONV/EMTS as peEMT

GE - Operator similar to EQ. compares two expresdimngreater than or equal
GT - Greater than
GTS - Add as per GES, except just greater thanyfioachic array comparison.

INTERNATIONAL MODE

When using the “GE/GT/GES/GTS” function in InternaibMode, the “operator/function” will use
the currently configured locale to determine thesuy which each string is considered greater or

equal to the other.

Mask Code Description

i Justification
R Right Justified
L Left Justified
U Left Justified, Break on space. Note: This justifion will format the

output into blocks of data in the variable andiup to the programmer
to actually separate the blocks.
D Date (OCONV)

n Decimal Precision: A number from O to 9 that ded the decimal precision. It
specifies the number of digits for output followitige decimal point. The
processor inserts trailing zeros if necessary.i¢f@amitted or is 0, a decimal
point will not be output.

m Scaling Factor: A number that defines the scdttpr. The source value is
descaled (divided) by that power of 10. For examipla=1, the value is
divided by 10; if m=2, the value is divided by 1@dd so on. If m is omitted, it
is assumed equal to n (the decimal precision).

z Suppress leading zeros. NOTE: fractional valueg;iwhave no integer, will

144

Mask Code

Description

have a zero before the decimal point. If the vadusero, a null will be output.

The thousands separator symbol. It specifiestiosenf thousands separators

every three digits to the left of the decimal polvbu can change the display
separator symbol by invoking the SET-THOU commargk the SET-DEC

command to specify the decimal separator.

c Credit Indicator. NOTE: If a value is negative ot have not specified one of
these indicators, the value will be displayed waitleading minus sign. If you
specify a credit indicator, the data will be outpith either the credit characters
or an equivalent number of spaces, depending aalitee.

C Prints the literal CR after negative values.

D Prints the literal DB after positive values.

E Encloses negative values in angle brackets < >
M Prints a minus sign after negative values.

N Suppresses embedded minus sign.

$ Appends a Dollar sign to value.

Fill Character and #n Spaces. Repeat space n times. Output valueita@/on the spaces

Length created.

*n Asterisk. Repeat asterisk n times. Output véduaverlaid on the
asterisks created.

%n Zero. Repeat zeros n times. Output value is aikon the zeros created.

&x Format. x can be any of the above format codesjrrency symbol, a
space, or literal text. The first character follog/i& is used as the
default fill character to replace #n fields withalata. Format strings are
enclosed in parentheses "()".

EXAMPLES

Format Source Returned Value

Expression Value (X) (columns) (V)

12345678901234567890
12345678901234567890
12345678901234567890

V = FORMAT(X, "R2#10") 1234.56 1234.56

V = FORMAT(X, "L2%10") 1234.56 1234.56000

V = FORMAT(X, "R2%10") 1234.56 0001234.56

V = FORMAT(X, "L2*10") 1234.56 12.34%*%**

V = FORMAT(X, "R2*10") 1234.56 FRkk] 2,34

V = FORMAT(X, "R2,$#15") 123456.78 $123,456.78

V = FORMAT(X, "R2,&$#15") 123456.78 $$$$$123,456.78

145

V = FORMAT(X, "R2,& $#15")

V = FORMAT(X, "R2,C&*$#15")

V = FORMAT(X, "R((#H#) ##-#H)")
V = FORMAT(X, "R((#3) #2-#4)")

V = FORMAT(X, "L& Text #2-#3")

V = FORMAT(X, "L& ((Text#2) #3)")
V = FORMAT(X, "T#20")

V = FORMAT(X, "D4/")

123456.78 $ 123,4%86.

-123456.78 $*+123 4588CR
1234567890 (12856-7890
1234567890 (123) 43890
12345 Text 12-345
12345 (Text12) 345

This is a test of the This is a test of the
American BroadcastinAmerican

System Broadcasting System
12260 07/25/2001

146

FMTS

Use the FMTS function to format elements of dynaamray for output. Each element of the array is

independently acted upon and returned as an elamantew dynamic array.
COMMAND SYNTAX
FMTS (dynamic.array, format)

SYNTAX ELEMENTS

format is an expression that evaluates to a string ofétting codes. The Syntax of the format
expression is:

[width] [background] justification [edit] [mask]

The format expression specifies the width of thg@outield, the placement of background or fill
characters, line justification, editing specificat$, and format masking. For complete syntax dgtail
See alsoEMT function.

If dynamic.array evaluates to null, it returns niflformat evaluates to null, the FMTS functioni$ai

and the program enters the debugger.

GE OPERATOR SIMILAR TO eg. compares two expressiongfeater than or equal
GT As Above, except Greater than

GTS Add as per GES, except just greater than forrdimarray expression
FMUL/EDIV/EADD/FSUB

147

FOLD

The FOLD function re-delimits a string by replacsmgaces with attribute marks at positions defined by
a length parameter.

COMMAND SYNTAX
FOLD(expressionl, expression2)

SYNTAX ELEMENTS

expressionlevaluates a string to be re-delimited.
expressionZevaluates to a positive integer that represeetsnidiximum number of characters between

delimiters in the resultant string.
NOTES

The FOLD function creates a number of sub-string$ $hat the length of each sub-string does not
exceed the length value in expression2. It conggrases to attribute marks except when enclosed in

sub-strings and removes extraneous spaces.
EXAMPLES

The following examples show how the FOLD functiofirdés text based on the length parameter. The

underscores represent attribute marks.

g = "Smoking is one of the leading causes of statis tics"
CRT FOLD(q, 7)

Smoking_is one_of the_leading_causes_of_statist_ics

g = "Hello world"

CRT FOLD(q, 5)

Hello_world

g = "Let this be a reminder to you all that this or ganization will
not

tolerate failure."

CRT FOLD(q, 30)

let this be a reminder to you_all that this organiz ation_will not
tolerate failure.

g = "the end"

148

CRT FOLD(g, 0)

theend

149

FOOTING

The FOOTING statement halts all subsequent outpiltetcderminal at the end of each output page.
The statement allows the evaluation and displayhahgression at the foot of each page. Output,
which is current, and being sent to the termirrad, dutput is paused until the entry of a carriagern
at the terminal (unless the N option is specifigkes in the current HEADING or in this FOOTING).

COMMAND SYNTAX
FOOTING expression

SYNTAX ELEMENTS

The expression should evaluate to a string, whighiiged at the bottom of every page of output. The
string could contain a number of interpreted spetiaracters, replaced in the string before pritin

The following characters have special meaning withestring:

"C{n}" center the line, if n is specified the outdine is assumed to be n characters long

"D" or \\ replace with the current date

"L" or] replace with the newline sequence

"N" terminal output does not pause at the end ohgmge

"P"or replace with the current page number

"PP" or M replace with the current page numbex field of 4 characters; the field is right
justified

"T" or\ replace with the current time and date

replace with a single " character

NOTES

If the output is to the printer a PRINTER ON statafris in force; output sent to the terminal witle th
CRT statement is not paged; if output is to the ieairthen all output is paged.

EXAMPLE

FOOTING "Programming staff by weight Page "P"

150

FOR

The FOR statement allows the construction of looimigstructs within the program, which is
controlled by a counting variable; this can be feated early by expressions tested after every
iteration.

COMMAND SYNTAX

FOR var=expressionl TO expression2 {STEP expressifWB}ILE | UNTIL expression4}...NEXT
{var}

SYNTAX ELEMENTS

var is the counting variable used to control the Iotpe first time the loop is entered var is assigned
the value of expressionl, which must evaluatertaraeric value. After each iteration of the loopy, va
is automatically incremented by one.

expression2must also evaluate to a numeric value as it cahegeop to terminate when the value of
var is greater than the value of this expressigpression2 is evaluated at the start of everytitaraf
the loop and compared with the value of expressionl

If the STEP expression3 clause is included withinstiagement, var will automatically be incremented
by the value of expression3 after each iteratiothefloop. expression3 is evaluated at the stagtioh
iteration.

expression3may be negative, in which case the loop will teraé when var is less than expression2.
The statement may optionally include either an eataldl WHILE or UNTIL clause (not both), before
each iteration of the loop. When the WHILE clausspiscified the loop will only continue with the
next iteration if expression4 evaluates to BoolERWE. When the UNTIL clause is specified the loop

will only continue with the next iteration if exgsion4 evaluates to Boolean FALSE.

NOTES

Because expression2 and expression3 must be eadiuabn each iteration of the loop, you should
only code complex expressions here if they may gbawithin each iteration. If the values they yield
will not change then you should assign the valuthe$e expressions to a variable before coding the
loop statement. You can replace expressions 3 avith4hese variables. This can offer large
performance increases where complex expressions age.

See alsoBREAK, CONTINUE.

EXAMPLES

Max =DCOUNT (BigVar, CHAR (254))
FOR | = 1 TO Max STEP 2 WHILE BigVar LT 2

5
Bigvar +=1

151

NEXT |

This example will increment every second field af ttariable BigVar but the loop will terminate early

if the current field to be incremented is not nuicely less than 25.

152

FSUB

The FSUB function performs floating-point subtraotmn two numeric values.

COMMAND SYNTAX

FSUB(expressionl, expression2)

SYNTAX ELEMENTS

Both expressionl and expression 2 must evaluatertenull numeric values.

NOTES

If either of the arguments evaluates to null thearatime "non-numeric” error will occur.

EXAMPLES

PRECISION 7
CRT FSUB(2.54,5.703358)

displays -3.163358

153

FUNCTION
Identifies a user-defined function, which can beoked by other BASE BASIC programs, arguments

to the function can optionally be declared.
COMMAND SYNTAX
FUNCTION name {({MAT} variable, {MAT} variable...) }

SYNTAX ELEMENTS

Name is the name by which the function is invoked.

Variable is an expression used to pass values batihe calling program and the function.
NOTES

Use the FUNCTION statement to identify user-writsenirce code functions. Each function must be
coded in separate records and the record Id mustrtizat of the Function Name, which in turn
should match the reference in the calling program.

The optional comma separated variable list canrumaber of expressions that pass values between
the calling programs and the function. To passreayahe variable name must be preceded by the
MAT keyword. When a user-written function is calléite calling program must specify the same
number of variables that are specified in the FUNQN Istatement.

An extra 'hidden' variable is used to return a®dtom the user-written function. The value to be
returned can be specified within the Function lyRETURN (value) statement. If using the
RETURN statement without a value then by defauktiirns an empty string.

The calling program must specify a DEFFUN or DEF&eahent to describe the function to be called

and the function source must be cataloged anddblasimilar to subroutines.

EXAMPLE

FUNCTION MyFunction(A, B)

Result=A*B

RETURN (Result)

154

GES

Use the GES function to test if elements of one dyoarray are greater than or equal to

corresponding elements of another dynamic array.
COMMAND SYNTAX

GES (arrayl, array?2)

SYNTAX ELEMENTS

Compares each element of arrayl with the correspgralement of array?2, if the element from arrayl
is greater than or equal to the element from agriy2turns a one in the corresponding elemeiat of
new dynamic array. If the element from arrayl sslthan the element from array?2, it returns a zero
(0). If an element of one dynamic array has noegponding element in the other dynamic array, it
evaluates the undefined element as empty, ancothearison continues.

If either element of a corresponding pair is nitiketurns null for that element.

155

GET

The GET statement reads a block of data directly faahevice.
COMMAND SYNTAX

GET Var {,length} {SETTING Count} FROM Device {UNTIL TermRars} {RETURNING
TermChar} {WAITING Timeout} THEN | ELSE statements

SYNTAX ELEMENTS

Var is the variable in which to place the input (frtime previously open Device).

If length is specified, it limits the number of chaters read from the input device.

If the optional Count option is used, it returne ttumber of characters actually read from the @evic
Device is the file variable associated with thaitesom a successful OPENSEQ or OPENSER
command.

TermChars specifies one or more characters that will terteinmaput.

TermChar The actual character that terminated input

Timeout is the number of seconds to wait for input. [fimput is present when the timeout period

expires, the ELSE clause (if specified) is executed.
NOTES

The GET statement does no pre-or post-processitgeadhput data stream - nor does it handle any
terminal echo characteristics. If this is desitbe, application - or device drive - will handle it.

If there are no specified length and timeout exgicess, the default input length is one (1) charadte
no length is specified, but TermChars are, ther®ibmit to the number of characters input.

The GET syntax requires a specified THEN or ELSE clamsboth. The THEN clause executes when
the data received is error free; the ELSE clauseudgsevhen the data is unreceiveable (or a timeout
occurs).

See.GETX

156

GETCWD
The GETCWD function allows a jBASE BASIC program toatetine the current working directory of

the program, which is normally be the directorwimich execution of the program occurred but

possibly changed using tiHDIR function.
COMMAND SYNTAX
GETCWD(Var)

SYNTAX ELEMENTS

When executed the Var will be set to the name etctirrent working directory; the function itself

returns a Boolean TRUE or FALSE value to indicate Wwhiethe command was successful or not.
NOTES

Refer to your UNIX or Windows documentation for manformation on the concept of the current

working directory.
EXAMPLES
IF GETCWD(Cwd) THEN
CRT "Current Working Directory = ":Cwd
END ELSE
CRT "Could not determine CWD!"

END

157

GETENV

All processes have an environment associated hm that contains a number of variables indicating
the state of various parameters. The GETENV fundaltmws a jBASE BASIC program to determine

the value of any of the environment variables assed with it.
COMMAND SYNTAX
GETENV(expression, variable)

SYNTAX ELEMENTS

The expression should evaluate to the name of thieomment variable whose value is to be returned.
The function will then assign the value of the eoniment variable to variable. The function itself
returns a Boolean TRUE or FALSE value indicating thecess or failure of the function.

SeePUTENV

EXAMPLE

IF GETENV("PATH", ExecPath) THEN
CRT "Execution path is ":ExecPath

END ELSE

CRT "Execution path is not set up"

END

158

GETLIST

GETLIST allows the program to retrieve a previoustyed list (perhaps created with the SAVE-LIST
command), into a] BASE BASIC variable.

COMMAND SYNTAX
GETLIST expression TO variablel {SETTING variable2} THENSE statements

SYNTAX ELEMENTS

variablel is the variable into which the list will be reakpression should evaluate to the name of a
previously stored list to retrieve, or null. If eegsion evaluates to null, the current defaultrexie
select list (generated by a previ@&BLECT command for example) will be retrieved. If spesifj
variable2 will be set to the number of elements in the list.

If the statement succeeds in retrieving the listntthe statements associated with any THEN clause
will be executed. If the statement fails to finé {fst, then the statements associated with any ELSE

clause will be executed.
NOTES

The GETLIST statement is identical in function to REEADLIST statement.
See alsoDELETELIST, WRITELIST

EXAMPLES

Find the list first

GETLIST "MyList" TO MyList ELSE STOP

LOOP
* Loop until there are no more elements

WHILE READNEXT Key FROM MyList DO

REPEAT

159

GETUSERGROUP

For UNIX, the BASE BASIC GETUSERGROUP function retsithe group number for the user ID
specified by @uid. For Windows NT or Windows 20QG@eturns zero.

COMMAND SYNTAX
GETUSERGROUP(uid)
EXAMPLES

In the following example, the program statemenigassthe user group to variable X:
X = GETUSERGROUP(@UID)
In the next example, the program statement assigngser group for 1023 to variable X:

X = GETUSERGROUP(1023)

160

GETX

The GETX statement reads a block of data (in ASCthHdecimal format) directly from a device.
COMMAND SYNTAX

GETX Var {,length} {SETTING Count} FROM Device {UNTIL TemChars} {RETURNING
TermChar} {WAITING Timeout} THEN | ELSE statements

SYNTAX ELEMENTS

Var is the variable in which to place the input (frtime previously open Device).

If specifying a length it limits the number of chaters read from the input device.

If the optional Count option is used, it returne ttumber of characters actually read from the @evic
Device is the file variable associated with theuleisom a successfI@WPENSEQor OPENSER

command.

TermChars specifies one or more characters that will terteinaput.
TermChar The actual character that terminated input
Timeout is the number of seconds to wait for input. [fimput is present when the timeout period

expires, the ELSE clause (if specified) is executed.
NOTES

The GETX statement does no pre-or post-processitigedhput data stream nor does it handle any
terminal echo characteristics. It is assumed ftthts is desired the application - or device driweill
handle it.

If there are no specified length and timeout exgicess, the default input length is one (1) charadte
there is no length specified, but TermChars areetlseno limit to the number of characters input.
The GETX syntax requires a specified THEN or ELSE clamsboth. The THEN clause executes
when the data received is error free; the ELSE clayseutes when the data is unreceiveable (or a

timeout occurs).

GETX will convert all input into ASCIl hexadecimadrimat after input.
See alsoGET

161

GOSUB

The GOSUB statement causes execution of a locabstibe, after which execution will continue with

the next line of code.
COMMAND SYNTAX
GOSUB label

SYNTAX ELEMENTS

The label should refer to an existent label withia turrent source code, which identifies the stat

local subroutine.

EXAMPLES

GOSUB Initialize ;* open files etc..
GOSUB Main ;* perform main program
GOSUB Finish ;* close files etc..

STOP

Initialize: * open files

RETURN

Main: * main execution loop

RETURN
Finish: * clean up after execution

RETURN

162

GOTO

The GOTO statement causes program execution to jartetcode at a specified label.
COMMAND SYNTAX

GO{TO} Label

SYNTAX ELEMENTS

The label should refer to an existing label withie turrent source code.

NOTES

Warning: using the GOTO command obscures the rd#gati the code and is a hindrance to
maintainability. All programs written using the GOTOnstruct can be written using structured
statements such as LOOP and FOR. There are vafpiisms on this issue but the consensus is, avoid
GOTO.

One possibly acceptable use of the GOTO stateragattiansfer execution to an error handler upon

detection of a fatal error that will cause the pang to terminate.
EXAMPLE

GOTO Exception;* jump to the exception handler

Exception:* exception handler
....STOP

163

GROUP

The GROUP function is equivalent to the FIELD function
COMMAND SYNTAX
GROUP(Expressionl, Expression2, Expression3, Exjure$si

SYNTAX ELEMENTS

Expressionlevaluates to the string containing fields to bieagted.

Expression2evaluates to the character(s) delimiting each figthin Expressionl.
Expression3should evaluate to a numeric value specifying talmer of the first field to extract from
Expressionl.

Expression4evaluates to a numeric value specifying the nurobéelds to extract as a group.

NOTES

Expression2 may evaluate to more than a single ctearallowing fields to be delimited with complex

expressions.

EXAMPLES

A ="123:-456:-789:-987:-"

CRT GROUP(A, ":-", 2, 2)

This example displays:
456:-789

on the terminal being the second and third fieluts their delimiter within variable A

164

HEADING

Heading halts all subsequent output to the tern@ihtiie end of each page. The statement evaluates
and displays an expression at the top of each @&ageent output sent to the terminal, is paused unt

entry of a carriage return at the terminal - untbesN option is specified.
COMMAND SYNTAX
HEADING expression

SYNTAX ELEMENTS

The expression should evaluate to a string printéideatop of every page of output. The string may
contain a number of interpreted special characteptaced in the string before printing. The foliogy

characters have special meaning within the string:

"C{n}" Center the line. If n is specified the outdine is assumed n characters long.

"D" or \\ Replace with the current date.

"L" or] Replace with the newline sequence.

"N" Terminal output does not pause at the end of page.

"P" or Replace with the current page number.

"PP" or M Replace with the current page numbex field of 4 characters. The field is
right justified.

"T" or\ Replace with the current time and date.

Replace with a single " character.

NOTES

If output is to the printer, a PRINTER ON statemenhiuse, and does not page output sent to the
terminal with the CRT statement. Unless you speié/N” option, all output sent to the terminal is

paged.
EXAMPLES

HEADING "Programming staff by size of waist Page "P"

165

HEADINGE and HEADINGN
The HEADINGE statement is the same as the HEADINfBestent, which causes a page eject with the

HEADING statement.
The HEADINGN statement is the same as the HEADINEEestent, and suppresses the page eject.

166

HUSH

Use the HUSH statement to suppress the displaly ofigput normally sent to a terminal during
processing. HUSH also suppresses output to a COMO f

HUSH acts as a toggle. If it is used without a djiga it changes the current state. Do not use thi
statement to shut off output display unless yousare the display is unnecessary. When you use

HUSH ON, all output is suppressed including erressages and requests for information.
COMMAND SYNTAX

HUSH { ON | OFF | expression }

EXAMPLE

HUSH ON

167

ICONV

The ICONV function converts data in external fornslsas dates to their internal form.
COMMAND SYNTAX
ICONV(expressionl, expression2)

SYNTAX ELEMENTS

expressionlevaluates to the data upon which the conversitmb® performed.
expression2should evaluate to the conversion code that ietperformed against the data.
Add additional ICONV extensions for timestamp as\WOXx/WTx

NOTES

If the conversion code used assumes a numeric aaldl@ non-numeric value is passed then the
original value in expressionl is returned unlegssaimulation option iconv_nonnumeric_return_null is

set.
EXAMPLES

InternalDate = ICONV("27 MAY 1997", "D")
In this example, ICONV returns the internal forntloé date May 27, 1997.

168

ICONVS

Use ICONVS to convert each element of dynamic.awey specified internal storage format.
COMMAND SYNTAX
ICONVS (dynamic.array, conversion)

SYNTAX ELEMENTS

conversionis an expression that evaluates to one or moié gahversion codes, separated by value
marks (ASCII 253).
Each element alynamic.array is converted to the internal format specified bywersion and is
returned in a dynamic array. If multiple codesased, they are applied from left to right. Thetfirs
conversion code converts the value of each eleofahtnamic.array. The second conversion code
converts the value of each element of the outpthefirst conversion, and so on. If dynamic.array
evaluates to null, it returns null. If an elemehtipnamic.array is null, null it returns null fdnat
element. If conversion evaluates to null, the ICONKCction fails and the program terminates with a
run-time error message.
The STATUS function reflects the result of the conizers
For information about converting elements in a dyitaarray to an external format
See alsoOCONVSfunction.
0 The conversion is successful.
1 An element of dynamic.array is invalid. It retsign empty string, unless

dynamic.array is null, in which case it returnsinul

Conversion is invalid.

3 Successful conversion of possibly invalid data.

169

IF (statement)

Allows other statements to be conditionally exedute
COMMAND SYNTAX
IF expression THEN|ELSE statements

SYNTAX ELEMENTS

It evaluates the expression to a value of BooleadH Br FALSE. If the expression is TRUE executes
then the statements defined by the THEN claugerégent). If the expression is FALSE executes the
statements defined by the ELSE clause.

The THEN and ELSE clauses may take two different fdsgieg single and multiple line statements.

The simplest form of either clause is of the form:

IF ATHEN CRT A
or

IF AELSE CRTA
However, expand the clauses to enclose multipéslof code using the END keyword as so:

IF ATHEN
A= A*6
CRTA

END ELSE
A=176
CRTA

END

You can combine the single and multi-line versiofsither clause to make complex combinations of
the command. For reasons of readability it is satggkthat where both clauses are present for an IF

statement that the same form of each clause igdcode

NOTES

IF statements can be nested within either clausayaumber of levels
EXAMPLE

CRT "Are you sure (Y/N) ":

INPUT Answer,1

170

IF OCONV (Answer, "MCU")="Y" THEN
GOSUB DeleteFiles
CRT "Files have been deleted"

END ELSE
CRT "File delete was ignored"

END

171

IFS

Use the IFS function to return a dynamic array vehelements are chosen individually from one of

two dynamic arrays based on the contents of a thindmic array.
COMMAND SYNTAX

IFS (dynamic.array, true.array, false.array)

IFS evaluate each element of the dynamic.arrahelelement evaluates to true, it returns the

corresponding element from true.array to the sderaent of a new dynamic array. If the element
evaluates to false, it returns the correspondiagieht from false.array. If there is no correspogdin
element in the correct response array, it retunnsnapty string for that element. If an elementui,n

that element evaluates to false.

172

IN

The IN statement allows the program to receive rata fom the input device, which is normally the

terminal keyboard, one character at a time.
COMMAND SYNTAX
IN Var {FOR expression THEN|ELSE statements}

SYNTAX ELEMENTS

Var will be assigned the numeric value (0 - 255 debimiathe next character received from the input
device. The statement will normally wait indefimjtéblock) for a character from the keyboard.
Specifying the FOR clause to the IN statement altve statement to stop waiting for keyboard after
specified amount of time. The expression shoulduatalto a numeric value, which will be taken as
the number of deci-seconds (tenths of a secondatbbefore abandoning the input.

TheFOR clause must have either or both of the THEN or ELI&Eses If a character is received from
the input device before the time-out period then i¥assigned its numeric value and the THEN clause
is executed (if present). If the input statememes out before a character is received then Var is
unaltered and the ELSE clause is executed (if present

NOTES

See alsotNPUT, INPUTNULL.

EXAMPLES

Char2 ="
IN Char
IF Char = 27 THEN ;* ESC seen
IN Char2 FOR 20 THEN ;* Function Key?

Char2 = CHAR(Char2) ;* ASCII value

END
END
Char = CHAR(Char):Char2 ;* Return key sequence

173

INDEX

The INDEX function will return the position of a alaater or characters within another string.
COMMAND SYNTAX
INDEX(expressionl, expression2, expression3)

SYNTAX ELEMENTS

expressionlevaluates to the string to be searched.
expression2evaluates to the string or character that wiltbarched for within expression1.
expression3should evaluate to a numeric value and specifglwbccurrence of expression2 should

be searched for within expressionl.
NOTES
If the specified occurrence of expression2 is nanfl in expressionl then it returns Zero (0).

EXAMPLE

ABet = "abcdefghijkimnopgrstuvwxyzabc"
CRT INDEX(ABet, "a", 1)

CRT INDEX(ABet, "a", 2

)
CRT INDEX(ABet, "jKl", 1)

The above code will display:
1

27

10

174

INMAT

The INMAT() function returns the number of dimensdrarray elements.
COMMAND SYNTAX

INMAT({array})

DESCRIPTION

Using the INMAT() function, without the 'array' amgent, returns the number of dimensioned array
elements from the most recéiATREAD, MATREADU, MATREADL or MATPARSE statement. If

the number of array elements exceeds the numteewfents specified in the corresponddii/

statement, the INMAT() function will return zero.
Using the INMAT(), function with the ‘array' argumereturns the current number of elements to the

dimensioned 'array'.
NOTES

In some dialects the INMAT() function is also usedeturn the modulo of a file after the executidn
an OPEN statement, which is inconsistent with ilary purpose and not implemented in JBASE. To
achieve this functionality use th®@CTL () function with the]JIOCTL_COMMAND_FILESTATUS

command.

EXAMPLE

OPEN "CUSTOMERS" TO CUSTOMERS ELSE STOP 201, "CUSTOMERS"
DIM CUSTREC(99)

ELEMENTS = INMAT(CUSTREC) ; * Returns the value "99 " to the variable
ELEMENTS

ID ="149"
MATREAD CUSTREC FROM CUSTOMERS, ID THEN

CUSTREC.ELEMENTS = INMAT() ; * Returns the numb er of elements in
the CUSTRECarray to the variable CUSTREC.ELEMENTS

END

175

INPUT

The INPUT statement allows the program to colleta d@m the current input device, which will

normally be the terminal keyboard but may be stdé¢kput from the same or separate program.
COMMAND SYNTAX

INPUT {@ (expressionl {, expression2)H:} Var{{,>@ression3}, expression4} {{{ } {WITH
expression5} {FOR expression6 THEN|ELSE statements}

SYNTAX ELEMENTS

@ (expressionl, expressiondllows the screen cursor to be positioned to peeified column and

row before the input prompt is sent to the scr@de. syntax for this is the same as the @() function
described earlier.

Var is the variable in which the input data is to torex.

expression3 when specified, should evaluate to a numericezaltis will cause input to be
terminated with an automatic newline sequence aftactly this number of characters has been input.
If the _ option is specified with expression4 thie@ automatic newline sequence is not specified but
any subsequent input characters are belled tethartal and thrown away.

expressiondwhen specified, should evaluate to a sequence®BIcharacters. The first character will
be printed expression3 times to define the fieldranterminal screen. At the end of the inputskle
than expression3 characters were input then thetése field is padded with the second charaiier
was supplied. If the third character is suppliezhtthe cursor will be positioned after the lastrabger
input rather than at the end of the input field.

The : option, when specified, suppress the echditigeonewline sequence to the terminal. This will
leave the cursor positioned after the last inparabter on the terminal screen.

WITH expression5 allows the default input delimitgre newline sequence) to be changed. When
specified, expression5, should evaluate to a sting to 256 characters, each of which may delimit
the input field. If this clause is used then the/liee sequence is removed as a delimiter and maust b

specified explicitly within expression5 as CHAR(10)

The "FOR" clause allows the "INPUT" statement to ton¢ after a specified waiting period instead of
blocking as normal Expression6 should evaluatertoraeric value, which will be taken as the number
of deci-seconds (tenths of a second) to wait beforiag out. The time-out value is used as the time
between each keystroke and should a time-out o¥@urnwould hold the characters that were input
until the time-out.

The FOR clause requires either the THEN and ELSE dawseoth; if no time-out occurs the THEN

clause is taken. If a time-out does occur, the EL&ESH is taken.
NOTES

The INPUT statement will always examine the datatispack before requesting data from the input

device. If data is present on the stack thenused to satisfy INPUT statements one field at & tim

176

until the stack is exhausted. Once exhausted NR&JT statement will revert to the input device for
further input. There is no way (by default) to ihpunull field to the INPUT@ statement. If the
INPUT@ statement receives the newline sequenceasniyput, then the Var will be unchanged. Use
the INPUTNULL statement to define a character thdicates a NULL input.

Use the CONTROL-CHARS command to control whethanaircontrol characters (i.e. those outside
the range x'1F' - x'7F") are accepted by INPUT.

See alsolN, INPUTNULL.

EXAMPLES

Answer ="

LOOP
WHILE Answer =" DO

INPUT Answer,1 FOR 10 ELSE
GOSUB UpdateClock

END
REPEAT

The above example attempts to read a single chafeae the input device for 10 deci-seconds (1
second). The LOOP will exit when a character has liggut otherwise every second it will call the

local subroutine UpdateClock.

177

INPUTCLEAR
The INPUTCLEAR statement clears the type-ahead buffer.

COMMAND SYNTAX

INPUTCLEAR

SYNTAX ELEMENTS
None
NOTES

INPUTCLEAR only clears the type-ahead buffer. It donesclear data stacked with the DATA
statement.
The INPUTCLEAR statement is synonymous WthEARINPUT.

EXAMPLE

CRT "Start year end processing (Yes/No) :"
INPUTCLEAR

INPUT ans

IF ans # "Yes" THEN

CRT "year end processing not started"
END

178

INPUTNULL

The INPUTNULL statement allows the definition of a dwer that will allow a null input to be seen
by the INPUT@ statement.

COMMAND SYNTAX
INPUTNULL expression
SYNTAX ELEMENTS

Theexpressionshould evaluate to a single character. Subsegiamy INPUT@ statement that sees
only this character input before the new-line segeewill NULL the variable in which input is being
stored.

If expression evaluates to the NULL string " thba tefault character of _ is used to define a NULL

input sequence.
NOTES

The INPUT statement does not default to accepting ttlearacter as a NULL input, the programmer
must explicitly allow this with the statement: INPNULL "

EXAMPLES
INPUTNULL "&"
INPUT @ (10,10):Answer,1
IF Answer =" THEN
CRT "A NULL input was received"

END

179

INS

The INS statement allows the insertion of elemertts & dynamic array.
COMMAND SYNTAX
INS expression BEFORE Var<expressionl{, expressipagfression3}}>

SYNTAX ELEMENTS

expressionevaluates to the element to be inserted in thamymarray.
expressionlexpression2 and expression3 should all evaluateneric values and specify the Field,

Value and Sub-Value before which the new elemettt B¢ inserted.
NOTES

Specifying a negative value to any of the expressibthrough 3 will cause the element to append as
the last Field, Value or Sub-Value rather than sppecific position. Only one expression may be
negative otherwise only the first negative valuesed correctly while the others are treated as the
value 1.

The statement will insert NULL Fields, Values or Sédilues accordingly if any of the specified

insertion points exceeds the number currently igst

EXAMPLE
Values ="
FOR1=1TO 50
INS | BEFORE Values<-1>
NEXT |
FOR1=2TO 12
INS I*7 BEFORE Values<7,i>

NEXT |

180

INSERT

INSERT is the function form of the INS statementthwareference given to the use of INS.
COMMAND SYNTAX

INSERT (expressionl, expression2{, expression3 {, exgion4 }}; expression5)
SYNTAX ELEMENTS

expressionlevaluates to a dynamic array in which to inseréa element and will normally be a
variable.

expression2expression3 and expression4 should evaluate tericivalues and specify the Field,
Value and Sub-Value before which the new elemehtiinserted.

expressionSevaluates to the new element to be inserted iresgonl.

EXAMPLES

A = INSERT(B, 1,4; "Field1Value4")

181

INT

The INT function truncates a numeric value intagsrest integer form.
COMMAND SYNTAX

INT(expression)

SYNTAX ELEMENTS

expression should evaluate to a numeric value fdimgtion will then return the integer portion okth

value.
NOTES

The function works by truncating the fractional pafrthe numeric value rather than by standard
mathematical rounding techniques. Therefore, INDQ®) and INT(9.999) will both return the value 9.

EXAMPLES

CRT INT(22/7)

Displays the value 3

182

IOCTL

The JBASE BASIC language provides an intrinsic fuoetcalled IOCTL that behaves in a similar
manner to the C function ioctl(). Its purpose islow commands to be sent to the database diiver f
a particular file, and then to receive a reply fribva database driver.

As with the C function ioctl, the use of IOCTL is hig dependent upon the database driver it is
talking to. Each database driver may choose to geosértain common functionality, or may add its
own commands and so on. This is especially trueser-written database drivers.

First, an example of a source program that opdits and finds the type of file:

INCLUDE JBC.h
OPEN "MD" TO DSCB ELSE STOP 201,"MD"
status=""
IF IOCTL(DSCB,JIOCTL_COMMAND_FILESTATUS,status) THEN
PRINT "Type of file = ":DQUOTE(status<1>)
END ELSE
PRINT "IOCTL FAILED !! unknown file type"

END

If the ELSE clause is taken, it does not necessam@gn there is an error, it only means that the
database driver for file "MD" does not support teenmand that was requested from it. The file JBC.h
is supplied with jJBASE in the directory JBCRELEASEDIPbalirectory include. If the source is
compiled with the jbc or BASIC command, this diggtis automatically included in the search path

and no special action is needed by the programanghé "INCLUDE JBC.h" statement.

The format of the IOCTL function is:

IOCTL(Filevar, Command, Parameter)

Where:
filevar Is a variable that has had a file opened agdinsing the OPEN statement. However, if you

want to use the default file variable, use -1 is ffosition. For example:

OPEN "MD" ELSE STOP
filevar = -1
IF IOCTL(filevar,JIOCTL_COMMAND_xxx,status) ...

commandcan be any numeric value (or variable containimgiaeric). However, it is up to the

database driver to support that particular comnmmamdber. The remainder of this chapter describes the
common IOCTL command numbers supported by the jBASEh&se drivers provided.

183

Status Pass here a BASE BASIC variable. The usiei®f/ariable depends upon the command
parameter, and will be described later for eachrmmand supported.

The return value is O for failure, or 1 for successalue of -1 generally shows the command has not
been recognized.

The remainder of this section will deal with the [@Ccommands that are supported by the provided
JBASE database drivers, and the JBC_COMMAND_GETFILENAMdmmand that is supported for
all database drivers.

JBC_COMMAND_GETFILENAME COMMAND

Using this command to the IOCTL function, you caredaine the exact file name that was used to
open the file. This is helpful because JEDI usgsaipiters, F pointers and the JEDIFILEPATH
environment variable to actually open the file, &mel application can never be totally sure wheee th

resultant file was really opened. Normally of cayrthis is of no concern to the application.
EXAMPLE

Open the file CUSTOMERS and find out the exact pladgth was used to open the file.

INCLUDE JBC.h

OPEN "CUSTOMERS" TO DSCB ELSE STOP 201,"CUSTOMERS"

filename ="

IF IOCTL(DSCB,JBC_COMMAND_GETFILENAME,filename) ELSE
CRT "IOCTL failed !'" ; EXIT(2)

END

PRINT "Full file path = ":DQUOTE(filename)

This command is executed by the BASE BASIC libravge rather than the jEDI library code or the

database drivers, so it can be run against adieriptor for any file type.

JIOCTL_COMMAND_CONVERT COMMAND

Some of the] BASE BASIC database drivers will parfan automatic conversion of the input and
output record when performing reads and writes.

An example of this is when writing to a directohy this case, the attribute marks will be convetted
new-line characters and a trailing new-line chamaatided. Similarly for reading from a directorg th
new-line characters will be replaced with attriboterks, and the trailing new-line character will be
deleted.

The above example is what happens for the database fibr directories. It assumes by default that
the record being read or written is a text file &mat the conversion is necessary. It tries toyappime
intelligence to reading files, as text files alwdnsve a trailing new-line character. Therefore, file is
read without a trailing new-line character, theathase driver assumes the file must be a binary file

rather than a text file, and no conversion takesel

184

This conversion of data works in most cases andllyseguires no special intervention from the
programmer.

There are cases however, when this conversion neddscontrolled and interrogated, and the IOCTL
function call with the JIOCTL_COMMAND_CONVERT commapdovides the |BASE database
drivers that support this conversion with commatadsontrol it.

The call to IOCTL, if successful, will only affectdiloperations that use the same file descriptor.

Consider the following code:

INCLUDE JBC.h

OPEN "MD" TO FILEVAR1 ELSE ...

OPEN "MD" TO FILEVARZ ELSE ...

IF IOCTL(FILEVAR1,JIOCTL_COMMAND_CONVERT,"RB")

In the above example, any future file operatiorisgisariable FILEVAR1 will be controlled by the
change forced in the IOCTL request. Any file operaiasing variable FILEVAR2 will not be

affected and will use the default file operation.

Input to the IOCTL is a string of controls delimited a comma that tell the database driver what to do
The output from the IOCTL can optionally be a strioghow the last conversion that the driver
performed on the file.

The descriptions of the available controls thatlmapassed as input to this IOCTL function are:

RB All future reads to be in binary (no conversion)

RT All future reads to be in text format (alwaysaloonversion)

RI All future reads to decide themselves whetheaby or text

RS Return to caller the status of the last read €'Binary, "T" = text)
WB All future writes to be in binary (no conversjon

WT All future writes to be in text format (always @ conversion)

Wi All future writes to decide themselves whethgrapy or text

WS Return to caller the status of the last wrif&' binary, "T" = text)
KB All future reads/writes have the record key terd

KT All future reads/writes have the record key nfiedi

Ki All future reads/writes to decide if to do a e@mnsion

KS Return to caller the status of the last recay KB" = binary, "T" = text)

EXAMPLE 1

The application wants to open a file, and to enthaeall reads and writes to that file are in bjnhand

that no translation such as new-lines to attriloodeks is performed.

185

INCLUDE JBC.h

OPEN "FILE" TO DSCB ELSE STOP 201,"FILE"

IF IOCTL(DSCB,JIOCTL_COMMAND_CONVERT,"RB,WB") ELSE
CRT "UNABLE TO IOCTL FILE 'FILE™ ; EXIT(2)

END

EXAMPLE 2

Read a record from a file, and find out if the lestord read was in text format (were new-lines
converted to attribute marks and the trailing newe-beleted), or in binary format (with no conversi
at all).
INCLUDE JBC.h
OPEN "." TO DSCB ELSE STOP 201,"."
READ rec FROM DSCB,"prog.o" ELSE STOP 202,"prog.o"
status = "RS"
IF IOCTL(DSCB,JIOCTL_COMMAND_CONVERT,status) THEN
IF status EQ "T" THEN CRT "TEXT" ELSE CRT "BINARY"
END ELSE
CRT "The IOCTL failed !!"
END

JIOCTL_COMMAND_FILESTATUS COMMAND
The JIOCTL_COMMAND_FILESTATUS command will return an #ittite delimited list of the status

of the file to the caller.

<1> File type, as a string
<2> FileFlags, as decimal number, show LOG, BACKUP aRANS
<3> BucketQty, as decimal number, number of buckethaérfile
<4>
BucketSize, as decimal number, size of each buckattes
<5> . . .
SecSize, as decimal number, size of secondarysgatze
he Restore Spec, a string showing any restore respigeification
<7> . . i .
Locking identifiers, separated by multi-values
<8>

FileFlags showing LOG, BACKUP and TRANSACTION permiss

186

<8,1> Set to non-zero to suppress logging on this file

<8,2> Set to non-zero to suppress transaction boundamidisis file
<8,3> .
' Set to no-zero to suppress backup of the file ugiagkup
<9> Hashing algorithm used
EXAMPLE

Open a file and see if the file type is a directory

INCLUDE JBC.h

OPEN ".." TO DSCB ELSE STOP 201,".."

status ="

IF IOCTL(DSCB,JIOCTL_COMMAND_FILESTATUS,status) ELS
CRT "IOCTL failed ' ; EXIT(2)

END

IF status<1> EQ "UD" THEN
PRINT "File is a directory"

END ELSE
PRINT "File type is ":DQUOTE(status<1>)
PRINT "This is not expected for .."

END

EXAMPLE 2

E

Open a file ready to perform file operations imamsaction against it. Make sure the file has eenb

removed as a transaction type file by a previousdation of the command "jchmod

-T CUSTOMERS".

INCLUDE JBC.h

OPEN "CUSTOMERS" TO DSCB ELSE STOP 201,"CUSTOMERS"

IF IOCTL(DSCB,JIOCTL_COMMAND_FILESTATUS,status) ELS
CRT "IOCTL failed " ; EXIT(2)
END
IF status<8,2> THEN
CRT "Error ! File CUSTOMERS is not"
CRT "part of transaction boundaries !!"
CRT "Use "jchmod +T CUSTOMERS" !
EXIT(2)
END

JIOCTL_COMMAND_FINDRECORD COMMAND

187

E

This command will find out if a record exists orila fvithout the need to actually read in the record

This can provide large performance gains in cedagumstances.
EXAMPLE

Before writing out a control record, make sureadésn't already exist. As the control record isejuit
large, it will provide performance gains to simpdgt if the output record already exists, rathanth

reading it in using the READ statement to seediists.

INCLUDE JBC.h
OPEN "outputfile" TO DSCB ELSE STOP 201,"outputfile"
... Make up the output record to write out in "autp
key = "output.out"
rc = IOCTL(DSCB,JIOCTL_COMMAND_FINDRECORD,key)
BEGIN CASE
CASErcEQO
WRITE output ON DSCB,key
CRT "Data written to key " : key
CASErcGTO
CRT "No further action, record already exists"
CASE 1
CRT "IOCTL not supported for file type"
END CASE

JIOCTL_COMMAND_ FINDRECORD EXTENDED COMMAND
This command to the IOCTL function returns the recizée and the time and date the record was last

updated. If the record does not exist, null ismetd. The time/date stamp is returned in UTC format.
EXAMPLE

Print the time and data of last update for eacbrem filename.
INCLUDE JBC.h
OPEN “filename" TO DSCB ELSE STOP 201,"filename"

*

* Select each record in the newly opened file

*

SELECT DSCB
LOOP WHILE READNEXT record.key DO

*

* Get the details on the record and look for errors

*

record.info = record.key

188

IF IOCTL(DSCB,JIOCTL_COMMAND_FINDRECORD_EXTENDED,rewbinfo) ELSE
CRT "Error! File driver does not support this"
STOP

END

*

* Extract and convert the returned data
*
record.size = record.info<1>
record.utc = record.info<2>
record.time = OCONV(record.utc,"UOff0")
record.date = OCONV(record.utc,"UOff1")

*

* Print the information.

*
PRINT "Record key ":record.key:" last updated:at
PRINT OCONV/(record.time,"MTS"):" ™
PRINT OCONV(record.date,"D4")

REPEAT

JIOCTL_COMMAND_HASH_ RECORD COMMAND
For |BASE hashed files such as j3 and j4 each reisgpdeudo-randomly written to one of the buckets

(or groups) of the hashed file. The actual buckistvtritten to depends upon two factors:

The actual record key (or item-id)

The number of buckets in the file (or modulo)

This IOCTL command shows which bucket number therceamuld be found in, given the input

record key. The bucket number is in the range (@-tb) where b is the number of buckets in the file
specified when the file was created (probably uSIREATE-FILE).

The command only returns the expected bucket nurabes, no indication that the record actually
exists in the file.

Two attributes are returned by this command. Theifirthe hash value that the record key has hashed

to, and the second attribute is the bucket number.

EXAMPLE

Open a file, and find out what bucket number tlwore "PIPE&SLIPPER" would be found in.
INCLUDE JBC.h

OPEN "WEDDING-PRESENTS" TO DSCB ELSE STOP

key = "PIPE&SLIPPER"

parm = key

IF IOCTL(DSCB,JIOCTL_COMMAND_HASH_RECORD,parm) THEN

189

PRINT "key ":key:" would be in bucket ":parm<2>
END ELSE

CRT "IOCTL failed, command not supported"
END

JIOCTL_COMMAND_HASH_LOCK COMMAND

The JEDI locking mechanism for records in JEDI prositidatabase drivers is not strictly a 100%
record locking mechanism. Instead, it uses thedthshlue of the record key to give a value froro O t
230-1 to describe the record key. The IOCTL commamdbe used to determine how a record key
would be converted into a hashed value for usééydcking mechanism.

EXAMPLE

Lock a record in a file and find out what the lodkoif the record key is. The example then calls the
jRLA locking demon and the display of locks takenuwl include the lock taken by this program.
INCLUDE JBC.h
DEFCE getpid()
OPEN "WEDDING-PRESENTS" TO DSCB ELSE STOP
key = "PIPE&SLIPPER"
parm = key
IF IOCTL(DSCB,JIOCTL_COMMAND_HASH_LOCK,parm) ELSE
CRT "IOCTL failed, command not supported"
EXIT(2)
END
PRINT "The lock ID for the key is ":parm
PRINT "Our process id is " : getpid()

190

ISALPHA

The ISALPHA function will check that the expressiamsists of entirely alphabetic characters.
COMMAND SYNTAX

ISALPHA(expression)
SYNTAX ELEMENTS

The expression can return a result of any type.I$A&PHA function will then return TRUE (1) if the
expression consists of entirely alphabetic characliehe function will return FALSE (0) if any

character in the expression is not alphabetic.
INTERNATIONAL MODE

When the ISALPHA function is used in Internationaddé the properties of each character is

determined according to the Unicode Standard.

191

ISALNUM

The ISALNUM function will check that the expressioonsists of entirely alphanumeric characters.
COMMAND SYNTAX

ISALNUM(expression)
SYNTAX ELEMENTS

The expression can return a result of any type.l$SA&NUM function will then return TRUE (1) if
the expression consists of entirely alphanumerizatters. The function will return FALSE (0) if the

expression contains any characters, which arelpbaaumeric.
INTERNATIONAL MODE

When the ISALNUM function is used in Internationabtie the properties of each character is

determined according to the Unicode Standard.

192

ISCNTRL

The ISCNTRL function will check that the expressiamsists entirely of control characters.
COMMAND SYNTAX

ISCNTRL(expression)
SYNTAX ELEMENTS

The expression can return a result of any type.lSENTRL function will then return TRUE (1) if the
expression consists of entirely control characteng. function will return FALSE (0) if the expression

contains any characters, which are not controlatdtars.
INTERNATIONAL MODE

When the ISCNTRL function is used in Internationaldddhe properties of each character is

determined according to the Unicode Standard.

193

ISDIGIT

The ISDIGIT function will check that the expressimmsists of entirely numeric characters.
COMMAND SYNTAX

ISDIGIT(expression)
SYNTAX ELEMENTS

The expression can return a result of any type.l$B¢GIT function will then return TRUE (1) if the
expression consists of entirely numeric charactérs.function will return FALSE (0) if the

expression contains any characters, which areuraeric.
INTERNATIONAL MODE

When the ISDIGIT function is used in InternatioMdde the properties of each character is

determined according to the Unicode Standard.

194

ISLOWER

The ISLOWER function will check that the expressiomsists of entirely lower case characters.

COMMAND SYNTAX

ISLOWER(expression)
SYNTAX ELEMENTS

The expression can return a result of any type.ISh®WER function will then return TRUE (1) if
the expression consists of entirely lower caseatttars. The function will return FALSE (0) if the

expression contains any characters, which areomadrlcase characters.
INTERNATIONAL MODE

When the ISLOWER function is used in Internationadd the properties of each character is

determined according to the Unicode Standard

195

ISPRINT

The ISPRINT function will check that the expressommsists of entirely printable characters.

COMMAND SYNTAX

ISPRINT (expression)
SYNTAX ELEMENTS

The expression can return a result of any type.ISRKINT function will then return TRUE (1) if the
expression consists of entirely printable characf€he function will return FALSE (0) if the

expression contains any characters, which arentgaple.
INTERNATIONAL MODE

When the ISPRINT function is used in Internatioki@lde the properties of each character is

determined according to the Unicode Standard.

196

ISSPACE

The ISSPACE function will check that the expresgionsists of entirely space type characters.

COMMAND SYNTAX

ISSPACE(expression)
SYNTAX ELEMENTS

The expression can return a result of any type.l$B&ACE function will then return TRUE (1) if the
expression consists of entirely spacing type characThe function will return FALSE (0) if the

expression contains any characters, which arepaatescharacters.
INTERNATIONAL MODE

When the ISSPACE function is used in Internationatil the properties of each character is

determined according to the Unicode Standard.

197

ISUPPER

The ISUPPER function will check that the expressionsists of entirely upper case characters.
COMMAND SYNTAX

ISUPPER(expression)
SYNTAX ELEMENTS

The expression can return a result of any type.IShPER function will then return TRUE (1) if the
expression consists of entirely lower case characide function will return FALSE (0) if the

expression contains any characters, which areppncase characters.
INTERNATIONAL MODE

When the ISUPPER function is used in Internationati®lthe properties of each character is

determined according to the Unicode Standard.

198

ITYPE

Use the ITYPE function to return the value resulfirggn the evaluation of an I-type expression in a
JBASE file dictionary.

COMMAND SYNTAX

ITYPE (i.type)

l.type is an expression evaluating to the contents ottimepiled I-descriptor. You must compile the I-
descriptor before the ITYPE function uses it; otfise, you get a run-time error message.

Using several methods set the I.type to the evadulatiescriptor in several ways. One way is to read
the I-descriptor from a file dictionary into a vaie, then use the variable as the argument to the
ITYPE function. If the I-descriptor references a ek, the current value of the system variable
@ID is used. If the I-descriptor, references fieldueslin a data record, the data is taken from the
current value of the system variable @RECORD.

To assign field values to @RECORD, read a record thandata file into @RECORD before invoking
the ITYPE function.

If i.type evaluates to null, the ITYPE function fa@lad the program terminates with a run-time error
message.

NOTE: Set the @FILENAME to the name of the file befOr¥PE execution.

EXAMPLE

This is the SLIPPER file content:

JIM GREG ALAN
0018 001 10 0015

This is the DICT SLIPPER content:

SIZE
001D
0021
003
004
005 10L
006 L

This is the program source code:

OPEN 'SLIPPERS' TO FILE ELSE STOP
OPEN 'DICT','SLIPPERS' TO D.FILE ELSE STOP

199

*

READ ITYPEDESC FROM D.FILE, 'SIZE' ELSE STOP
*

EXECUTE 'SELECT SLIPPERS'

@FILENAME = “SLIPPERS”

LOOP

READNEXT @ID DO

*

READ @RECORD FROM FILE, @ID THEN

*

PRINT @ID: "WEARS SLIPPERS SIZE " ITYPE(ITYPEDESC)
END

REPEAT

The output of this program is:

3 records selected

JIM WEARS SLIPPERS SIZE 8
GREG WEARS SLIPPERS SIZE 10
ALAN WEARS SLIPPERS SIZE 5

200

JBASECOREDUMP

Use as a diagnostic tool for applications and adlavenapshot of the application to be dumped to an

external file for later analysis

COMMAND SYNTAX
JBASECOREDUMP(expressionl, expression2)
SYNTAX ELEMENTS

For jBASE 4.1 upwards only, the program variabled @ALL/GOSUB stack will be dumped.

The output is in free style text format.

The function is called such:

PRINT " fatal application error, outputting a cahemp"

filename = "GLOBUSDUMP_":TIME():"_":DATE():"_":SYSTEM(&)
PRINT "Please send the file ":filename:" to your Egros support”
dummy = JBASECOREDUMP(filename , 0)

EXIT(99)

The first parameter shows the name of the operatistem file to output the core dump to. You can

supply

instead of a file name and JBASE allosatefilename of:

/JBASECOREDUMP_nnnn_mmmmm

where

nnn is the port number and mmmmmm is the process id.

The second parameter is not used at present. Fugrsions will allow extra information to be
selectively dumped.

A null string is always returned from the function.

EXAMPLE

JBASE Core dump created at Thu Apr 10 17:12:01 2003

Program test31 , port O, process id 21959
CALL/GOSUB stack

Line 0, Source jmainfunction.b , Level 0
Source changed to ./test31.b

0007 GOSUB 100

201

0012 GOSUB 200
0016 CALL SuB1
Source changed to ./SUB1.b
0004 GOSUB 100

0009 GOSUB 200

All the defined VAR's in the program

COMMON variables

0x8057ddO : greg1[1,-1] 2 (V) Strin
13 bytes at address 0x8057f60 : This is gregl

0x8057e30 : greg2[1,-1] 2 (V) Strin
13 bytes at address 0x8057fcO : This is greg2

STANDARD Variables in SUBROUTINE main()

Oxbfffed54 : Varl[1,-1] 2 (V) Stri
12 bytes at address 0x8057f00 : This is CAR1

STANDARD Variables in SUBROUTINE SUB1

Oxbfffe39c : | (V) Inte
5

Oxbfffe3b8 : VM : (V) Unin
(UNASSIGNED)

Oxbfffe3d4 : x1[1,-1] (V) Stri
56 bytes at address 0x8059a60 :
2\3742\3749\374SUB1.b\3752\3741\3744\374SUB1.b\3751
t31.b\3751\3741\3747\374test31.b

Oxbfffe3f0 : rc[1,-1] (V) Stri
0 bytes at address 0x40422b04 :

Oxbfffe40c : GGC2 (V) Inte
4

Oxbfffe428 : GGC3[1,-1] : (V) String
56 bytes at address 0x8059e68 :
2\3742\3749\374SUB1.b\3752\3741\3744\374SUB1.b\3751
t31.b\3751\3741\3747\374test31.b

ng

ger

itialised

ng

\3742\37412\374tes

ng

ger

\3742\37412\374tes

202

Oxbfffe444 : DSCB
File './fb3'

Oxbfffe460 : rec
(UNASSIGNED)

Oxbfffe47c : USERSTATS
(UNASSIGNED)

203

(V) Filed

: (V) Uninit

: (V) Uninit

escriptor

ialised

ialised

JBASETHREADCreate
Use the JBASETHREADCreate command to start a nevadhre

COMMAND SYNTAX

JBASETHREADCreate(ProgramName, Arguments, User, l¢and

SYNTAX ELEMENTS

ProgramNameName of program to execute
Arguments Command line arguments

UserName of user in format "user{,account{,passworddf"" to configuration as calling user id

204

JBASETHREADStatus
The JBASETHREADStatus command shows the status anfraling threads.

COMMAND SYNTAX

JBASETHREADStatus(ThreadList)

SYNTAX ELEMENTS

ThreadList a list of all threads active in this process, vatte attribute per thread.

The layout of the multi-values in each attributassfollows:

<n,1> port number
<n,2 > thread handle returned from JBASETHREADGreat

205

JOLCOMPILE
JQLCOMPILE compiles a jQL statement.

COMMAND SYNTAX
JQLCOMPILE (Statement, Command, Options, Messages)

SYNTAX ELEMENTS

Statement is the variable, which will receive tbenpiled statement, used by a majority of functitms
execute and work on the result set etc.

Command is the actual jQL query that you want tmgibe (such as SELECT or something similar).
Use RETRIEVE to obtain data records as the verb r#tlaeran existing jQL verb. This will ensure
that the right options are set internally. In aiddit use any word that is not a jQL reserved worthas
verb and it will work in the same way as RETRIEVE: lempent a PLOT command that passes the
entire command line into JQLCOMPILE and the reswitsbe the same as if the first word were
replaced with RETRIEVE.

Option: you must specify JQLOPT_USE_SELECT to supglact list to the JQLEXECUTE
function; the compile builds a different executjan if using select lists.

Messages: If the statement fails to compile, diyisamic array is in the STOP format, therefore STOP
messages can be programmed and printed. Provhistoey of compilation for troubleshooting

purposes; Returns -1 if there is a problem fountthénstatement and O for no problem

206

JQLEXECUTE

JQLEXECUTE starts executing a compiled jQL statement.
COMMAND SYNTAX

JQLEXECUTE (Statement, SelectVar)

SYNTAX ELEMENTS

Statement is the valid result of a call to a JQLCOINEPStatement, ...)

SelectVar is a valid select list used to limit Hiatement to a predefined set of items. For example

SELECT PROGRAMMERS WITH IQ_IN_PTS > 250
1 Item Selected

> LIST PROGRAMMERS NAME

PROGRAMMERS... NAME

0123 COOPER, FB

This function returns -1 in the event of a problsoch as an incorrect statement variable. It wililsea
the statement to run against the database andqe@dresult set for use with JQLFETCH()

207

JOLFETCH
JQLFETCH fetches the next result in a compiled jQltesteent.

COMMAND SYNTAX
JQLFETCH (Statement, ControlVar, DataVar)
SYNTAX ELEMENTS

Statement is the result of a valid call to JQLCOMHE)), followed by a valid call to JQLEXECUTE().
ControlVar will receive the ‘control break’ elemerdf any query. FOR EXAMPLE, if there are
BREAK values in the statement, described here aréotials:

The format of ControlVar is:

Attr 1 Level: 0 means detail line 1 —25 for the control
breaks, the same as the A correlative NB.

Attr2 Item ID

Attr 3 Break control Value is 1 if a blank line should be output
first.

Attr 4 Pre-break value for 'B' option in header

Attr 5 Post-break value for 'B' option in header

DataVar will receive the actual screen data onZilstatement for instance. The format is one
attribute per column.

Applies Attribute 7 Conversions (or attribute 3Hrime-style DICTS) to the data

If the property STMT_PROPERTY_FORMAT is set then eattfibate is also formatted according to
the width and justification of the attribute defiah and any override caused by the use of FMT, of
DISPLAY.LIKE on the command line —

NOTE that column headers may also affect the formaftinghat column.

This function is called until there is no more outfraultiple).

208

JOQLGETPROPERTY

Gets the property of a compiled jQL statement

COMMAND SYNTAX
JOLGETPROPERTY (PropertyValue, Statement, Column, P ropertyName)

SYNTAX ELEMENTS

wn

PropertyValue Receives the requested property edne the system or
Statement The result of a valid JQLCOMPILE(Statement)

Column Specifies that you want the value of thepprty for a specific column (otherwise 0 for the

if the property is not set

whole statement).
PropertyName These are EQUATED values defined by INQElUhg the file JQLINTERFACE.h.
This function returns -1 if there is a problem wittle parameters or the programmer. These properties

answer questions such as “Was LPTR mode asked fud,"ow many columns are there?”
Note: Properties are valid after the compile; this esstiain reason for separating the compile and

execute into two functions. After compiling, itpsssible examine the properties and set properties
before executing.

209

JOLPUTPROPERTY
JOQLPUTPROPERTY sets a property in a compiled jQL statéme

COMMAND SYNTAX
JQLPUTPROPERTY (PropertyValue, Statement, Column, P ropertyName)

SYNTAX ELEMENTS
PropertyValue is the value to which you want to set the spegtifieoperty, such as one or “BLAH”
Statement is the result of a valid JQLCOMPILE() function.

NOTE: Some properties may require JQLEXECUTE()first.

Column Holds 0 for a general property of the statemeng column number if it is something that can
be set for a specific column.
PropertyName — These are EQUATED values defined by INCLUDE'ing file JQLINTERFACE.h.

There are lots of these and someone is going to thad@cument each one.
This function returns -1 if it locates a problentlie statement and zero for no problem.
NOTE: Properties are valid after the compile; this isri@n reason for separating the compile and

execute into two functions. After compiling, itpessible examine the properties and set properties
before executing.

210

KEYIN

Use the KEYIN function to read a single charactenfithe input buffer and return it.
COMMAND SYNTAX

KEYIN ()

KEYIN uses raw keyboard input, therefore all speckadracter handling (for example, backspace) is

disabled. System special character handling (famgte, processing of interrupts) is unchanged.

211

LATIN1

The LATIN1 function converts a UTF-8 byte sequente the binary or latinl equivalent.
COMMAND SYNTAX

LATIN1(expression)
SYNTAX ELEMENTS

The expression is to be a UTF-8 encoded byte sequeiich is the default format when executing in

International Mode.
NOTES

Use this function for converting UTF-8 data intodoiy or the latinl code page for external

consumption. i.e. Tape devices.

212

LEFT

The LEFT function extracts a sub-string of a spedifength from the beginning of a string.
COMMAND SYNTAX
LEFT(expression, length)
SYNTAX ELEMENTS

expressionevaluates to the string from which the sub stingxtracted.

length is the number of extracted characters if lengthss than 1, LEFT() returns null.
NOTES

The LEFT() function is equivalent to sub-string egtien starting from the first character positioe, i
expression[1,length]

See alsoRIGHT ()

EXAMPLE

S ="The world is my lobster"
CRT DQUOTE (LEFT(S,9))
CRT DQUOTE(LEFT(S,999))
CRT DQUOTE(LEFT(S,0))

This code displays:
"The world"

"The world is my lobster"

213

LEN

The LEN function returns the character length ofsingplied expression.

COMMAND SYNTAX
LEN(expression)

INTERNATIONAL MODE

The LEN function when used in International Mode weélilurn the number of characters in the
specified expression rather than the number ofsbytehe expression consists of entirely of UTF-8
characters in the ASCII range 0 — 127 then theaddter length of the expression will equate to tye b
length. However, when the expression contains clenaoutside the ASCII range 0 — 127 then byte
length and character length will differ. If the bys specifically required then use B¥TELEN
function in place of the LEN function.

NOTE: Do not use programs manipulating byte countaternational Mode.
SYNTAX ELEMENTS
expressioncan evaluate to any type and the function willahit to a string automatically.

EXAMPLES

Lengths ="
FORI1=1TO50

Lengths = LEN(Values)
NEXT |

214

LENS

Use the LENS function to return a dynamic arrayheftumber of bytes in each element of the

dynamic.array.
COMMAND SYNTAX

LENS (dynamic.array)

Each element of dynamic.array must be a string vdlhe characters in each element of dynamic.array
are counted, with the counts returned.

The LENS function includes all blank spaces, inclgdimailing blanks, in the calculation.

If dynamic.array evaluates to a null string, iurets zero (0). If any element of dynamic.arrayui,n

returns zero (0) for that element.

INTERNATIONAL MODE

The LEN function when used in International Mode weéllurn the number of characters in the
specified expression rather than the number ofsbytehe expression consists of entirely of UTF-8
characters in the ASCII range 0 — 127 then theattter length of the expression will equate to e b
length. However, when the expression contains ctersoutside the ASCII range 0 — 127 then byte
length and character length will differ. If the bys specifically required then use B¥TELEN

function in place of the LEN function.

NOTE: Do not use programs to manipulate byte coumnlisternational Mode.

215

LENDP

The LENDP function returns the display length of apression
COMMAND SYNTAX
LENDP(expression)

SYNTAX ELEMENTS

The expression can evaluate to any type. The LENDRifumwill evaluate each character in the

expression and return the calculated display length
INTERNATIONAL MODE

The LENDP function when used in International Mod# return the display length for the characters
in the specified expression rather than the nurabbytes.

NOTE: Some characters, usually Japanese, Chirtessillereturn a display length of greater than one
for some characters. Some characters, for instzotteol characters or null (char 0), will return a

display length of 0.

LE - Less than or equal operator Ditto re GE and LESIT&ERNATIONAL MODE

216

LES

Use the LES function to determine whether elemeintsme dynamic array are less than or equal to the

elements of another dynamic array.
COMMAND SYNTAX

LES (arrayl, array2)

It compares each element of arrayl with the comedimg element of array?2. If the element from
arrayl is less than or equal to the element framyar a 1 is returned in the corresponding eleroéat
new dynamic array. If the element from arrayl sager than the element from array2, it returnsra ze
(0). If an element of one dynamic array has noegponding element in the other dynamic array, it
evaluates the undefined element as empty, andthparison continues.

If either of a corresponding pair of elements i}, riureturns null for that element. If you usesth

subroutine syntax, it returns the resulting dynaaniay as return.array.

217

LN

The LN function returns the value of the naturabldhm of the supplied value.
COMMAND SYNTAX

LN(expression)

SYNTAX ELEMENTS

Theexpressionshould evaluate to a numeric value. The functidhtiaen return the natural logarithm

of that value.
NOTES

The calculation of the natural logarithm is by usihg mathematical constant e as a number base.
EXAMPLES

A = LN(22/7)

218

LOCALDATE

Return an internal date using the specified Timestand TimeZone combination.
COMMAND SYNTAX

LOCALDATE(Timestamp, TimeZone)

SYNTAX ELEMENTS

The LOCALDATE function uses the specified timestamg adjusts the value by the specified time

zone to return the date value in internal date &rm

219

LOCALTIME

Return an internal time using the specified Timagtand TimeZone combination.
COMMAND SYNTAX

LOCALTIME(Timestamp, TimeZone)

SYNTAX ELEMENTS

The LOCALTIME function uses the specified timestamgd adjusts the value by the specified time

zone to return the time value in internal time fatm

220

LOCATE

The LOCATE statement finds the position of an elemtitin a specified dimension of a dynamic
array.

COMMAND SYNTAX

LOCATE expressionl IN expression2{<expression3{,exgims}}>}, {, expression5} {BY
expression6} SETTING Var THEN|ELSE statement(s)

SYNTAX ELEMENTS

expressionlevaluates to the string that will be searchedrf@xpression2.

expressionZevaluates to the dynamic array within which exgiesl will be searched for.
expression3and expression4, when specified, cause a valsebwmalue search respectively.
expressionSindicates the field, value or subvalue from whilcl search will begin.

BY expression6causes the search to expect the elements tod®ar in a specific order, which can

considerably improve the performance of some searcfhe available string values for expression6

are:

AL Values are in ascending alphanumeric order
AR Values are in right justified, then ascendindesr
AN Values are in ascending numeric order

DL Values are in descending alphanumeric order
DR Values are in right justified, then descendindeo
DN Values are in descending numeric order

Var will be set to the position of the Field, ValoeSub-Value in which expressionl was found if
indeed. If it was not found and expression6 wasspetified then Var will be set to one positiontpas
the end of the searched dimension. If expressiah6pkcify the order of the elements then Var &l

set to the position before which the element shbelihserted to retain the specified order.

The statement must include one of or both of the TEHBHIELSE clauses. If expression1 is found in
an element of the dynamic array, it executes thiestents defined by the THEN clause. If expressionl

is not found in an element of the dynamic arragxicutes the statements defined by the ELSE clause.

INTERNATIONAL MODE

When the LOCATE statement is used in Internationati®)dhe statement will use the currently
configured locale to determine the rules by whiablestring is considered less than or greatertth@an
other will.

NOTES
See alsoEIND, FINDSTR

EXAMPLES

221

Name = "Nelson"

LOCATE Name IN ForeNames BY "AL" SETTING Pos ELSE
INS Name BEFORE ForeNames<Pos>

END

222

LOCK

The LOCK statement will attempt to set an execulibmk thus preventing any other JBASE BASIC

program that respects that lock to wait until firisgram has released it.
COMMAND SYNTAX
LOCK expression {THEN|ELSE statements}

SYNTAX ELEMENTS

The expression should evaluate to a numeric valtvegas 0 and 255 (63 in R83 import mode).

The statement will execute the THEN clause (if defjn@oviding the lock could be taken. If another
program holds the LOCK and an ELSE clause is provibled the statements defined by the ELSE
clause are executed. If no ELSE clause was providiidiine statement then it will block (hang) until

the other program has released the lock.
NOTES

See alsoUNLOCK.
If you used the environment variable JBASE BASICEMUIE set to r83, to compile the program the
number of execution locks is limited to 64. If ateeution lock greater than this number is specified

the actual lock taken is the specified number moéd..

EXAMPLES

LOCK 32 ELSE

CRT "This program is already executing!"
STOP
END

223

LOOP

The LOOP construct allows the programmer to spdoips with multiple exit conditions.
COMMAND SYNTAX
LOOP statements1l WHILE|UNTIL expression DO statemenBREAT

SYNTAX ELEMENTS

statementsland statements2 consist of any number of starslatements include the LOOP
statement itself, thus allowing nested loops.

statementsiwill always be executed at least once, after witiehWHILE or UNTIL clause is
evaluated.

expressionis tested for Boolean TRUE/FALSE by either the WHIL&use or the UNTIL clause.
When tested by the WHILE clause statements2 will belyxecuted if expression is Boolean TRUE.
When tested by the UNTIL clause, statements2 wlif be executed if the expression evaluates to
Boolean FALSE.

REPEAT causes the loop to start again with the firsestant following the LOOP statement.

NOTES

See alsoBREAK, CONTINUE

EXAMPLES

LOOP WHILE B < Max DO
Var = B++ *6
REPEAT

LOOP
CRT "+"

WHILE READNEXT KEY FROM List DO
READ Record FROM FILE, KEY ELSE CONTINUE
Record<1>*=6

REPEAT

CRT

224

LOWER

The LOWER function lowers system delimiters in angfrio the next lowest delimiter.
COMMAND SYNTAX
LOWER(expression)

SYNTAX ELEMENTS

The expression is a string containing one or molienders, lowered as follows:
ASClICharacter Lowered To

255 254
254 253
253 252
252 251
251 250
250 249
249 248
EXAMPLE

ValuemarkDelimitedVariable = LOWER(AttributeDelimidt®ariable)

225

MAKETIMESTAMP

Generate a timestamp using combination of intetatd, time and timezone.

COMMAND SYNTAX

MAKETIMESTAMP(InternalDate, InternalTime, TimeZone)

SYNTAX ELEMENTS

Use the MAKETIMESTAMP function to generate a timestampmg a specified time zone. The
internal date and internal time values are combingdther with the time zone specification to retar
UTC timestamp as decimal seconds.

226

MAT

Use the MAT command to either assign every elenmeatspecified array to a single value or to assign

the entire contents of one array to another.
COMMAND SYNTAX

MAT Array = expression
MAT Arrayl = MAT Array2

SYNTAX ELEMENTS

Array , Arrayl andArray2 are all pre-dimensioned arrays declared with thé Btatement.

Expression can evaluate to any data type.
NOTES

If any element of the array Array2 has not beeigassl a value then a runtime error message will

occur. This can be avoided by coding the statemeXi Krray2 =" after the DIM statement.

EXAMPLES
001 DIM A(45), G(45)

002 MAT G ="Array value"
003 MAT A=MAT G

227

MATBUILD

Use the MATBUILD statement to create a dynamicyamat of a dimensioned array.
COMMAND SYNTAX
MATBUILD variable FROM array{, expressionl{, expressR}} {USING expression3}

SYNTAX ELEMENTS

variable is the JBASE BASIC variable into which the creathghamic array will be stored. Array is a
previously dimensioned and assigned matrix froncvithe dynamic array will be created.
expressionland expression2 should evaluate to numeric integepressionl specifies which element
of the array the extraction will start with; exmes?2 specifies which element of the array the
extraction will end with (inclusive).

By default, each array element is separated inlynamic array by a field mark. By specifying
expression3the separator character can be changed. If esipn&sevaluates to more than a single

character, only the first character of the stringsed.
NOTES

When specifying starts and end positions with rrdilmensional arrays, it is necessary to expand the
matrix into its total number of variables to caktel the correct element number. See the information

about dimensioned arrays earlier in this chaptedé&ailed instructions on calculating element

numbers.

EXAMPLES

DIM A(40)

MATBUILD Dynamic FROM A,3,7 USING ":"

Builds a 5 element string separated by a : characte r.

MATBUILD Dynamic FROM A Builds a field mark separat ed dynamic array

from every element contained in the matrix A.

228

MATCHES
The MATCH or MATCHES function applies pattern matchtogn expression.

INTERNATIONAL MODE

When using the MATCHES statement in International ®dte statement will use the currently
configured locale to determine the properties atiogrto the Unicode Standard for each character in

the expression. i.e., is the character alpha orenigh
COMMAND SYNTAX
expressionIMATCHES expression2

SYNTAX ELEMENTS

expressionlmay evaluate to any type. expression2 should atalo a valid pattern matching string
as described below.

expressionlis then matched to the pattern supplied and sevafilBoolean TRUE is returned if the
pattern is matched. A value of Boolean FALSE ismed if the pattern is not matched.
expression2can contain any number of patterns to match teeparated by value marks. The value
mark implies a logical OR of the specified pattesing the match will evaluate to Boolean TRUE if

expressionl matches any of the specified patterns.
NOTES

The rule table shown below shows construction depatmatching strings (n refers to any integer

number).

Pattern Explanation

nN this construct matches a sequence of n digits

nA this construct matches a sequence of n alphactess

nC this construct matches a sequence of n alphaabes or digits
nX this construct matches a sequence of any cleasact

"string" This construct matches the character sezpistring exactly.

Applies the pattern to all characters in expressiamd it must match all characters in the expressio
evaluate as Boolean TRUE.

Specify the integer value n as 0. This will causegattern to match any number of characters of the
specified type.

EXAMPLES

IF Var MATCHES "ON" THEN CRT "A match!"

Matches if all characters in Var are numeric or aa null string.

IF Var MATCHES "ON'."2N"...

229

Matches if Var contains any number of numericsofoéd by the “.” character followed by 2 numeric
characters. e.g. 345.65 or 9.99

Pattern = "4X"'6N';'2A"

Matched = Serno MATCHES Pattern

Matches if the variable Serno consists of a stohg arbitrary characters followed by the ":" chaes
then 6 numerics then the ";" character and thelpt2abetic characters. e.g. 1.2.:123456;AB or
17st:456789;FB

230

MATCHFIELD

COMMAND SYNTAX
MATCHFIELD (string, pattern, field)
DESCRIPTION

Use the MATCHFIELD function to check a string agamsnatch pattern: See also: MATCH operator
for information about pattern matching.

field is an expression that evaluates to the portidhefmatch string to be returned.

If string matches pattern, the MATCHFIELD functionumas the portion of string that matches the
specified field in pattern. If string does not niagattern, or if string or pattern evaluates torthi
value, the MATCHFIELD function returns an empty giriif field evaluates to the null value, the
MATCHFIELD function fails and the program terminateith a run-time error.

pattern must contain specifiers to cover all charactergaioed in string. For example, the following

statement returns an empty string because noad# pf string are specified in the pattern:

MATCHFIELD ("XYZ123AB", "3X3N", 1)

To achieve a positive pattern match on the strimmy@puse the following statement:

MATCHFIELD ("XYZ123AB", "3X3N0X", 1)

This statement returns a value of "XYZ".

EXAMPLES

In the following example, the string does not mateh pattern:

In the following example, the entire string doe$ match the pattern:

Source Lines Program Output

Q=MATCHFIELD("AA123BBB9","2A0N3AON",3)
PRINT "Q=",Q

Q=BBB

ADDR='20 GREEN ST. NATICK, MA.,01234'
ZIP=MATCHFIELD(ADDR,"ONOX5N",3)

PRINT "ZIP=",ZIP

ZIP= 01234

INV="PART12345 BLUE AU'

231

COL=MATCHFIELD(INV,"10X4A3X",2)
PRINT "COL=",COL

COL=BLUE
Source Lines Program Output

XYZ=MATCHFIELD('‘ABCDE1234',"2N3A4N",1)
PRINT "XYZ=",XYZ

XYZ=
Source Lines Program Output

ABC=MATCHFIELD('1234AB',"4N1A",2)
PRINT "ABC=",ABC

ABC=

232

MATPARSE

Use the MATPARSE statement to assign the elemeraswdtrix from the elements of a dynamic

array.
COMMAND SYNTAX

MATPARSE array{, expressionl{, expression2}} FROM izdnlel {USING expression3} SETTING
variable2

SYNTAX ELEMENTS

array is a previously dimensioned matrix, which will &&signed to from each element of the dynamic
array. variablel is the jJBASE BASIC variable frorhish the matrix array will be stored.
expressionland expression2 should evaluate to numeric integepressionl specifies which element
of the array the assignment will start with; exgies2 specifies which element of the array the
assignment will end with (inclusive).

By default, the dynamic array assumes the usdiefdamark to separate each array element. By
specifying expression3, the separator charactebeaihanged. If expression3 evaluates to moreahan
single character, only the first character of thimg is used.

As assignment will stop when the contents of theedlyic array have been exhausted, it can be useful
to determine the number of matrix elements thaeveetually assigned to. If ttRETTING clause is

specified then variable2 will be set to the numiifezlements of the array that were assigned to.
NOTES

When specifying starts and end positions with rrdilimensional arrays, it is necessary to expand the
matrix into its total number of variables to cabgel the correct element number. See the information
about dimensioned arrays earlier in this sectioméailed instructions on calculating element

numbers.

EXAMPLE

DIM A(40)

MATPARSE A,3,7 FROM Dynamic

Assign 5 elements of the array starting at elerient

233

MATREAD

The MATREAD statement allows a record stored in a$BAfile to be read and mapped directly into a
dimensioned array.

COMMAND SYNTAX

MATREAD array FROM {variablel,}expression {SETTING saty {ON ERROR statements}
{LOCKED statements} {THEN|ELSE statements}

SYNTAX ELEMENTS

array should be a previously dimensioned array, whidhlve used to store the record to be read. If
specified variablel should be a JBASE BASIC variable that has previpbgsen opened to a file using
the OPEN statement. If variablel is not speciffeghtthe default file is assumed. The expression
should evaluate to a valid record key for the file.

If no record is found and can be read from thetfiln it is mapped into the array and executes the
THEN statements (if any). If the record cannot e rigom the file then array is unchanged and
executes the ELSE statements (if any).

If the record could not be read because anotheepsoalready had a lock on the record then one of
two actions is taken. If the LOCKED clause was djmsgtin the statement then the statements
dependent on it are executed. If no LOCKED clauas specified then the statement blocks (hangs)
until the other process releases the lock. If a LBDKlause is used and the read is successful, a lock
will be set.

If the SETTING clause is specified, setvar will betsghe number of fields in the record on a

successful read. If the read fails, setvar wilsbeto one of the following values:
INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical 1/0O error or unknown error

If ON ERROR is specified, it executes the statemfaiiswing the ON ERROR clause for any of the
above Incremental File Errors except error 128.

NOTES

The record is mapped into the array using a preeéfaigorithm. The record is expected to consist of a
number of Field separated records, which are thsigaed one at a time to each successive element of
the matrix. See the notes on matrix organizatigtiezan this section for details of multi dimensial

arrays.

234

If there were more fields in the record than eletmé@nthe array, then the final element of thearra

will be assigned all remaining fields. If there edewer fields in the record than elements in thaya

then remaining array elements will be assignedllavaiue.

Note that if multi-values are read into an arragnetnt they will then be referenced individually as:
Array(n)<1,m>

not

Array(n)<m>

EXAMPLES

MATREAD Xref FROM CFile, "XREF" ELSE MAT Xref ="

MATREAD Ind FROM IFile, "INDEX" ELSE MAT Ind =0

MATREAD record FROM filevar, id SETTING val ON ERRO R
PRINT "Error number ":val:" occurred which prevente d record from
being read."
STOP
END THEN

PRINT 'Record read successfully’
END ELSE
PRINT 'Record not on file'

END
PRINT "Number of attributes in record = ": val

235

MATREADU

The MATREADU statement allows a record stored in ASE file to be read and mapped directly into

a dimensioned array. The record will also be lodkedipdate by the program.
COMMAND SYNTAX

MATREADU array FROM { variablel,}expression {SETTINGtsar} {ON ERROR statements}
{LOCKED statements} {THEN|ELSE statements}

SYNTAX ELEMENTS

array should be a previously dimensioned array, whidhlve used to store the record to be read. If
specified variablel should be a JBASE BASIC variable that has previpbgsen opened to a file using
the OPENSstatement. Ifariablel is not specified then the default file is assunidue expression
should evaluate to a valid record key for the file.

If found, the record can be read from the file tités mapped into array and executes the THEN
statements (if any). If the record cannot be reanhfthe file for some reason then array is unchdnge
and executes the ELSE statements (if any).

If the record could not be read because anotheepsoalready had a lock on the record then one of
two actions is taken. If the LOCKED clause was djmsgtin the statement then the statements
dependent on it are executed. If no LOCKED clauas specified then the statement blocks (hangs)
until the other process releases the lock.

If the SETTING clause is specified, setvar will betsahe number of fields in the record on a

successful read. If the read fails, setvar wilkbeto one of the following values:
INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements followihg ON ERROR clause will be executed for any
of the above Incremental File Errors except err@. 12

NOTES

The record is mapped into the array using a preeéfaigorithm. The record is expected to consist of a
number of Field separated records, which are thsigaed one at a time to each successive element of
the matrix. See the notes on matrix organizatigtieean this section for details of the layoutrafilti
dimensional arrays.

If there were more fields in the record than eletmé@nthe array, then the final element of thearra

will be assigned all remaining fields. If there edewer fields in the record than elements in thaya

then remaining array elements will be assignedilavaiue.

236

NOTE: that if multi-values are read into an arragneént they will then be referenced individually as:
Array(n)<1,m>
not

Array(n)<m>
EXAMPLES
MATREADU Xref FROM CFile, "XREF" ELSE MAT Xref ="
MATREADU Ind FROM IFile, "INDEX" LOCKED
GOSUBInformUserLock ;* Say it is locked
END THEN
GOSUB InformUserOk ;* Say we got it
END ELSE
MAT Ind = O ;* It was not there
END
MATREADU record FROM filevar, id SETTING val ON ERR OR

PRINT "Error number ":val:" occurred which prev ented record from
being read."
STOP

END LOCKED

PRINT "Record is locked"
END THEN

PRINT 'Record read successfully'
END ELSE

PRINT 'Record not on file'

END
PRINT "Number of attributes in record = ": val

237

MATWRITE

The MATWRITE statement transfers the entire contehtsdimensioned array to a specified record
on disc.

COMMAND SYNTAX
MATWRITE array ON { variable,}expression {SETTING setydON ERROR statements}

SYNTAX ELEMENTS

array should be a previously dimensioned and initialiae@dy. If specified, variable should be a
previously opened file variable (i.e. the subjdcatw OPEN statement). If variable is not specifteal t
default file variable is used. expression should@ate to the name of the record in the file.

If the SETTING clause is specified and the write sedsesetvar will be set to the number of attributes
read into array.

If the SETTING clause is specified and the write fakstvar will be set to one of the following values
INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements followihg ON ERROR clause will be executed for any

of the above Incremental File Errors except err@. 12
NOTES

The compiler will check that the variable specifie@ dimensioned array before its use in the
statement.

EXAMPLES

DIM A(8)

MAT A =99

MATWRITE A ON "NewArray" SETTING ErrorCode ON ERROR
CRT "Error: ":ErrorCode:" Record could not be written."

END

MATWRITE A ON RecFile, "OldArray"

238

MATWRITEU

The MATWRITEU statement transfers the entire conteftsdimensioned array to a specified record

on file, in the same manner as the MATWRITE statem@ntexisting record lock will be preserved.

COMMAND SYNTAX

MATWRITEU array ON { variable,}expression {SETTING set} {ON ERROR statements}

SYNTAX ELEMENTS

array should be a previously dimensioned and initialiae@dy. If specified, variable should be a
previously opened file variable (i.e. the subjecatw OPEN statement). If variable is not specifteal t
default file variable is used.

expressionshould evaluate to the name of the record initae f

If the SETTING clause is specified and the write sedsesetvar will be set to the number of attributes
read into array.

If the SETTING clause is specified and the write fakstvar will be set to one of the following values
INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements followihg ON ERROR clause will be executed for any
of the above Incremental File Errors except err@. 12

NOTES

The compiler will check that the variable specifieihdeed a dimensioned array before its use in the
statement.

EXAMPLES

DIM A(8)

MAT A =99

MATWRITEU A ON "NewArray"

239

MAXIMUM

The MAXIMUM function is used to return the elemeffitacdynamic array with the highest numerical

value.

COMMAND SYNTAX
MAXIMUM(DynArr)

SYNTAX ELEMENTS

DynArr should evaluate to a dynamic array.

NOTES

Null dynamic array elements are treat as zero.
Non-numeric dynamic array elements are ignored.
See alsoMINIMUM .

EXAMPLE

If EResults is a variable containing the dynamiayrr

1.45032: @AM:-3.60441:@VM:4.29445: @AM:2.00042: @SM:-3 .90228
the code:

PRECISION 5
CRT = MAXIMUM(EResults)

displays 4.29445

240

MINIMUM

The MINIMUM function is used to return the elemeftaadynamic array with the lowest numerical

value.

COMMAND SYNTAX

MINIMUM(DynArr)

SYNTAX ELEMENTS

DynArr should evaluate to a dynamic array.

NOTES

Null dynamic array elements are treat as zero.
Non-numeric dynamic array elements are ignored.
See alsoMAXIMUM .

EXAMPLE

If EResults is a variable containing the dynamieyarr

1.45032:@AM:-3.60851:@VM:4.29445: @AM:2.07042: @SVM:- 3.90258
the code:

PRECISION 3
CRT = MINIMUM(EResults)

displays -3.903

241

MOD

The MOD function returns the arithmetic modulo obtmumeric expressions.
COMMAND SYNTAX
MOD (expressionl, expression2)

SYNTAX ELEMENTS

Both expressionlandexpression2should evaluate to numeric expressions or a renémnor will

occur.
NOTES

The remainder of expressionl divided by expressgaheulates the modulo. If expression2 evaluates

to 0, then the value of expressionl is returned.

EXAMPLES

FOR1=1TO 10000
IF MOD (I, 1000) = 0 THEN CRT "+"

NEXT |

displays a "+" on the screen every 1000 iterations

242

MODS

Use the MODS function to create a dynamic arrahefremainder after the integer division of

corresponding elements of two dynamic arrays.
COMMAND SYNTAX

MODS (arrayl, array?2)

The MODS function calculates each element accortirige following formula:

XY.element = X ??2(INT (X/Y) *Y)

X is an element adirrayl and Y is the corresponding element of array2. Bselting element is
returned in the corresponding element of a new aymarray. If an element of one dynamic array has
no corresponding element in the other dynamic afiay returned. If an element of array2 is 0, 0 is

returned. If either of a corresponding pair of edes is null, null is returned for that element.
EXAMPLE
A=3:@VM:7

B=2:@SM:7:@VM:4
PRINT MODS (A,B)

The output of this program is: 1\0]3

243

MSLEEP

Allows the program to pause execution for a spedifiumber of milliseconds
COMMAND SYNTAX

MSLEEP {milliseconds}

SYNTAX ELEMENTS

millisecondsmust be an integer, which, specifies the numbenithiseconds to sleep.

When there are no parameters assumes a defaulbftiinmillisecond.
NOTES

If the debugger is invoked while a program is sieg@nd then execution continued, the user will be
prompted:

Continue with SLEEP (Y/N) ?

If "N" is the response, the program will continughe next statement after the MSLEEP

See alsoSLEEPto sleep for a specified number of seconds or argjpecified time.

EXAMPLES

Sleep for 1/10th of a second...

MSLEEP 100

*

* 40 winks...

MSLEEP 40000

244

MULS

See also: Floating point Operations
Use the MULS function to create a dynamic arrayhefélement-by-element multiplication of two

dynamic arrays.
COMMAND SYNTAX

MULS (arrayl, array?2)

Each element of arrayl is multiplied by the corresjpog element of array2 with the result being
returned in the corresponding element of a new aymarray. If an element of one dynamic array has
no corresponding element in the other dynamic affay returned. If either of a corresponding [éir

elements is null, null is returned for that element
EXAMPLE
A=1:@VM:2:@VM:3:@SM:4

B=4.:@VM:5:@VM:6:@VM:9
PRINT MULS (A,B)

The output of this program is: 4]10]18\0]0

245

NEGS

Use the NEGS function to return the negative vatifes| the elements in a dynamic array.
COMMAND SYNTAX

NEGS (dynamic.array)

If the value of an element is negative, the retdvadue is positive. If dynamic.array evaluatesd,

null is returned. If any element is null, null eturned for that element.

246

NES

Use the NES function to determine whether elements® dynamic array are equal to the elements of

another dynamic array.
COMMAND SYNTAX

NES (arrayl, array2)

Each element of arrayl is compared with the cormedipg element of array?2. If the two elements are
equal, a 0 is returned in the corresponding elemiatew dynamic array. If the two elements are no
equal, a 1 is returned. If an element of one dynamay has no corresponding element in the other
dynamic array, a 1 is returned. If either of a esponding pair of elements is null, null is retukfier

that element.

247

NOBUF

Use the NOBUF statement to turn off buffering fdil@ previously opened for sequential processing.
COMMAND SYNTAX

NOBUF file.variable {THEN statements [ELSE statemgh&LSE statements}

DESCRIPTION

JBASE can buffer for sequential input and outputragiens. The NOBUF statement turns off this
behavior and causes all writes to the file to bdopmed immediately. The NOBUF statement should
be used in conjunction with a successful OPENSE@msnt and before any input or output is
performed on the record.

If the NOBUF operation is successful, it executes THEN statements otherwise, executes the ELSE
statements. If file.variable is not a valid filesdeptor then NOBUF statement fails and the program

enters the debugger.
EXAMPLE

In the following example, if RECORD in DIRFILE can bpened, output buffering is turned off:

OPENSEQ 'DIRFILE', 'RECORD' TO DATA THEN NOBUF DATA

ELSE ABORT

248

NOT

The NOT function is used to invert the Boolean valfian expression. It is useful for explicitly test

for a false condition.

COMMAND SYNTAX

NOT (expression)

SYNTAX ELEMENTS
expressionmay evaluate to any Boolean result.
NOTES

The NOT function will return Boolean TRUE if the expsies returned a Boolean FALSE. It will
return Boolean FALSE of the expression returned aléo TRUE.
The NOT function is useful for explicitly testing fire false condition of some test and can clah#y t

logic of such a test.

EXAMPLES

EQU Sunday TO NOT (MOD (DATE(), 7))
IF Sunday THEN
CRT "It is Sunday!"

END

In this example, the expression MOD (DATE(),7) wélturn O (FALSE) if the day is Sunday and 1 to
6 (TRUE) for the other days. To explicitly test foetday Sunday we need to invert the result of the
expression. BY using the NOT function we return(@RUE) if the day is Sunday and 0 (FALSE) for

all other values of the expression.

249

NOTS

Use the NOTS function to return a dynamic arratheflogical complements of each element of

dynamic.array.
COMMAND SYNTAX

NOTS (dynamic.array)

If the value of the element is true, the NOTS fumttieturns a value of false (0) in the correspogdin
element of the returned array. If the value ofdlemment is false, the NOTS function returns a vafue
true (1) in the corresponding element of the reddrarray.

A numeric expression that evaluates to 0 has aabgalue of false. A numeric expression that
evaluates to anything else, other than the nullesak a logical true.

An empty string is logically false. All other stgrexpressions, including strings, which consisarof
empty string, spaces, or the number 0 and spaeekgdgcally true.

If any element in dynamic.array is null, it retumdl for that element.

EXAMPLE

X=5;Y=5

PRINT NOTS X-Y:@VM:X+Y)

The output of this program is:
1]0

250

NULL

The NULL statement performs no function but can tefulsn clarifying syntax and where the

language requires a statement but the programnesr it wish to perform any actions.
COMMAND SYNTAX
NULL

SYNTAX ELEMENTS
None

EXAMPLES

LOCATE AIN B SETTING C ELSE NULL

251

NUM

Use the NUM function to test arguments for numealies.
COMMAND SYNTAX

NUM (expression)

SYNTAX ELEMENTS

expressionmay evaluate to any data type.

NOTES

If found that every character in expression is nicrtben NUM returns a value of Boolean TRUE If
any character in expression is found not to be migntieen a value of Boolean FALSE is returned.
Note that to execute user code migrated from dgistems correctly, the NUM function will accept
both a null string and the single characters *", and "-" as being numeric.

NOTE: if running jBASE BASIC in ros emulation the }."+" and "-" characters would not be

considered numeric.

EXAMPLE

LOOP
INPUT Answer,1

IF NUM (Answer) THEN BREAK ;* Exit loop if nume ric

REPEAT

252

NUMS

Use the NUMS function to determine whether the elets of a dynamic array are numeric or

nonnumeric strings.
COMMAND SYNTAX

NUMS (dynamic.array)

If an element is numeric, a numeric string, or enp#y string, it evaluates to true, and returnslaeva
of 1 to the corresponding element in a new dynamay. If the element is a nonnumeric string, it
evaluates to false, and returns a value of 0.

The NUMS of a numeric element with a decimal poin} évaluates to true; the NUMS of a numeric
element with a comma (,) or dollar sign ($)leates to false.

If dynamic.array evaluates to null, it returns niflan element of dynamic.array is null, it retsimull

for that element.
INTERNATIONAL MODE

When using the NUMS function in International Motlee statement will use the Unicode Standard to

determine whether an expression is numeric.

253

OBJEXCALLBACK

JBASE OBjEX provides the facility to call a subrauwgi from a front-end program written in a tool that
supports OLE, such as Delphi or Visual Basic. The)EXBCALLBACK statement allows

communication between the subroutine and the gaiBjEX program.
COMMAND SYNTAX
OBJEXCALLBACK expressionl, expression2 THEN|ELSE statame

SYNTAX ELEMENTS

expressionl and expression2 can contain any dagy. 8re returned to the OBJEX program where
they are defined as variants.

If the subroutine containing the OBJEXCALLBACK staternis not called from an OBJEX program
(using the Call Method) then the ELSE clause wiltddesn.

NOTES

The OBJEXCALLBACK statement is designed to allow jBABESIC subroutines to temporarily
return to the calling environment to handle exaaptionditions or prompt for additional information.
After servicing this event, the code should rettontrol to the BASE BASIC program to ensure that
the proper clean up operations are eventually mEaketwo parameters can be used to pass data
between the BASE BASIC and OBJEX environments ithidirections. They are defined as Variants
in the OBJEX environment and as normal variablethajBASE BASIC environment.

See the OBJEX documentation for more information.
EXAMPLE

paraml = "SomeActionCode"

param2 = Problemitem

OBJEXCALLBACK paraml, param2 THEN

* this routine was called from ObjEX

END ELSE

* this routine was not called from ObjEX

END

254

OCONV

Use the OCONV statement to convert internal reprtasiens of data to their external form.
COMMAND SYNTAX
OCONYV (expressionl, expression2)

SYNTAX ELEMENTS

expressionl may evaluate to any data type but baustlevant to the conversion code.
expression2 should evaluate to a conversion cadfe fine list below. Alternatively, expression2 may
evaluate to a user exit known to the BASE BASIQlaage or supplied by the user.

INTERNATIONAL MODE

Description of date, time, number and currency eosions when used in ICONV and International
Mode

NOTES

OCONV will return the result of the conversion apeessionl1 by expression2. Shown below are valid

conversion codes:

Conversion Action

D{n{c}} Converts an internal date to an externateléormat. The numeric argument n
specifies the field widtlllowed for the year and can be 0 to 4 (defaulTig
character c causes the date to be return in the ddcmmcyyyy. If it is not
specified the month name is return in abbreviabeohf

DI Allow the conversion of an external date to ihternal formaeven though a

output conversion is expected.

DD Returns the day in the current month.

DM Returns the number of the month in the year.

DMA Returns the name of the current month.

DJ Returns the number of the day in the year (0-366

DQ Returns the quarter of the year as a numbe#l to

DW Returns the day of the week as a number 1 Mohday is 1).

DWA Returns the name of the day of the week.

DY{n} Returns the year in a field of n characters.

F Given a prospective filename for a command s8cBREATE-FILE this

conversion will return a filename that is acceptatbl the version of UNIX
JBASE is running on.

MCA Removes all but alphabetic characters fromittipeit string.

MCI/A Removes all but the NON-alphabetic characietse input string.
MCN Removes all but numeric characters in the irghthg

MC/N Removes all but NON numeric characters initipait string

255

Conversion
MCB

MC/B
MCC;s1;s2
MCL

MCU

MCT

MCP{c}

MCPN{n}

MCNP{n}

MCDX
MCXD

Gnex

MT{HS}
MD

MP

MX

T

Action

Returns just the alphabetic and numeric charadtom the input string

Remove the alphabetic and numeric characters their input string.
Replaces all occurrences of string sh stiing s2

Converts all upper case characters in thegtorlower case characters

Converts all lower case characters in the gtrinupper case characters.

Capitalizes each word in the input string; iyl converts to Jim

Converts all non-printable characters toegipd character "." in the input

string. When supplied use the character "c" inglafcthe period.

In the same manner as the MCP conversiorgglaces all non-printable

characters. The ASCII hexadecimal value followsrépacing character.

Performs the opposite conversion to MCPNeT&SCII hexadecimal value

following the tilde character converts to its onigi binary character value.

Converts the decimal value in the input stringts hexadecimal equivalent.

Converts the hexadecimal value in the inprihgtto its decimal equivalent.
Extracts x groups separated by character piskjp groups, from the input

string.

Performs time conversions.

Converts the supplied integer value to a decivaile.

Converts a packed decimal number to an integlerev

Converts ASCII input to hexadecimal characters.

Performs file translations given a cross-refergabée in a record in a file.

256

OCONVS

Use the OCONVS function to convert the elementdyofamic.array to a specified format for external

output.
COMMAND SYNTAX

OCONVS (dynamic.array, conversion)

Converts the elements to the external output fospatified by conversion and returned in a dynamic
array conversion must evaluate to one or more asiorecodes separated by value marks (ASCII
253).

If multiple codes are used, they are applied frefatb right as follows: the left-most conversiarde
is applied to the element, the next conversion ¢odke right is then applied to the result of fingt
conversion, and so on.

If dynamic.array evaluates to null, it returns niflany element of dynamic.array is null, it retamull
for that element. If conversion evaluates to rthl, OCONVS function fails and the program
terminates with a run-time error message.

The STATUS function reflects the result of the conizers

0 The conversion is successful.
Passes an ialid element to the OCONVS function; the originlgneent is returned. If the inval
element is null, it returns null for that element.

2 The conversion code is invalid.

For information about converting elements in a dyitaarray to an internal format
See alsotCONVS function.

INTERNATIONAL MODE

Description of date, time, number and currency eosions when used in ICONV and International
Mode

257

ONGOTO

The ON...GOSUB and ON...GOTO statements are ustdrtsfer program execution to a label based

upon a calculation.
COMMAND SYNTAX

ON expression GOTO label{, label...}
ON expression GOSUB label{, label...}

SYNTAX ELEMENTS

expression should evaluate to an integer numehieevaabels should be defined somewhere in the
current source file.
ON GOTO will transfer execution to the labeled s®ucode line in the program.

ON GOSUB will transfer execution to the labeledrsuitine within the source code.
NOTES

Use the value of expression as an index to theflistbels supplied. If the expression evaluatek to
then the first label will be jumped to, 2 then #eeond label will be used and so on.

If the program was compiled when the emulationudell the setting generic_pick = true, then no
validations are performed on the index to seei#f Wtalid. Therefore, if the index is out of rarthes
instruction will take no action and report no error

If the program was compiled for other emulatiorentthe index will be range checked. If found that
the index is less than 1, it is assumed to be laamdrning message is issued If the index is fdorize

too hig, then the last label in the list will beedsto transfer execution and a warning messagedssu

EXAMPLE

INPUT Ans,1_

ON SEQ (Ans)-SEQ(A)+1 GOSUB RoutineA, RoutineB...

258

OPEN

Use the OPEN statement to open a file or devi@edescriptor variable within BASE BASIC.
COMMAND SYNTAX
OPEN {expressionl,}expression2 TO {variable} {SETTINBtvar} THEN|ELSE statements

SYNTAX ELEMENTS

The combination of expressionl and expression2 drexdluate to a valid file name of a file type that
already installed on the |BASE system. If the fileska dictionary section to be opened by the stateme
then specify by the literal string "DICT" being sl in expressionl. If specified, the variabldlwi

be used to hold the descriptor for the file. Itwdahen be to access the file using READ and WRITE.
If no file descriptor variable is supplied, thewe tiile will be opened to the default file descripto

Specific data sections of a multi level file magsified by separating the section name from tlee fil
name by a"," char in expression2.

If the OPEN statement fails it will execute anytetaents associated with an ELSE clause. If the
OPEN is successful, it will execute any statemaasociated with a THEN clause. Note that the syntax
requires either one or both of the THEN and ELSE ckuse

If specifying the SETTING clause and the open faiityar will be set to one of the following values:
INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical I/0O error or unknown error

NOTES: The OPEN statement uses the environmentled&DIFILEPATH to search for the named
file. If there is no defined named file, it willach the current working directory followed by tieme
directory of the current process.

The file that is the subject of the OPEN statemantlze of any type known to the jJBASE system. Its
type will be determined and correctly opened transptly to the application, which need not be aware
of the file type.

A JBASE BASIC program can open an unlimited amouffiles.

EXAMPLES

OPEN "DICT", "CUSTOMERS" TO F.Dict.Customers ELSE
ABORT 201, "DICT CUSTOMERS"

END

259

opens the dictionary section of file CUSTOMERS $oaitvn file descriptor F.Dict.Customers.

OPEN "CUSTOMERS" ELSE ABORT 201, "CUSTOMERS"

opens the CUSTOMERS file to the default file variable

260

OPENDEV

Opens a device (or file) for sequential writing amdeading
COMMAND SYNTAX
OPENDEYV Device TO FileVar { LOCKED statements } THEREUSE statements

SYNTAX ELEMENTS

Devicespecifies the target device or file
FileVar contains the file descriptor of the file when tpen was successful
Statementsconditional jBASE BASIC statements

NOTES

If the device does not exist or cannot be openerdtutes the ELSE clause. Once open it takes a lock
on the device. If the lock cannot be taken then tA€KED clause is executed if it exists otherwise t
ELSE clause is executed. The specified device carrégudar file, pipe or special device file. Regular

file types only take locks. Once open the file peins set to the first line of sequential data.

EXAMPLE

OPENDEV "\\TAPEOQ" TO tape.drive ELSE STOP

Opens the Windows default tape drive and prepafes $equential processing.
For more information on sequential processing,READSEQ WRITESEQthe sequential processing

example.

261

OPENINDEX

The OPENINDEX statement is used to open a partiéatix definition for a particular file. This
index file variable can later be used with the SELEGIement.

COMMAND SYNTAX
OPENINDEX filename,indexname TO indexvar {SETTING sefVieHEN|ELSE statements

SYNTAX ELEMENTS

filename should correspond to a valid file which has asieme index.

indexnameshould correspond to an index created for thedifee.

indexvar is the variable that holds the descriptor foritigex.

If the OPEN statement fails it will execute any statement®eissed with an ELSE clause. If the

OPEN is successful it will execute any statemess®eaiated with a THEN clause. Note that the syntax
requires either one or both of the THEN and ELSE ckuse

If the SETTING clause is specified and the open fails, setvdrbeilset to one of the following values:

EXAMPLES

OPENINDEX "CUSTOMER","IXLASTNAME" TO custlastname.ix SETT®errval ELSE
CRT "OPENINDEX failed for file CUSTOMER, index DASTNAME"
ABORT

END

262

OPENPATH

Use the OPENPATH statement to open a file (giveatmolute or relative path) to a descriptor
variable within BASE BASIC.

See also: the OPEN statement.
COMMAND SYNTAX
OPENPATH expressionl TO {variable} {SETTING setvar} EN|ELSE statements

SYNTAX ELEMENTS

Expressionlshould be an absolute or relative path to tharitdtuding the name of the file to be
opened. If specified, variable will be used to hible descriptor for the file. It should then beatzess
the file using READ and WRITE. If no file descriptaaniable is supplied, then the file will be opened
to the default file descriptor.

If the OPENPATH statement fails it will execute any statementseaissed with an ELSE clause. If
successful, the OPENPATH will execute any statemassociated with a THEN clause. Note that the
syntax requires either one or both of the THEN andEt&uses.

If the SETTING clause is specified and the open fails, setvdrbeilset to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical I/O error or unknown error
NOTES

The path specified may be either a relative or aolalbe path and must include the name of the |BASE
file being opened.

The file that is the subject of the OPENPATH statenoan be of any type known to the BASE
system. Its type will be determined and correcpigred transparently to the application, which need
not be aware of the file type.

A JBASE BASIC program can open an unlimited amouirfiles.

EXAMPLES

OPENPATH "C:\Home\CUSTOMERS" TO F.Customers ELSE
ABORT 201, "CUSTOMERS"

END
opens the file CUSTOMERS (located in C:\Home) twits file descriptor F.Customers

OPEN "F:\Users\data\CUSTOMERS" ELSE ABORT 201, "CUS TOMERS"

263

opens the CUSTOMERS file (located in F:\Users\datahe¢ default file variable.

264

OPENSEQ

Opens a file for sequential writing and/or reading
COMMAND SYNTAX

OPENSEQ Path{,File} {READONLY} TO FileVar { LOCKED sitements } THEN | ELSE
statements

SYNTAX ELEMENTS

Path specifies the relative or absolute path of thediadirectory or file

File specifies additional path information of the tdrfije

FileVar contains the file descriptor of the file when tpen was successful
Statementsconditional BASE BASIC statements

NOTES

If the file does not exist or cannot be openetiéhtexecutes the ELSE clause. However, if
JBASICEMULATE is set for Sequoia (use value "seq") ltion then OPENSEQ will create the file
if it does not exist. This behavior can also beead by specifying "openseq_creates = true" in
Config EMULATE for the emulation being used. Once opdack is taken on the file. If the lock
cannot be taken then the LOCKED clause is exectiiedxists otherwise the ELSE clause is
executed. If specified the READONLY process takesaal lock on the file, otherwise it takes a write
lock. The specified file can be a regular, pipsmecial device file. Locks are only taken on regfila

types. Once open the file pointer is set to that fine of sequential data.

SEQUENTIAL FILE PROCESSING EXAMPLES

EXAMPLE 1

This program uses sequential processing to create (write to)an ASCII
text file

* from a JBASE hashed file. It illustrates the use of the commands:

* OPENSEQ, WRITESEQ, WEOFSEQ, CLOSESEQ

*

* First, let's set the destination directory and fi le path

Path = "d:\temp\textfile"

*

* Open the destination file path. If it does not ex ist it will be
created.

265

* Note that "openseq_creates=true" must be set for
config EMULATE
OPENSEQ Path TO MyPath THEN

CRT "The file already exists and we don't wan
it."

END ELSE
CRT "File is being created..."

END

*

* Open the JBASE file
OPEN "FileName" TO jBaseFile ELSE STOP
SELECT

jBaseFile ;* Process all records

*

* Now, let's loop thru each item and build the ASCI
LOOP WHILE READNEXT
ID DO
READ
MyRec FROM jBaseFile, ID THEN

Line =

*

* Process MyRec and build the Line variable with th
be

* written to the ASCII text file. JBASE automatical
the

* end-of-line delimiters in this case a cr/If is ap

* of each line However, this can be changed with th

WRITESEQ Line TO MyPath ELSE

CRT "What happened to the file?"

the emulation in

t to overwrite

| text file.

e information to

ly takes care of

pended to the end

e IOCTL() function

266

STOP
END
END
REPEAT

*

* Wrapup
WEOFSEQ MyPath

CLOSESEQ MyPath

EXAMPLE 2

This program uses sequential processing to read fro
file

* and write to a jBASE hashed file. It illustrates
commands:

* OPENSEQ, READSEQ, CLOSESEQ

*

* First, let's define the path where the sequential

Path = "d:\temp\textfile"

*

* Open the file. If it does not exist an error will
OPENSEQ Path TO MyPath ELSE
CRT "Can't find the specified directory or fi

ABORT
END

*

* Open the JBASE hashed file

OPEN "FileName" TO jBaseFile ELSE STOP

*

* Now, let's read and process each line of the ASCI
file.

LOOP
READSEQ Line FROM MyPath THEN

Initialize the record that will be written to the j

267

m an ASCII text

the use of the

file resides.

be produced.

le.

| (sequential)

BASE hashed file.

MyRec =

*

* Process the Line variable. This involves extracti ng the information
which

define the key and data of the record to be written to the base
hashed

* file. This will be left up to the application dev eloper since a
"line"

could either be fixed length or delimited by sorhamacter such as a tab or a comma. We will assume

that Key & MyRec are assembled here.
*
* All that's left to do is to write to the JBASE-ha shed file
WRITE MyRec on jBaseFile, Key
END

REPEAT

*

* Wrapup

CLOSESEQ MyPath

268

OPENSER

Use the OPENSER statement to handle the Serial d@eMer, the OPENSER statement has also been
provided.
Serial 10 to the COM ports on NT and to devicesfilachieves this on UNIX by using the sequential

file statements. In addition, you can perform dartantrol operations using th@CTL function.
COMMAND SYNTAX
OPENSER Path,Devinfo| PIPE TO FileVar THEN | ELSE Statésne

SYNTAX ELEMENTS

Path is the pathname of the required device.
Devinfo consists of the following:
Baud baud rate required
Flow y X-ON X-OFF flow control (default)
n no flow control
i input flow control
o output flow control
Parity e 7 bit even parity
o] 7 bit odd parity
n 8 bit no parity, (Default)
S 8 bit no parity, strip top bit
PIPE specifies the file is to be opened to a PIREdading.

NOTES

The PIPE functionality allows a process to open &Pthce opened then the process can execute a
command via th&VRITESEQSEND statement and then received the result back eia th
GET/READSEQstatements.

EXAMPLE

FileName = "/dev/tty01s"
OPENSER FileName TO File ELSE STOP 201,FileName
WRITESEQ "Is -ail" ON File," ;* ONLY for PIPEs

LOOP
Terminator = CHAR (10)

WaitTime = 4
GET Input SETTING Count FROM File UNTIL Termina tor RETURNING

TermChar

269

WAITING WaitTime THEN
CRT "Get Ok, Input ":Input:" Count ":Count: "TermChar
":TermChar
END ELSE
CRT "Get Timed out Input ":Input:" Count ": Count:" TermChar

":TermChar
END
WHILE Input NE " DO

REPEAT

270

ORS

Use the ORS function to create a dynamic arrahetdgical OR of corresponding elements of two

dynamic arrays.
COMMAND SYNTAX

ORS (arrayl, array2)

Each element of the new dynamic array is the logidRlof the corresponding elements of arrayl and
array2. If an element of one dynamic array hasareesponding element in the other dynamic array, it
assumes a false for the missing element.

If both corresponding elements of arrayl and areag2null, it returns null for those elements.nto
element is the null value and the other is O oem@pty string, it returns null. If one element is thull

value and the other is any value other than O @mapty string, it returns true.
EXAMPLE
A="A":@SM:0:@VM:4:@SM:1

B=0:@SM:1-1.@VM:2
PRINT ORS (A,B)

The output of this program is: 1\0]1\1

271

OSBREAD

The OSBREAD command reads data from a file staaireyspecified byte location for a certain length

of bytes, and assigns the data to a variable.
COMMAND SYNTAX

OSBREAD var FROM file.var [AT byte.expr] LENGTH lergéxpr [ON ERROR statements]
OSBREAD performs an operating system block read OhNE or Windows file.

REMINDER:

Before you use OSBREAD, you must open the file $ipgtheOSOPENor OPENSEQcommand.
NOTE: jBASE uses the ASCII 0 character [CHAR (0)pastring-end delimiter. Therefore, ASCII 0
cannot be used in any string variable within BASISBREAD converts CHAR(0) to CHAR(128)

when reading a block of data.

SYNTAX ELEMENTS

var specifies a variable to which to assign tha dead.

FROM file.var specifies a file from which to reddetdata.

AT byte.expr specifies a location in the file frorhiah to begin reading data. If byte.expr is O, riad
begins at the beginning of the file.

LENGTH length.expr specifies a length of data to reach the file, starting at byte.expr. length.expr
cannot be longer than the maximum string lengterd@hed by your system configuration.

ON ERROR statements specifies statements to exiéeutatal error occurs (if the file is not opem, o
if the file is a read-only file). If you do not spgy the ON ERROR clause, the program terminates
under such fatal error conditions.

STATUS Function Return Values

After you execute OSBREAD, the STATUS function retueither O or a failure code.

EXAMPLES

In the following example, the program statementise0,000 bytes of the file MYPIPE starting from
the beginning of the file. The program assignsoiiia it reads to the variable TEST.
OSBREAD Data FROM MYPIPE AT 0 LENGTH 10000

272

OSBWRITE

The OSBWRITE command writes an expression to a séiquéle starting at a specified byte

location.
COMMAND SYNTAX

OSBWRITE expr {ON | TO} file.var [AT byte.expr] [NOBELAY] [ON ERROR statements]
OSBWRITE immediately writes a file segment out te iNIX, Windows NT, or Windows 2000 file.
You do not have to specify a length expression liseshe number of bytes in expr is written to the
file.

REMINDER: Before you use OSBWRITE, you must open tleebly using the OSOPEN or
OPENSEQ command.

NOTE: |BASE uses the ASCII 0 character [CHAR (0)pastring-end delimiter. Therefore, ASCII 0
cannot be used in any string variable within BASEBASE reads a string that contains CHAR(0)
characters by using OSBREAD, those charactersamescted to CHAR(128).

OSBWRITE converts CHAR (128) back to CHAR(0) wheritiwg a block of characters.

SYNTAX ELEMENTS

expr specifies the expression to write to the file.

ON | TO file.var specifies the file on which to verihe expression

AT byte.expr If byte.expr is 0, the write begindteg beginning of the file.

NODELAY forces an immediate write.

ON ERROR statements specifies statements to exéd¢heeOSBWRITE statement fails with a fatal
error because the file is not open, an I/O erraucx; or jBASE cannot find the file. If you do not
specify the ON ERROR clause and a fatal error o¢ctliesprogram terminates.

STATUS Function Return Values

After you execute OSBWRITE, the STATUS function resieither O or a failure code.

0 The write was successful.
1 The write failed.
EXAMPLE

In the following example, the program statementeasgrihe data in MYPIPE to the opened file starting

from the beginning of the file:

OSBWRITE Data ON MYPIPE AT 0

273

OSCLOSE
The OSCLOSE command closes a sequential file thabpened with the OSOPEN or OPENSEQ

command.
COMMAND SYNTAX
OSCLOSE file.var [ON ERROR statements]

SYNTAX ELEMENTS

file.var Specifies the file to close.

ON ERROR statements Specifies statements to exétheeOSCLOSE statement fails with a fatal
error because the file is not open, an 1/O erroucs; or JBASE cannot find the file.

If you do not specify the ON ERROR clause and d &tar occurs, the program will enter the
debugger.

STATUS Function Return Values
After you execute OSCLOSE, the STATUS function reswgither O or a failure code.

0 it closes the file successfully.

Close failed.
EXAMPLE

In the following example, the program statemensetothe file opened to MYPIPE file variable.

OSCLOSE MYPIPE

274

OSDELETE
The OSDELETE command deletes a NT or UNIX file.

COMMAND SYNTAX
OSDELETE filename [ON ERROR statements]
SYNTAX ELEMENTS

filename Specifies the file to delete. filename hinslude the file path. If you do not specify atpa
JBASE searches the current directory.

ON ERROR statements Specifies statements to exdé¢heeOSDELETE statement fails with a fatal
error because the file is not open, an I/O erroucs; or jJBASE cannot find the file.

If you do not specify the ON ERROR clause and @ f&tror occurs, the program terminates.

STATUS Function Return Values
After you execute OSDELETE, the STATUS function retweitlser 0 or a failure code.

0 It deletes the file
1 Delete failed.

EXAMPLES

In the following example, the program statemenetés the file ‘MYPIPE' in the current directory:

OSDELETE "MYPIPE"

275

OSOPEN

The OSOPEN command opens a sequential file thatrimtasse CHAR (10) as the line delimiter.
COMMAND SYNTAX

OSOPEN filename TO file.var

[ON ERROR statements] {THEN | ELSE} statements [END]

Read/write access mode is the default. Specifyattiess mode by omitting READONLY and
WRITEONLY.

TIP: After opening a sequential file with OSOPENe @SBREADto read a block of data from the
file, or OSBWRITEto write a block of data to the file. You also esseREADSEQto read a record
from the file, ol WRITESEQor WRITESEQFto write a record to the file, if the file is n@tnamed
pipe. READSEQ WRITESEQ WRITESEQFare line-oriented commands that use CHAR (10has t

line delimiter.)

SYNTAX ELEMENTS

filename Specifies the file to open. filename must incltite entire path name unless the file resides in
the current directory.

TO file.var Specifies a variable to contain a pointer to tlee f

ON ERROR statements specifies statements to execute @8@PEN statement fails with a fatal

error because the file is not open, an 1/O erreucs; or JBASE cannot find the file. If you do not
specify the ON ERROR clause and a fatal error o¢ctiiesprogram enters the debugger.

THEN statements Executes if the read is successful.

ELSE statements Executes if the read is not successthe record (or ID) does not exist
EXAMPLE

In the following example, the program statementnspe file ‘MYSLIPPERS' as SLIPPERS.

OSOPEN 'MYSLIPPERS' TO SLIPPERS ELSE STOP

276

OSREAD
Reads an OS file.

COMMAND SYNTAX
OSREAD Variable FROM expression {ON ERROR Statenjeff$HEN | ELSE} Statements {END}

SYNTAX ELEMENTS

Variable - Specifies the variable to contain theadeom the read.

Expression - Specifies the full file path. If thle fesides in the JEDIFILEPATH then just the file
name is required.

ON ERROR Statements - Conditional BASE BASIC staeta to execute if the OSREAD statement
fails with a fatal error because the file is noeppan 1/0 error occurs, or JBASE cannot find the. fif
you do not specify the ON ERROR clause and a é&tal occurs, the program terminates.

THEN | ELSE If the OSREAD statement fails it will exée any statements associated with an ELSE
clause. If the OSREAD is successful, it will execay statements associated with a THEN clause.

Note that the syntax requires either one or both@fTHEN and ELSE clauses.

WARNING

Do not use OSREAD on large files. The |BASE BASIC @&3® command reads an entire sequential
file and assigns the contents of the file to aalad. If the file is too large for the program memahe
program aborts and generates a runtime error mesSeglarge files, uslSBREADor READSEQ
JBASE uses the ASCII 0 character (CHAR (0)) as mgtend delimiter. ASCII 0 is not useable within
string variable in BASE BASIC. This command corneeZHAR(0) to CHAR(128) when reading a
block of data.

OSREAD MyFile FROM "C:\MyDirectory\MyFile" ELSE PRINTFILE NOT FOUND"

277

OSWRITE

The OSWRITE command writes the contents of an egmego a sequential file.
COMMAND SYNTAX
OSWRITE expr {ON | TO} flename [ON ERROR statements]

NOTE:

JBASE uses the ASCII 0 character [CHAR(0)] as agtend delimiter. For this reason, you cannot
use ASCII 0 in any string variable in JBASE. If jB&Seads a string with a CHAR(0) character, and
then the character is converted to CHAR(128), OST#Rionverts CHAR(128) to CHAR(0) when

writing a block of characters.
SYNTAX ELEMENTS

expr Specifies the expression to write to filename.

ON | TO filename specifies the name of a sequsifiiaio which to write.

ON ERROR statements Specifies statements to exié¢theeOSWRITE statement fails with a fatal
error because the file is not open, an I/O erraucs; or jBASE cannot find the file. If you do not

specify the ON ERROR clause and a fatal error o¢ctliesprogram enters the debugger.
EXAMPLE

In the following example, the program segment \gritee contents of FOOTWEAR to the file called
"PINK" in the directory ‘/usr/local/myslippers’
OSWRITE FOOTWEAR ON "/usr/local/myslippers"

278

ouT

The OUT statement is used to send raw charactéie tourrent output device (normally the terminal).
COMMAND SYNTAX
OUT expression

SYNTAX ELEMENTS

expressionshould evaluate to a numeric integer in the rdhge255, being the entire range of ASCII

characters.
NOTES

The numeric expression is first converted to the A&SCII character specified and then sent directly t

the output advice.

EXAMPLES

EQUATE BELL TO OUT 7

BELL ;* Sound terminal bell

FOR =32 TO 127; OUT I; NEXT | ;* Printable chars

BELL

279

PAGE

Prints any FOOTING statement, throws a PAGE andseny heading statement on the current

output device.
COMMAND SYNTAX
PAGE {expression}

SYNTAX ELEMENTS

If expression is specified it should evaluate taueneric integer, which will cause the page number

after the page throw to be set to this value.

EXAMPLES
HEADING "10 PAGE REPORT"

FORI1=1TO 10

PAGE
GOSUB PrintPage

NEXT I

280

PAUSE
The PAUSE statement allows processing to be susdamdi# an external event triggered bWeAKE

statement from another process or a timeout occurs.
COMMAND SYNTAX

PAUSE {expression}

SYNTAX ELEMENTS

expressionmay evaluate to a timeout value, which is the madn number of seconds to suspend the
process. If expression is omitted then the PAUSEstant will cause the process to suspend until
woken by theVAKE statement.

| f a timeout value is specified and the suspergtedess is not woken byWHAKE statement then the
process will continue once the timeout period haured.

If executing aWAKE statement for the process before the process esethe PAUSE statement then

the PAUSE will be ignored and processing will conéiruntil a subsequent PAUSE statement.

281

PCPERFORM
PCPERFORM is synonymous with aR&ERFORM

PERFORM
PERFORM is synonymous with aftERFORM

282

PRECISION

The PRECISION statement informs JBASE as to the nurabdigits of precision it uses after the

decimal point in numbers.
COMMAND SYNTAX
PRECISION integer

SYNTAX ELEMENTS

integer should be in the range 0 to 9.
NOTES

A PRECISION statement can be specified any numbgmess in a source file. Only the most recently
defined precision will be active at any one time.

Calling programs and external subroutines do ne¢ ha be compiled at the same degree of precision,
however, any changes to precision in a subroutilienat persist when control returns to the calling
program.

JBASE uses the maximum degree of precision allowethe host machine in all mathematical

calculations to ensure maximum accuracy. It thess tise defined precision to format the number.

EXAMPLES

PRECISION 6

CRT 2/3

will print the value 0.666666 (note: truncation notinding!).

283

PRINT

The PRINT statement sends data directly to the oumeatput device, which will be either the terminal

or the printer.
COMMAND SYNTAX
PRINT expression {, expression...} {:}

SYNTAX ELEMENTS

An expression can evaluate to any data type. ThalPRiatement will convert the result to a string
type for printing. Expressions separated by comnitidbevsent to the output device separated by a tab
character.

The PRINT statement will append a newline sequemdiect final expression unless it is terminated
with a colon ":" character.

NOTES

As the expression can be any valid expressionayt have output formatting applied to it.

If a PRINTER ON statement is currently active thetpatiwill be sent to the currently assigned
printer form queue.

See alsoSP-ASSIGNcommand an€RT.

EXAMPLES

PRINT A "L#5"

PRINT @ (8,20):"Patrick":

284

PRINTER

Use the PRINTER statement to control the destinatfautput from the PRINT statement.
COMMAND SYNTAX

PRINTER ON|OFF|CLOSE

NOTES

PRINTER ON redirects all subsequent output from the PRINTestant to the print spooler.
PRINTER OFF redirects all subsequent output from the PRINTestant to the terminal device.
PRINTER CLOSE will act as PRINTER OFF but in addition closes theently active spool job
created by the active PRINTER ON statement.

EXAMPLES
PRINTER ON;* Open a spool job
FOR1=1TO 60
PRINT "Line ":I ;* Send to printer
PRINTER OFF
PRINT "+": ;* Send to terminal
PRINTER ON ;* Back to printer
NEXT |

PRINTER CLOSE ;* Allow spooler to print it

285

PRINTERR
Use PRINTERR to print standard jBASE error messages

COMMAND SYNTAX
PRINTERR expression
SYNTAX ELEMENTS

Field 1 of the expression should evaluate to tharic or string name of a valid error message én th
JBASE error message file. If the error message requparameters then these can be passed to the

message as subsequent fields of the expression.
INTERNATIONAL MODE

When the PRINTERR statement is used in Internatibtuale, the error message file to be used, i.e.
the default “jBASICmessages” or other as configwiadthe error message environment variable, will
be suffixed with the current locale. For exampi¢hé currently configured locale is “fr_FR” themet
statement will attempt to find the specified emmssage record id in the “|BASICmessages_fr FR”
error message file. If the file cannot be founchtliee country code will be discarded and just the
language code used. i.e. the file “lBASICmessagesvifl be used. If this file is also not found the

the error message file “y/BASICmessages” will beduse
NOTES

The PRINTERR statement is most useful for user-defineglsages that have been added to the
standard set.

You should be very careful when typing this stateniieis very similar to the PRINTER statement.
Although this is not ideal, the PRINTERR statemenstibe supported for compatibility with older

systems.

EXAMPLES

PRINTERR 201:CHAR (254):"CUSTOMERS"

286

PROCREAD
Use PROCREAD to retrieve data passed to prograons & jCL program.

COMMAND SYNTAX
PROCREAD variable THEN|ELSE statements

SYNTAX ELEMENTS

variable is a valid jBASE BASIC identifier, which be used to store the contents of the primary
input buffer of the last jCL program called.

If a jCL program did not initiate the program thR@CREAD will fail and executes any statements
associated with an ELSE clause. If the program witiated by a jCL program then the PROCREAD
will succeed, the jCL primary input buffer will besigned to variable and any statements associated

with a THEN clause will be executed.
NOTES

It is recommended that the use of jCL and theretoaeePROCREAD statement should be not be
expanded within your application and gradually aepd with more sophisticated methods such as
UNIX scripts or JBASE BASIC programs.

EXAMPLE

PROCREAD Primary ELSE
CRT "Unable to read the jCL buffer"

STOP
END

287

PROCWRITE
Use PROCWRITE to pass data back to the primary ibpffiér of a calling jCL program.

COMMAND SYNTAX

PROCWRITE expression

SYNTAX ELEMENTS

expressionmay evaluate to any valid data type.
NOTES

See alsoPROCREAD

EXAMPLES

PROCWRITE "Success":CHAR (254):"0"

288

PROGRAM

PROGRAM performs no function other than to docuntkatsource code
COMMAND SYNTAX

PROGRAM progname

SYNTAX ELEMENTS

Progname can be any string of characters.

EXAMPLES

PROGRAM HelpUser

I Start of program

289

PROMPT

Used to change the PROMPT character used by termma commands
COMMAND SYNTAX

PROMPT expression

SYNTAX ELEMENTS

expression can evaluate to any printable string.

NOTES

The entire string is used as the prompt.

The default prompt character is the question mdticHaracter.

EXAMPLE

PROMPT "Next answer : "

INPUT Answer

290

PUTENV

Use PUTENYV to set environment variables for theenirprocess.
COMMAND SYNTAX

PUTENYV (expression)

SYNTAX ELEMENTS

expression should evaluate to a string of the form;
EnvVarName=value

where

EnvVarName is the name of a valid environment variable anldevés any string that makes sense to
variable being set.

If PUTENYV function succeeds it returns a Boolean TRIdkie, if it fails it will return a Boolean
FALSE value.

NOTES

PUTENYV only sets environment variables for the aurprocess and processes spawned (say by
EXECUTE) by this process. These variables are knovexpart only variables.
See alsoGETENV

EXAMPLE

IF PUTENV("JBASICLOGNAME=":UserName) THEN
CRT "Environment configured"

END

201

PWR

The PWR function raises a number to the n'th power.
COMMAND SYNTAX

PWR (expressionl, expression2)
or

expressionl " expression2
SYNTAX ELEMENTS

Both expressionl1 and expression2 should evaluatarteeric arguments. The function will return the

value of expressionl raised to the value of exjpp2s
NOTES

If expressionl is negative and expression2 is nahteger then a maths library error is displayed a
the function returns the value 0. The error messiégpayed is:

pow: DOMAIN error

All calculations are performed at the maximum e supported on the host machine and truncated

to the compiled precision on completion.

EXAMPLES
A=2
B=31

CRT "2 GBis ":A"B
or

CRT "2 GB is": PWR (A, B)

292

QUOTE / DQUOTE / SQUOTE

These three functions will put a single or doubletgtion mark and the beginning and end of a string.
COMMAND SYNTAX

QUOTE(expression)
DQUOTE(expression)
SQUOTE(expression)

SYNTAX ELEMENTS
expression may be any expression that is validénJBASE BASIC language.
NOTES

The QUOTE and DQUOTE functions will enclose the vatudouble quotation marks. The SQUOTE

function will enclose the value in single quotatimarks.

293

RAISE

The RAISE function raises system delimiters in angtto the next highest delimiter.
COMMAND SYNTAX
RAISE (expression)

SYNTAX ELEMENTS

The expression is a string containing one or molienders, which are raised as follows:
ASCII Character Raised To

248 249
249 250
250 251
251 252
252 253
253 254
254 255
EXAMPLE

AttributeDelimitedVariable = RAISE(ValuemarkDelireilVVariable)

294

READ

The READ statement allows a program to read a reftond a previously opened file into a variable.
COMMAND SYNTAX

READ variablel FROM { variable2,} expression {SETTIN®Btvar} {ON ERROR statements}
THEN|ELSE statements

SYNTAX ELEMENTS

variablel is the identifier into which the recordl e read.

variable2, if specified, should be a BASE BASICiahale that has previously been opened to a file
using the OPEN statement. If variable2 is not dgetthen the default file is assumed.

The expression should evaluate to a valid recorddeethe file.

If the SETTING clause is specified and the read fa#syar will be set to one of the following values:
INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements followihg ON ERROR clause will be executed for any
of the above Incremental File Errors except err@. 12

NOTES
If you wish to set a lock on a record, you shouwdsd explicitly with theREADU statement.
EXAMPLE 1
OPEN "Customers" ELSE ABORT 201, "Customers"
OPEN "DICT Customers" TO DCusts ELSE
ABORT 201, "DICT Customers"

END
READ Rec FROM DCusts, "Xref* THEN

READ DataRec FROM Rec<7> ELSE
ABORT 202, Rec<7>

END
END ELSE

295

ABORT 202, "Xref"

END

EXAMPLE 2

READ record FROM filevar, id SETTING errorNumber ON

PRINT errorNumber
END THEN

PRINT 'Record read successfully'
END ELSE

PRINT 'Record not on file'

END

ERROR

296

READBLK

Use the READBLK statement to read a block of data specified length from a file opened for

sequential processing and assigns it to a variable.
COMMAND SYNTAX

READBLK variable FROM file.variable, blocksize

{ THEN statements [ELSE statements] | ELSE statements }

The READBLK statement reads a block of data begppainthe current position in the file and
continuing for blocksize bytes and assigns it toalde. The current position is reset to just bel/tre
last readable byte.

file.variable specifies a file previously opened for sequemiiacessing.

If the data can be read from the file, the THENest@ents are executed; any ELSE statements are
ignored. If the file is not readable or if the esfdile is encountered, the ELSE statements are exdcut
and the THEN statements are ignored. If the ELSE s&tenare executed, variable is set to an empty
string. If either file.variable or blocksize evaleato null, the READBLK statement fails and the
program enters the debugger.

NOTE: A new line in UNIX files is one byte long, wigas in Windows NT it is two bytes long. This
means that for a file with newlines, the same READBit&tement may return a different set of data
depending on the operating system the file is dtareler.

The difference between tiRREADSEQstatement and the READBLK statement is that the REXOB
statement reads a block of data of a specifiedttenghereas the READSEQ statement reads a single

line of data.

EXAMPLE

OPENSEQ 'MYSLIPPERS', 'PINK' TO FILE ELSE ABORT
READBLK VAR1 FROM FILE, 50 THEN PRINT VAR1

PRINT
READBLK VAR2 FROM FILE, 100 THEN PRINT VAR2

INTERNATIONAL MODE

When using the READBLK statement in Internationalddpcare must be taken to ensure that the
input variable is handled properly subsequent¢oREADBLK statement. The READBLK statement
requires that a “bytecount” be specified, howeveemwmanipulating variables in International Mode
character length rather than byte lengths are lysuséd and hence possible confusion or program
malfunction can occur.

If requiring character data convert the input valeadrom ‘binary/latinl’ to UTF-8 byte sequence via
the UTFS8 function.

297

It is recommended that tiREADBLK/WRITEBLK statements not be used when executing in
International Mode. Similar functionality can betaibed via theREADSEQWRITESEQstatement,
which can be used to read/writecharacters a liretiate from a file.

298

READL

The READL statement allows a process to read adegicom a previously opened file into a variable
and takes a read-only shared lock on the recordsjtects all records locked with tREADU

statement but allows other processes using READhacesthe same lock.
COMMAND SYNTAX

READL variablel FROM {variable2,} expression {SETTIN@tgar} {ON ERROR statements}
{LOCKED statements} THEN|ELSE statements

SYNTAX ELEMENTS

variablel is the identifier into which the record will beaik

variable2, if specified, should be a BASE BASIC variabletthas previously been opened to a file
using the OPEN statement if variable2 is not spatithen the default file is assumed.

The expression should evaluate to a valid recordfdethe file.

If the SETTING clause is specified and the read fails, setvdrbeiket to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical 1/0O error or unknown error

If ON ERROR is specified, the statements followihg ON ERROR clause will be executed for any

of the above Incremental File Errors except err@. 12
NOTES

READL takes a read-only shared record lock wheRE2ADU takes an exclusive lock. This means
that any record, which is read using READL, can alsoead by another process using a READL. In
other words, the lock on the record is 'sharethat no READU lock against the same record can be
taken. Similarly, if aREADU takes a lock then READL will respect that lock. &mparison, a
READU takes an exclusive lock in that the one processn®control over the record.

The usage of READU is already well documented an@rstood. The usage of READL allows for an
application to present a record to one or moresusech that its integrity is ensured, i.e. the (3er
viewing the record can be assured that wysiwygthatino updates to that record have been made
whilst viewing the record.

While it is permissible t&VRITE a record that has a READL lock, the intent of REABto permit a
'read-only' shared lock and the act of WRITEing tkiord would not be considered good

programming practice.

299

READ takes no lock at all and does not respect acly taken wittREADU or READL. In other

words, a READ can be performed at any time and grregord regardless of any existing locks.

Due to limitations on Windows platforms, the REABtlatement behaves the same aREADU
statement, in other words they both take exclulsigks.

If the record could not be read because anotheepsoalready hadREADU lock on the record then
one of two actions is taken. If the LOCKED clausgswvgpecified in the statement then the statements
dependent on it are executed. If no LOCKED clauas gpecified then the statement blocks (hangs)
until the other process releases the lock. The % 143) function can be used to determine which
port has the lock.

If the statement fails to read the record thenstatements associated with the ELSE clause will be
executed. If the statement successfully readsetherd then the statements associated with any THEN
clause are executed. Either or both of THEN and ELSEetamust be specified with the statement.
The lock taken by the READL statement will be reledsg any of the following events however, be
aware that the record will not be fully releasetilwall shared locks have been released:

The same program witWRITE, WRITEV or MATWRITE statements writes to the record.

The same program with the DELETE statement delete®tued.

The record lock is released explicitly using RIEELEASE statement.

The program stops normally or abnormally.

When a file is OPENed to a local file variable isubroutine then the file is closed when the
subroutine RETURNS so all locks taken on that fiker@leased, including locks taken in a calling
program. Files that are openedd®MMON variables are not closed so the locks remaintintac
See alsoWRITE, WRITEU, MATWRITE, MATWRITEU, RELEASE, andDELETE

300

READLIST

READLIST allows the program to retrieve a previoustigred list (perhaps created with the SAVE-
LIST command), into a jBASE BASIC variable.

COMMAND SYNTAX
READLIST variablel FROM expression {SETTING variable2} TNIELSE statements
SYNTAX ELEMENTS

variablel is the variable into which the list will be read.

expressionshould evaluate to the name of a previously sthsetb retrieve. If specified, variable2
will be set to the number of elements in the list.

If the statement succeeds in retrieving the lisntthe statements associated with any THEN clause
will be executed. If the statement fails to finé ifst, then the statements associated with any ELSE

clause will be executed.

NOTES

The READLIST statement is identical in function to GGETLIST statement.
See alsoDELETELIST, FORMLIST, WRITELIST

EXAMPLES

Find the list first

READLIST MyList FROM "MyList" ELSE STOP

LOOP
* Loop until there are no more elements

WHILE READNEXT Key FROM MyList DO

REPEAT

301

READNEXT

READNEXT retrieves the next element in a list valgab
COMMAND SYNTAX
READNEXT variablel, variable2 {FROM variable3} {SETTIN&:tvar} {THEN|ELSE statements}

SYNTAX ELEMENTS

variablel is the variable into which the next element oflteewill be read.

variable2 is used when the list has been retrieved extgrfralin aSSELECTor similar JBASE
command that has used an exploding sort diredfiffeen specified, this variable will be set to the
multi-value reference of the current element. B@meple, if the SSELECT used a BY-EXP directive
on field 3 of the records in a file, the list walbntain each record key in the file as many tingethare
are multi-values in the field. Each READNEXT instamwill set variable2 to the multi-value in field 3
to which the element refers. This allows the mudtives in field 3 to be retrieved in sorted order.

If variable3 is specified with the FROM clause, READNEXT operates on the list contained in
variable3. If variable3 is not specified, the déffaelect list variable will be assumed.

If the SETTING clause is specified and the read (itulibe next portion of the list) fails, setvar Wil
be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error
NOTES

READNEXT can be used as an expression returning é&eBod RUE or FALSE value. If an element
is successfully read from the list, TRUE is returnéthe list was empty, FALSE is returned.

See also: SELECT, extensions for secondary indexes.

EXAMPLE

LOOP
WHILE READNEXT Key FROM RecordList DO

REPEAT

302

READPREV

This statement is syntactically similar to READNEXT but it works in reverse order. There are some
considerations when the direction is changed frdonward search to a backward search or vice-versa.
When aSELECT statement is first executed a forward directioassumed. Therefore ifSELECTIis
immediately followed by a READPREYV, then a changdidaéction is assumed.

During theREADNEXT or READPREYV sequence a next-key pointer is kepbugate. This is the
record key, or index key to use shoulRBADNEXT be executed.

During a change of direction from forward (READNEX®)backward (READPREV) then the next
record key or index key read in by the READPREM td the one preceding the next-key pointer.
When the select list is exhausted it will eitheinp@ne before the start of the select list (if
READPREVs have been executed) or one past the ehe sklect list (if READNEXTSs have been
executed). Thus in the event of a change of doadtie very first or very last index key or recéey

will be used.

EXAMPLE

Consider the following jBASE BASIC code
list ="DAVE" : : "GREG" : : "JIM"
SELECT list

The following table shows what happens if youREBADNEXTs andREADPRE\s on the above code
and the reasons for it.

Statement executed [Result of operation

READNEXT key ELSE key becomes "DAVE" First key in list

READNEXT key ELSE key becomes "GREG" Second key in list
READPREYV key ELSE key becomes "DAVE" Reversed so takequting key
READPREYV key ELSE Take ELSE clause The next key ptr exbdutstart.
READNEXT key ELSE key becomes "DAVE" First key in list

READNEXT key ELSE key becomes "GREG" Second key in list
READNEXT key ELSE key becomes "JIM" Final key. Nexy ksr exhausted.
READPREYV key ELSE key becomes "JIM" Reversed but kbbested.
READPREYV key ELSE key becomes "GREG" Second key in list

303

READPREYV key ELSE key becomes "DAVE" First key in list

304

READSELECT
See als®READLIST.

305

READSEQ

Read from a file opened for sequential access.
COMMAND SYNTAX
READSEQ Variable FROM FileVar THEN | ELSE statements

SYNTAX ELEMENTS

Variable specifies the variable to contain next record feaguential file.
FileVar specifies the file descriptor of the file operiedsequential access.
StatementsConditional jBASE BASIC statements

NOTES

Each READSEQ reads a line of data from the sequigntigened file. After each READSEQ, the file
pointer moves forward to the next line of data. Vagable contains the line of data less the new li
character from the sequential file.

The default buffer size for a READSEQ is 1024 bytdss Tan be changed using the IOCTL ()
function with the JIOCTL_COMMAND_SEQ_ CHANGE_RECORDSIZ&equential File Extensions.

EXAMPLES

See also: Sequential File Examples

306

READT

The READT statement is used to read a range ofdapiees 0-9.
COMMAND SYNTAX
READT variable {FROM expression} THEN|ELSE statements

SYNTAX ELEMENTS

variable is the variable that will receive any data reanfrfithe tape device.

expressionshould evaluate to an integer value in the ran§eafd specifies from which tape channel
to read data. If the FROM clause is not specififedREADT will assume channel 0.

If the READT fails then the statements associatet amy ELSE clause will be executed. SYSTEM
(0) will return the reason for the failure as foll

1 There is no media attached to the channel

2 An end of file mark was found.

NOTES

A "tape" does not only refer to magnetic tape desjidut also any device that has been described to
JBASE. Writing device descriptors for BASE is beyoth@ scope of this manual.

If no tape device has been assigned to the specifiannel the BASE debugger is entered with an
appropriate message.

Each instance of the READT statement will read the record available on the device. The record
size is not limited to a single tape block andehgre record will be returned whatever block $ias
been allocated by the T-ATT command.

EXAMPLE

LOOP
READT TapeRec FROM 5 ELSE

Reason = SYSTEM(0)
IF Reason = 2 THEN BREAK ;* done
CRT "ERROR"; STOP

END
REPEAT

307

READU

The READU statement allows a program to read a deftom a previously opened file into a variable.

It respects record locking and locks the specifezabrd for update.
COMMAND SYNTAX

READU variablel FROM {variable2,} expression {SETTINgBtvar} {ON ERROR statements}
{LOCKED statements} THEN|ELSE statements

SYNTAX ELEMENTS

Variablel is the identifier into which the recordlwe read.

variable? if specified, should be a BASE BASIC ehie that has previously been opened to a file
using the OPEN statement. If variable2 is not djgetthen the default file is assumed.

The expression should evaluate to a valid recorddeethe file.

If the SETTING clause is specified and the read fa#syar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements followihg ON ERROR clause will be executed for any

of the above Incremental File Errors except err@. 12
NOTES

If the record could not be read because anotheepsoalready had a lock on the record then one of
two actions is taken. If the LOCKED clause was djmsgtin the statement then the statements
dependent on it are executed. If no LOCKED clauas gpecified then the statement blocks (hangs)
until the other process releases the lock. Us&H®&TEM (43) function to determine which port has
the lock.

If the statement fails to read the record thenstatements associated with the ELSE clause will be
executed. If the statement successfully readsetherd then the statements associated with any THEN
clause are executed. Either or both of THEN and ELSEetamust be specified with the statement.

The lock taken by the READU statement will be reldasgany of the following events:
The same program witWRITE, WRITEV or MATWRITE statements writes to the record.
The same program with the DELETE statement deletes ¢bedre

The record lock is released explicitly using REELEASE statement.

The program stops normally or abnormally.

308

When a file is OPENed to a local file variable isubroutine then the file is closed when the
subroutine RETURNS so all locks taken on that fiker@leased, including locks taken in a calling

program. Files that are openedd®MMON variables are not closed so the locks remaintntac

See alsoWRITE, WRITEU, MATWRITE, MATWRITEU, RELEASE andDELETE

EXAMPLES

OPEN "Customers" ELSE ABORT 201, "Customers"
OPEN "DICT Customers" TO DCusts ELSE
ABORT 201, "DICT Customers"

END
LOOP
READU Rec FROM DCusts, "Xref' LOCKED

CRT "Xref locked by port ":SYSTEM(43):" - r etrying”
SLEEP 1; CONTINUE ;* Restart LOOP
END THEN
READ DataRec FROM Rec ELSE
ABORT 202, Rec

END
BREAK ;* Leave the LOOP

END ELSE
ABORT 202, "Xref"

END
REPEAT

309

READV

The READV statement allows a program to read a fipdigld from a record in a previously opened
file into a variable.

COMMAND SYNTAX

READV variablel FROM { variable2,} expressionl, exgsion2 {SETTING setvar} {ON ERROR
statements} THEN|ELSE statements

SYNTAX ELEMENTS

variablel is the identifier into which the record will beaik

variable2 if specified, should be a jBASE BASIC variable thas previously been opened to a file
using the OPEN statement. If variable2 is not djgetithe default file is assumed.

expressionlshould evaluate to a valid record key for the file

expression2should evaluate to a positive integer. If the namib invalid or greater than the number of
fields in the record, a NULL string will be assigh® variablel. If the number is 0, then the readv0
emulation setting controls the value returned inadel. If a non-numeric argument is evaluated, a
run time error will occur.

If the SETTING clause is specified and the read fa#syar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory
4096 Network error
24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements followihg ON ERROR clause will be executed for any
of the above Incremental File Errors except err@. 12

NOTES

If you wish to set a lock on a record, do so exjhievith the READU or READVU statement. To read

a field from a previously opened file into a vateabnd take a read-only shared lock on the fiedd, u
READVL.

EXAMPLE

OPEN "Customers" ELSE ABORT 201, "Customers"
OPEN "DICT Customers" TO DCusts ELSE

ABORT 201, "DICT Customers"

310

END
READV Rec FROM DCusts, "Xref",7 THEN

READ DataRec FROM Rec<7> ELSE

ABORT 202, Rec<7>

END
END ELSE

ABORT 202, "Xref"

END

311

READVL

Use the READVL statement to acquire a shared relogidand then read a field from the record.
The READVL statement conforms to all the specifizasi of theREADL andREADV statements.

312

READVU

The READVU statement allows a program to read aipdéeld in a record in a previously opened

file into a variable. It also respects record loackand locks the specified record for update.
COMMAND SYNTAX

READVU variablel FROM { variable2,} expressionl, eggsion2 {SETTING setvar} {ON ERROR
statements} {LOCKED statements} THEN|ELSE statements

SYNTAX ELEMENTS

variablel is the identifier into which the record will beaik

variable2 if specified, should be a jBASE BASIC variable thas previously been opened to a file
using the OPEN statement. If variable2 is not djgetthen the default file is assumed.
expressionlshould evaluate to a valid record key for the file

expression2should evaluate to a positive integer numbehéfriumber is invalid or greater than the
number of fields in the record, then a NULL strimilj be assigned to variablel. If the number is 0,
then the readv0 emulation setting controls theevadtturned in variablel. If a non-numeric argunignt
evaluated a run time error will occur.

If the SETTING clause is specified and the read fa#syar will be set to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

If ON ERROR is specified, the statements followihg ON ERROR clause will be executed for any

of the above Incremental File Errors except err@. 12
NOTES

If the record could not be read because anotheepsoalready had a lock on the record then one of
two actions is taken. If the LOCKED clause was djegtin the statement then the statements
dependent on it are executed. If no LOCKED clauas specified then the statement blocks (hangs)
until the other process releases the lock.

If the statement fails to read the record thensiatements associated with the ELSE clause are
executed. If the statement successfully readsetbherd then the statements associated with any THEN
clause are executed. Either or both of the THEN arf8E=tlauses must be specified with the
statement.

The lock taken by thREADVU statement will be released by any of the followéwvgnts:

The same program witWRITE, WRITEV, MATWRITE or DELETE statements writes to the record.

The record lock is released explicitly using RIEELEASE statement.

313

The program stops normally or abnormally.

When a file is OPENed to a local file variable isubroutine then the file is closed when the
subroutine RETURNS so all locks taken on that fiker@leased, including locks taken in a calling
program. Files that are openedd®MMON variables are not closed so the locks remaintintac
See alsoWRITE, WRITEU, MATWRITE, MATWRITEU, RELEASE andDELETE

EXAMPLE

OPEN "Customers" ELSE ABORT 201, "Customers"
OPEN "DICT Customers" TO DCusts ELSE
ABORT 201, "DICT Customers"

END
LOOP
READVU Rec FROM DCusts, "Xref",7 LOCKED

CRT "Locked - retrying"
SLEEP 1; CONTINUE ;* Restart LOOP
END THEN
READ DataRec FROM Rec ELSE
ABORT 202, Rec

END
BREAK ;*leave the LOOP

END ELSE
ABORT 202, "Xref"

END
REPEAT

314

READXML

READXML rec FROM file, id ELSE STOP 202,id
Reads a record from a file using the style sheletineDICT->@READXML to transform the data into

xml format
EXAMPLE

READ rec FROM file,id THEN
CRT rec
END
READXML xml FROM file,id THEN
CRT xml
END

Screen output

CLIVEMPIPENSLIPPERS"999 LETSBE AVENUE

<?xml version="1.0" encoding="UTF-8"?>

<mycustomer>
<firstname>CLIVE</firsthame>
<lasthame>PIPENSLIPPERS</lastname>
<address>999 LETSBE AVENUE</address>

315

RECORDLOCKED
Call the RECORDLOCKED function to ascertain the staifia record lock.

COMMAND SYNTAX
RECORDLOCKED (filevar, recordkey)
SYNTAX ELEMENTS

filevar is a file variable from a previously exeedDPEN statement.

recordkey is an expression for the record id thtthe checked.
NOTES

RECORDLOCKED returns an integer value to indicaterduord lock status of the specified record id.

3 Locked by this process by a FILELOCK

2 Locked by this process by a READU

1 Locked by this process by a READL

0 Not locked

-1 Locked by another process by a READL

-2 Locked by another process by a READU

-3 Locked by another process by a FILELOCK

If the return value is negative, then the SYSTEM@ STATUS function calls can be used to
determine the port number of the program that hitiddock. If -1 is returned, more than 1 port coul

hold the lock and so the port number returned lvglthe first port number found.]

EXAMPLE
OPEN "INVENTORY" TO invFvar ELSE ABORT 201,"Cannot open the INVENTORY

file"

IF RECORDLOCKED (invFvar,invid) = -2 THEN
CRT "Inventory record ":invld:" is locked by po rt":SYSTEM(43)

END

316

REGEXP

The REGEXP function is a powerful function that altopattern matching using UNIX regular

expressions. REGEXP is not supported on Windows.
COMMAND SYNTAX
REGEXP(variable, expression)

SYNTAX ELEMENTS

variable can be any type of JBASE BASIC variable and isthdable upon which pattern matching
will be performed.

expressionshould evaluate to a standard UNIX regular exjwasas defined in the UNIX
documentation.

NOTES

The function returns a numeric integer value belrggfirst character in variable that failed to mattoh
specified regular expression. If a match is nonfbar the regular expression was invalid then the
function returns 0.

EXAMPLE

String = "jBASE Software Inc."
CRT REGEXP(String, "S[M]*")

displays the value 4 being the position of the abr "t" in the word Software

317

RELEASE

The RELEASE statement enables a program to expligtgase record locks without updating the
records usingVRITE.

COMMAND SYNTAX
RELEASE {{variable,} expression}
SYNTAX ELEMENTS

If variable is specified it should be a valid fdescriptor variable (i.e. It should have been titgect

of anOPENstatement)

If an expression is supplied it should evaluatthorecord key of a record whose lock the program

wishes to free. If variable was specified the rddock in the file described by it is releasedvdfiable

was not specified the record lock in it releasesfifle described by the default file variable

If RELEASE is issued without arguments then all redooks in all files that were set by the current

program will be released.
NOTES

Where possible the program should avoid the usSEAEASE without arguments; this is less efficient

and can be dangerous - especially in subroutines.

EXAMPLE

READU Rec FROM File, "Record" ELSE ABORT 203, "Reco rd"
IF Rec<1> ="X"THEN

RELEASE File, "Record"

318

REMOVE

REMOVE will successively extract delimited stringsrh a dynamic array.
COMMAND SYNTAX
REMOVE variable FROM array SETTING setvar

SYNTAX ELEMENTS

variable is the variable, which is to receive tkracted string.
array is the dynamic array from which the stringpi®e extracted.

setvar is set by the system during the extractiandicate the type of delimiter found:

0 end of the array

1 XFF ASCII 255

2 XFE ASCII 254 Field marker

3 xFD ASCII 253 Value marker

4 XFC ASCII 252 Subvalue marker
5 xFB ASCII 251

6 xFA ASCII 250

7 xF9 ASCII 249

NOTES

The first time the REMOVE statement is used with digalar array, it will extract the first delimited
string it and set the special "remove pointer'tio $tart of the next string (if any). The next time
REMOVE is used on the same array, the pointer willbed to retrieve the next string and so on. The
array is not altered.

The variable named in the SETTING clause is usedcrdethe type of delimiter that was found - so
that you can tell whether the REMOVE statement etdiha field, a value or a subvalue for example.
Delimiters are defined as characters between xBXBR only. Once the end of the array has been
reached, the string variable will not be updatedi thie SETTING clause will always return 0. You can

reset the "remove pointer" by assigning the vaeiablitself - for example REC = REC.

EXAMPLE
EQU FM TO CHAR (254), VM to CHAR(253), SVM to CHAR(252)
REC = "Field 1":FM:"Value 1":VM:" Value 2":FM:"Fiel d3"

319

REMOVE EXSTRING FROM REC SETTING DELIM

REMOVE EXSTRING FROM REC SETTING DELIM

The first time REMOVE is used, EXSTRING will containi€il 1" and DELIM will contain XFE. The
second time REMOVE is used, EXSTRING will contain "Maltl" and DELIM will contain xFD.

320

REPLACE

REPLACE is an obsolete way to assign to dynamic arvaya function.
COMMAND SYNTAX
REPLACE (var, expressionl{, expression2{, expressiprexpression4)
SYNTAX ELEMENTS

var is the dynamic array that the REPLACE function wik to assign expression4. Unless the same
var is assigned the result of the function remaimshanged.

expressionlspecifies into which field assignment will be matel should evaluate to a numeric.
expression2is only specified when multi-value assignmenbi®é done and should evaluate to a
numeric.

expression3is only specified when sub-value assignment Isetadone and should evaluate to a
numeric.

expressiondcan evaluate to any data type and is the acttaltdat will be assigned to the array.

NOTES

The function returns a copy of var with the spedifieplacement carried out. This value may be
assigned to the original var in which case the jBABASIC compiler will optimize the assignment.

EXAMPLES

X ="JBASE":MV:"is Great"

X = REPLACE (X,1,1;"]BASE")

321

RETURN

The RETURN statement transfers program executionea@aller of a subroutine/function or to a

specific label in the program.
COMMAND SYNTAX

RETURN {TO label}
or
RETURN (expression)

SYNTAX ELEMENTS

label must reference an existing label within therse of the program.
expression evaluates to the value that is retuoyeluser-written function.

NOTES

The RETURN statement will transfer program executiothe statement after ti@OSUBthat called

the current internal subroutine.

If the RETURN statement is executed in an external SUBROUTINEthexk are no outstanding
GOSUBs, then the program will transfer executiockita the program that called it via CALL.

The program will enter the debugger with an appedprmessage should a RETURN be executed with
no GOSUB oiCALL outstanding.

The second form of the RETURN statement is usedttorre value from a user-written function. This

form can only be used in a user-written function.

322

REWIND

The REWIND statement will issue a rewind commanthéodevice attached to the specified channel.
COMMAND SYNTAX
REWIND {ON expression} THEN|ELSE statements

SYNTAX ELEMENTS

expression, if specified, should evaluate to aeget in the range 0 to 9. Default is 0.

NOTES

If the statement fails to issue the rewind then stayements associated with the ELSE clause are
executed. If the statement successfully issuesethilnd command then the statements associated with
any THEN clause are executed. Either or both of tHEN and ELSE clauses must be specified with
the statement.

If the statement fails then the reason for failcma be determined via the value of SYSTEM(0) as

follows:

Value Meaning

1 there is no media attached to the channel
2 an end of file mark was found

323

RIGHT

The RIGHT function returns a sub-string composetheflast n characters of a specified string.
COMMAND SYNTAX

RIGHT (expression, length)

SYNTAX ELEMENTS

expression evaluates to the string from, whichstife string is extracted.
length is the number of characters that are exdadt length is less than 1, RIGHT () returns null.

NOTES

The RIGHT () function is equivalent to sub-stringragtion for the last n characters, i.e. expressipn[
See alsoLEFT().

EXAMPLE

S ="The world is my lobster"

CRT DQUOTE (RIGHT (S,7))
CRT DQUOTE(RIGHT(S,99))

CRT DQUOTE(RIGHT(S,0))

This code displays:
"lobster"

"The world is my lobster"

324

RND

The RND function allows the generation of random hara by a program.
COMMAND SYNTAX
RND (expression)

SYNTAX ELEMENTS

expressionshould evaluate to a numeric integer value oméime error will occur. The absolute value
of expression is used by the function. The highastber expression can be on Windows is
PWR(2,15) - 1. The highest number on UNIX is PWR{2 1.

See als@ABS

NOTES
The function will return a random integer numbemen 0 and the value of expression-1.
EXAMPLE
FOR I=1TO 20
CRT RND (100):", "

NEXT |

prints 20 random numbers in the inclusive range @5t

325

RQM
RQM is synonymous with SLEEP.

326

RTNDATA
The RTNDATA statement allows a BASE BASIC programreéturn specific data to the RTNDATA

clause of another progranEXECUTE statement.
COMMAND SYNTAX

RTNDATA expression

SYNTAX ELEMENTS

expressionmay evaluate to any data type.
NOTES

When a jBASE BASIC program executes another BASESEAprogram using the EXECUTE
statement it may specify a variable to pick up datasing the RTNDATA clause. The data picked up
will be that specified by the executed program gisire RTNDATA statement.

The data will be discarded if the program is notcexed by arEXECUTE statement in another

program.

327

SADD

See also: Floating point Operations

The SADD function performs string addition of twoskal0-string numbers.

COMMAND SYNTAX

SADD (exprl, expr2)

SYNTAX ELEMENTS

exprl and expr2 are strings consisting of numdraracters, optionally including a decimal part.

NOTES

The SADD function can be used with numbers that exaged a valid range with standard arithmetic
operators.
The PRECISIONdeclaration has no effect on the value returne8ARD.

EXAMPLE

A =4000000000000000000000000000000
B=7

CRT SADD (A,B)
Displays 4000000000000000000000000000007 to theescr
CRT SADD (4.33333333333333333,1.8)

Displays 6.13333333333333333 to the screen

328

SDIV

See also: Floating point Operations
The SDIV function performs a string division of tlwase 10-string numbers and rounds the result to

14 decimal places.
COMMAND SYNTAX
SDIV (exprl, expr2)
SYNTAX ELEMENTS

exprl and expr2 are strings consisting of numéraracters, with either optionally including a deaim

part.
NOTES

Use the SDIV function with numbers that may excaedlid range with standard arithmetic operators.
The PRECISIONdeclaration has no effect on the value returneS8biy.

EXAMPLE
A=2
B=3

CRT SDIV (A,B)
Displays 0.66666666666666 to the screen
CRT SDIV (355,113)

Displays 3.14159292035398 to the screen

329

SEEK

Use the SEEK statement to move the file pointerrbgféset specified in bytes, relative to the cutren

position, the beginning of the file, or the endtu file.
COMMAND SYNTAX

SEEK file.variable [, offset [, relto]]
{THEN statements [ELSE statements] | ELSE statements}

file.variable specifies a file previously opened for sequerstéess.
offsetis the number of bytes before or after the refeegosition. A negative offset results in the

pointer being moved before the position specifigddito. If offset is not specified, 0 is assumed.

NOTE: On Windows NT systems, line endings in files denoted by the character sequence
RETURN + LINEFEED rather than the single LINEFEED usetdiX files. The value of offset
should take into account this extra byte on eashilh Windows NT file systems.

The permissible values of relto and their meaniogew:

0 Relative to the beginning of the file
1 Relative to the current position
2 Relative to the end of the file

If relto is not specified, 0 is assumed.

If the pointer is moved, the THEN statements areetesl and the ELSE statements are ignored. If the
THEN statements are not specified, program execetiotinues with the next statement.

If the file cannot be accessed or does not exésEINSE statements are executed; any THEN
statements are ignored.

If file.variable, offset, or relto evaluates to hithe SEEK statement fails and the program terramat

with a run-time error message.

Note: On Windows NT systems, if you use @BENDEV statement to open a 1/4-inch cartridge tape
(60 MB or 150 MB) for sequential processing, youn caove the file pointer only to the beginning or
the end of the data. For diskette drives, you canenthe file pointer only to the start of the data.
Seeking beyond the end of the file and then writireptes a gap, or hole, in the file. This hole
occupies no physical space, and reads from thisopére file return as ASCIl CHAR 0 (neither the
number nor the character 0).

For more information about sequential file procegsBee als®OPENSEQREADSEQ and
WRITESEQstatements.

EXAMPLE

330

The following example reads and prints the first lof RECORDA4. Then the SEEK statement moves
the pointer five bytes from the front of the fiten reads and prints the rest of the current line.

OPENSEQ "', 'MYSEQFILE' TO FILE ELSE ABORT
READSEQ B FROM FILE THEN PRINT B

SEEK FILE,5, 0 THEN

READSEQ A FROM FILE THEN PRINT A ELSE ABORT

END
The output of this program is:

FIRST LINE

LINE

331

SELECT

The SELECT statement creates a select list of elemeatspecified variable.
COMMAND SYNTAX
SELECT {variablel} {TO variable2 | listhnum} {SETTING setvyar

SYNTAX ELEMENTS

variablel can be an OPENed file descriptor, in which casedlcord keys in the specified file will be
selected, or an ordinary variable in which casé diatd in the variable will become a list element.
variablel may also be an existing list in which case thenelats in the list will be selected.

If variablel is not specified in the statement thexssumes the default file variable.

If variable2 is specified then the newly creatst Will be placed in the variable. Alternativelpesify
a select list number in the range 0 to 10 witiish. If neither variable2 nor listnum is specifteén

it assumes the default list variable.

If specifying the SETTING clause and the select fétilsets setvar to one of the following values:

128 no such file or directory

4096 network error

24576 permission denied

32768 physical I/O error or unknown error
NOTES

When constructing a list from record keys in a, filaloes so by extracting only the first few keys,
which when removed from the list obtains the next keys and so on. Therefore, the creation of the
list is not immediate. This means that the listidawontain records, written to the file after stagtthe
SELECT command.

Consider the situation where you open a file, SELBGRd then, because of the keys obtained, write
new records to the same file. It would be easyssume that these new keys would not show up in the
list because you created the list before the neards existed. This is not the case. Any records
written beyond the current position in the file M@ventually show up in the list. In situations whe

this might cause a problem, or to ensure that yaaio a complete, qualified list of keys, you slbul
use a slower external command like QL SELECESELECTand therREADNEXT to parse the

file.

If using a variable to hold the select list, theshiould be unassigned or null before the SELECT. If it
contains a number in the range 0 to 10 then itwed the corresponding select list number to Had t
list, although you can still reference the listiwiihe variable name. This "feature" is for compétibi
with older platforms. See also example 3.

Lists can be selected as many times as required.

See also: the extensions for secondary indexes.

332

EXAMPLE 1

OPEN "Customers" ELSE ABORT 201, "Customers"

SELECT TO CustListl

SELECT TO CustList2

EXAMPLE 2

OPEN "Customers" TO CustFvar ELSE ABORT 201, "Custo

SELECT CustFvar TO 2

DONE =0

LOOP
READNEXT Custld FROM 2 ELSE Done =1

UNTIL DONE DO

GOSUB ProcessCust

REPEAT

EXAMPLE 3

CLEAR
OPEN "Customers" TO CustFvar ELSE ABORT 201, "Custo

OPEN "Products" TO ProdFvar ELSE ABORT 201, "Produc

SELECT CustFvar TO Listvarl

SELECT ProdFvar TO Listvar2

mers"

mers"

ts

This example demonstrates a coding error. The CLEAfRSENt is used to initialize all variables to

zero. Since Listvarl has the value 0, select listlver O is used to hold the list. However, the CLEAR

statement also initializes Listvar2 to zero, sodbeond SELECT overwrites the first list.

333

SEND

The SEND statement sends a block of data directiydevice.
COMMAND SYNTAX
SEND output {:} TO FileVar THEN | ELSE statements

SYNTAX ELEMENTS

The output is an expression evaluating to a sthagjwill be sent to the output device (specified by
FileVar). Itis expected that the device has aydaeen opened WitbPENSERor OPENSEQ

The SEND statement will append a newline sequentteetfinal output expression unless it is

terminated with a colon ":" character.

NOTES

As the expression can be any valid expressionajt have output formatting applied to it.

The SEND syntax requires you specify either a THERIOBE clause, or both. It executes the THEN
clause if the data is without error. Else executes ELSE clause if the data cannot be sent.

See alsoSENDX

EXAMPLES

See also: Sequential File Processing.

334

SENDX

The SENDX statement sends a block of data (in hekmddirectly to a device.

COMMAND SYNTAX
SENDX output {:} TO FileVar THEN | ELSE statements
SYNTAX ELEMENTS

The output is an expression evaluating to a sthagjwill be sent to the output device (specified by
Filevar). Itis expected th@PENSERor OPENSEGhas already opened the device .

The SENDX statement will append a newline sequentigetfinal output expression unless it is

terminated with a colon ":" character.

NOTES

As the expression can be any valid expressionayt have output formatting applied to it.

The SENDX syntax requires a specified THEN or ELSE clamskoth. If the data is send without
error, it executes the THEN clause. If the datencibe sent, it executes the ELSE clause.

See alsoSEND

EXAMPLES

See also: Sequential File Processing Examples.

335

SENTENCE

The SENTENCE function allows a program to locate thmrand used to invoke it and the arguments

it was given.
COMMAND SYNTAX
SENTENCE ({expression})

SYNTAX ELEMENTS

If expression is specified it should evaluate fwaitive integer value. A negative value will reta

null string. A value of null will return the entiecommand line.

An integer value of expression will return a speadlement of the command line with the command
itself being returned by SENTENCE (0), the first paggan being returned by SENTENCE(1) and so
on.

NOTES

It is assumed the command line arguments are segegated and when returning the entire command
line they are returned as such. The SYSTEM(1000) immetill return the command line attribute
mark delimited.

EXAMPLES
DIM Parm(4)
ProgName = SENTENCE (0) ;* program is?
FORI=1TO4
Parm(l) = SENTENCE(]) ;* get parameters

NEXT |

336

SEQ

The SEQ function returns numeric ASCII value of arabter.
COMMAND SYNTAX
SEQ (expression)

INTERNATIONAL MODE

The SEQ function will return numeric values beyon8 &% UTF-8 byte sequences representing any
Unicode values above 0x000000ff.

SYNTAX ELEMENTS

expressionmay evaluate to any data type. However, the SEQtifan will convert the expression to a

string and operate on the first character of thraig
NOTES
SEQ operates on any character in the integer ratg2%86

EXAMPLES

EQUENQTOS5

* Get next comms code

* Time-out after 20 seconds

INPUT A, 1 FOR 200 ELSE BREAK
IF SEQ (A) = ENQ THEN

* Respond to ENQ char

337

SEQS
Use the SEQS function to convert a dynamic arraqS®€I1l characters to their numeric string

equivalents.
COMMAND SYNTAX

SEQS (dynamic.array)

dynamic.array specifies the ASCII characters to be convertedytfamic.array evaluates to null, it
returns null. If any element of dynamic.array idl itreturns null for that element.

If you use the subroutine syntax, the resultingasigic array is returned as return.array.

By using the SEQS function to convert a charactéside its range results in a run-time message, and

the return of an empty string.
EXAMPLE
G="T"@VM:"G"

A=SEQS (G)

PRINT A
PRINT SEQS("G")

The output of this program is: 84]71 71

INTERNATIONAL MODE

The SEQ function will return numeric values beyon8 & UTF-8 byte sequences representing any
Unicode values above 0x000000ff.

338

SIN

The SIN function returns the mathematical sine valug numeric expression.
COMMAND SYNTAX
SIN (expression)

SYNTAX ELEMENTS

expression should evaluate to a numeric value simderpreted as a number of degrees between 0 and
360.

NOTES

The function will calculate the sine of the angledfied by the expression as accurately as the host

system will allow. It will then truncate the valaecording to the PRECISION of the program.

EXAMPLE

CRT @ (-1):
FORI=0TO 79
CRT @ (I,22+INT(SIN (360/80*(1+1))*10)):"*":

NEXT I

339

SLEEP

Sleep allows the program to pause execution fopeaified period.
COMMAND SYNTAX
SLEEP {expression}

SYNTAX ELEMENTS

expressionmay evaluate to one of two forms:

Numeric in which case the statement will sleep for thecBi@el number of seconds or fractions of a
second

"nn:nn{:nn}" in which case the statement will sleeqtil the time specified.

If expression is not supplied then a default pedabdl second is assumed.
NOTES

Sleeping until a specified time works by calculgtthe time between the current time and the time
supplied and sleeping for that many seconds. tiénmeantime the host clock is changed the program
will not wake up at the desired time;

If invoking the debugger while a program is slegpamd the execution continued, the user will be

prompted:

Continue with SLEEP (Y/N)?

If "N" is the response, the program will continudhe next statement after the SLEEP.

See also: MSLEEP to sleep for a specified numberilifetonds.

EXAMPLES

Sleep until the end of the working day for anyone w ho doesn't program
computers
SLEEP "17:30"

* 40 winks...
SLEEP 40
* Sleep for two and a half seconds...

SLEEP 2.5

340

SMUL

See also: Floating Point Operations

The SMUL function performs string multiplication mfo base 10-string numbers.
COMMAND SYNTAX

SMUL (exprl, expr2)

SYNTAX ELEMENTS

exprl andexpr2 are strings consisting of numeric characters, witther optionally including a

decimal part.
NOTES

Use the SMUL function with numbers that may excaedlid range with standard arithmetic
operators.
The PRECISION declaration does not affect the vadtirmed by SMUL.

EXAMPLES

A =243603310027840922

B = 3760

CRT SMUL (A,B)

Displays 915948445704681866720 to the screen
CRT SMUL (0.0000000000000475,3.61)

Displays 0.0000000000001714 to the screen

341

SORT

See also: Floating point Operations

The SORT function sorts all elements of a dynamiayain ascending left-justified order.
COMMAND SYNTAX

SORT (expression)

SYNTAX ELEMENTS

expression may evaluate to any data type but will be useful if it evaluates to a dynamic array.

NOTES

The dynamic array can contain any number and coribimaf system delimiters.
The SORT () function will return an attribute-delied array of the sorted elements.
Note: that all system delimiters in expression Wwélconverted to an attribute mark 'OxFE' in théesb

result. For example, the following code

MyArray = 'GEORGE"@VM:'FRED":@AM:'JOHN"@SVM:'A NDY"

CRT SORT (MyArray)
will return
ANDY"FRED"GEORGE”"JOHN

where "M is an attribute mark, 'OXFE'. MyArray rénsaunchanged.
The SORT is achieved by the quick sort algorithmictvisorts in situ and is very fast.

EXAMPLE

Read a list, sort it and write it back

*READ List FROM "Unsorted" ELSE List ="
List = SORT (List)
WRITE List ON "Sorted"

INTERNATIONAL MODE

When using the SORT function in International Maithe, function will use the currently configured
locale to determine the rules by which each stisngpnsidered less than or greater than the otimer f

sort purposes.

342

SOUNDEX

The SOUNDEX function allows phonetic conversionstoings.
COMMAND SYNTAX
SOUNDEX (expression)

SYNTAX ELEMENTS

expressionmay evaluate to any data type but the functiohamly give meaningful results for English

words.
NOTES

The phonetic equivalent of a string is calculatethadirst alphabetic character in the string fokal
by a 1 to 3-digit representation of the rest ofwhed.

The digit string is calculated from the followindte:

Characters Value code
BFPV 1
CGJKQSXZ 2

DT 3

L 4

M N 5

R 6

All characters not contained in the above tabldgwered. The function is case insensitive and
identical sequences of a character are interpestedsingle instance of the character.
The idea is to provide a crude method of identifyivayds such as last names even if they are nat spel

correctly. The function is not foolproof should &t the sole method of identifying a word.

EXAMPLE

INPUT Lastname

Lastname = SOUNDEX (Lastname)

search the databases

343

SPACE

The SPACE function generates a specific number @&IA§pace characters.
COMMAND SYNTAX

SPACE (expression)

SYNTAX ELEMENTS

expression should evaluate to a positive integkreva

NOTES

The SPACE function will return the specified numbEASCII space characters and is useful for

padding strings. It should not be used to positiotput on the terminal screen as this is ineffigien
accomplish this by using ti@ () function

EXAMPLES

TenSpaces = SPACE (10)

344

SPACES

Use the SPACES function to return a dynamic arrdly elements composed of blank spaces.
COMMAND SYNTAX

SPACES (dynamic.array)
dynamic.array specifies the number of spaces ih ekament. If dynamic.array or any element of

dynamic.array evaluates to null, the SPACES functdl enter the debugger.

345

SPLICE

Use the SPLICE function to create a dynamic arrah®®lement-by-element concatenation of two

dynamic arrays, separating concatenated elemeriteebsalue of expression.

COMMAND SYNTAX

SPLICE (arrayl, expression, array?2)

Each element of arrayl is concatenated with exnessid with the corresponding element of array2.
The result is returned in the corresponding eleroéatnew dynamic array. If an element of one
dynamic array has no corresponding element in ther@ynamic array, the element is returned
properly concatenated with expression. If eithen®nt of a corresponding pair is null, null is read

for that element. If expression evaluates to mulll is returned for the entire dynamic array.

EXAMPLE

A="A"@VM:"B":@SM:"C"
B="D":@SM:"E":@VM:"F"
co

PRINT SPLICE (A,C,B)

The output of this program is:

A-D\-E]B-F\C-

346

SPOOLER

The SPOOLER function returns information from th&§& spooler.
COMMAND SYNTAX
SPOOLER (n{, Port|User})

SYNTAX ELEMENTS

Description
returns formgueue information
returns job information

formqueue assignment

A W N R S

returns status information

Port limits the information returned to the spesdfport

User limits the information returned to the speafuser.

NOTES

SPOOLER(1) returns information about formqueues.iffogmation is returned in a dynamic array,
which contains an attribute for each formqueue. Baghqueue is structured as follows:
MultiValue Description

Formqueue name

Form type

Device

Device type

Status

Number of jobs on the formqueue

N o o0~ WN P

Page skip

SPOOLER(2) returns information about print jobs. Triferimation is returned in a dynamic array,

which contains an attribute for each print job.

MultiValue Description

Formqueue name

Print job number

Effective user id

Port number job was generated on
Creation date in internal format
Creation time in internal format
Job Status

N o oA WN B

347

MultiValue Description

8 Options

9 Print job size (pages)

10 Copies

11 Reserved

12 Reserved

13 Reserved

14 Effective user id

15 Real user id

16 Application id as set by @APPLICATION.ID
17 JBASICLOGNAME id

SPOOLER(3) returns information about current formguassignments. The information is returned in

a dynamic array, which contains an attribute faheassignment. Each attribute is structured as

follows:

MultiValue Description

1 Report (channel) number
2 Formqueue name

3 Options

4 Copies

SPOOLER(4) returns information about current pribsjorhe information is returned in a dynamic
array, which contains an attribute for each jombgejenerated. Each attribute is structured as fatlow
MultiValue Description

Report (channel) number

Print job number

Print job size (pages)

Creation date in internal format

Creation time in internal format

Job Status

Effective User id

Real user id

JBASICLOGNAME id

Banner test from SETPTR BANNER text command

© 0 N O 0o A WDN P

[N
o

The values for Job Status are:
Status Description
1 Queued

348

o o1~ WD

349

Printing
Finished
Open
Hold
Edited

SQRT
See also: Floating point Operations

The SQRT function returns the mathematical squareaba value.

COMMAND SYNTAX
SQRT (expression)
SYNTAX ELEMENTS

The expression should evaluate to a positive nummeatiee as the authors do not want to introduce a

complex number type within the language. Negatadeies will cause a math error.

NOTES

The function calculates the result at the highestipion available and then truncates the answiieto
required PRECISION.

EXAMPLE

FOR | =1 TO 1000000

J=SQRT ()
NEXT |

350

SSELECT

Use the SSELECT statement to create:

A numbered select list of record IDs in sorted ofdem a BASE hashed file
A numbered select list of record IDs from a dynaari@y

A select list of record IDs from a dynamic array@t in sorted order.

You can then access this select list by a subse®READNEXT statement, which removes one record

ID at a time from the list.

COMMAND SYNTAX

SSELECT |[variable] [TO list.number] [ON ERROR statemgnts
SSELECTN [variable] [TO list.number] [ON ERROR stateitsgn
SSELECTYV [variable] TO list.variable [ON ERROR statens¢nt

variable can specify a dynamic array or a file afalé. If it specifies a dynamic array, the recayd |
must be separated by field marks (ASCII 254). Halale specifies a file variable, the file variable
must have previously been opened. If variable isspecified, the default file is assumed. If tHe i
neither accessible nor open, or if variable evalu# null, the SSELECT statement fails and the
program enters the debugger with a run-time eressage.

The TO clause specifies the select list that isstoded. list.number is an integer from 0 throughlfL0
no list.number is specified, select list 0 is used.

The record IDs of all the records in the file forthe list. The record IDs are listed in ascendingnord
Each record ID is one entry in the list.

Use the SSELECTYV statement to store the select Istniamed list variable instead of to a numbered
select list. list.variable is an expression thatleates to a valid variable name.

The ON ERROR Clause

The ON ERROR clause is optional in SSELECT statemehes ON ERROR clause lets you specify
an alternative for program termination when a fatabr is encountered during processing of a
SSELECT statement.

EXAMPLE

The following example opens the file SLIPPERS to tleeviariable DSCB, then creates an active
sorted select list of record IDs. The READNEXT stadat assigns the first record ID in the select list
to the variable @ID, then prints it.

OPEN ",'SLIPPERS' ELSE PRINT "NOT OPEN"

351

SSELECT
READNEXT @ID THEN PRINT @ID

The output of this program is:

0001

INTERNATIONAL MODE

When using the SSELECT statement in Internationalétue statement will use the currently
configured locale to determine the rules by whiabhestring is considered less than or greatertth@an

other for sort purposes.

352

SSELECTN
See also: SSELECT.
SSELECTV
See also: SSELECT.

353

SSUB

See also: Floating Point Operations

The SSUB function performs string subtraction of tvese 10-string numbers.

COMMAND SYNTAX

SSUB (exprl, expr2)

SYNTAX ELEMENTS

exprl and expr2 are strings consisting of numdraracters, optionally including a decimal part.

NOTES

Use the SSUB function with numbers that may exeeedlid range with standard arithmetic operators.
The PRECISIONdeclaration has no effect on the value returne83&yB.

EXAMPLE

A =2.3000000123456789
B = 5.0000000000000001

CRT SSUB (A,B)

Displays -2.6999999876543212 to the screen

354

STATUS Function

Use the STATUS function after an OPENPATH statemefiintd the cause of a file open failure (that
is, for an tatement in which the ELSE clause is usetg following values can be returned if the

statement is unsuccessful:

For File access commands
READ, WRITE, OPEN

Previous Operation

Value = 0 if successful
Value = Operating System error code if previous mamd failed

13 — permission denied on UNIX systems

OCONYV Conversions
0 = successful
1 = invalid conversion requested

3 = conversion of possible invalid date

355

STATUS function

COMMAND SYNTAX
STATUS ()
DESCRIPTION

Arguments are required for the STATUS function.
Values of STATUS aftecLOSE DELETE, MATREAD, MATWRITE, OPEN READ andWRITE
After aDELETE statement: After a DELETE statement with an ON ERR@Rse, the value returned

is the error number.
Returns 0 if successful else returns ERROR number

356

STATUS function
After anOPEN OPENPATH or OPENSEQstatement: The file type is returned if the filogened

successfully. If the file is not opened succesgfilie following values may return:

After aREAD statement: If the file is a distributed file, tB@ATUS function returns the following:

STATUS function
After aREADL, READU, READVL, orREADVU statement: If the statement includes the LOCKED

clause, the returned value is the terminal nunmdgereturned by the WHO command, of the user who

set the lock.

After aREADSEQstatement:

After aREADT, REWIND, WEOF, or WRITET statement: The returned value is hardware-dependent
(that is, it varies according to the characterstitthe specific tape drive unit). Consult the
documentation that accompanied your tape drivefaninformation about interpreting the values
returned by the STATUS function.

357

STATUS statement

SYNTAX ELEMENTS

STATUS array FROM variable

THEN statements ELSE statements*ELSE statements

DESCRIPTION

Use the STATUS statement to determine the statas open file. The STATUS statement returns the
file status as a dynamic array and assigns it t@reay.

The STATUS statement returns the following valuesianfollowing attributes:

STATUS Statement Values
Attribute Description

1 Current position in the file Offset in bytes frdmaginning of file

2 End of file reached 1 if EOF, 0O if not.

3 Error accessing file 1 if error, O if not.

4 Number of bytes available to read

5 File mode Permissions (in octal) 6 File sizeyteb.

7 Number of hard links 0 if no links. Where applit@else 0

8 O/S User ID. ID based on the user name and doafidire user a jJBASE pseudo user.
9 O/S Group ID.

STATUS statement

10 I-node number; Unique ID of file on file system

11 Device on which i-node resides Number of devide value is an internally calculated value on
Windows NT.

12 Device for special character or block Numbedefice.

13 Time of last access in internal format

14 Date of last access in internal format.

15 Time of last modification in internal format

16 Date of last modification in internal format.

17 Time and date of last status change in inteoraddt.

18 Date of last status change in internal format.

19 Number of bytes left in output queue (applicableerminals only)
20{ }

21 |BASE File types j3, j4, jPLUS

22 |BASE File types j3, j4, jPLUS

358

23 |BASE File types j3, j4, jPLUS

24 Part numbers of part files belonging to a distied file multivalued list

STATUS statement

variable specifies an open file. If variable evédsao the null value, the STATUS statement fail$ an
the program terminates with a run-time error messag

If the STATUS array is assigned to an array, the THEdtements are executed and the ELSE
statements are ignored. If no THEN statements @sept, program execution continues with the next
statement. If the attempt to assign the array, fiils ELSE statements are executed; any THEN

statements are ignored.
EXAMPLE

OPENSEQ '/Fred' TO test THEN PRINT "File Opened" ELSEBT
STATUS info FROM filevar
filename= stat<20>

inode= info<10>

359

STOP

The STOP statement is virtually identical in functtortheABORT statement except that it does not

terminate a calling jCL program.

360

STR

The STR function allows the duplication of a stringuenber of times.
COMMAND SYNTAX
STR (expressionl, expression2)

SYNTAX ELEMENTS

expressionlwill evaluate to the string to duplicate and maydb any length.
expression2should evaluate to a numeric integer, which spEcthe number of times the string will

be duplicated.

EXAMPLE

LongString = STR ("long string ", 999)

361

STRS

Use the STRS function to produce a dynamic arrayaing the specified number of repetitions of

each element of dynamic.array.

COMMAND SYNTAX

STRS (dynamic.array, repeat)

dynamic.array is an expression that evaluates to the stringe tpenerated.

repeatis an expression that evaluates to the numbamefstthe elements are to be repeated. If it does
not evaluate to a value that can be truncatedptwsdive integer, an empty string is returned for
dynamic.array.

If dynamic.array evaluates to null, it returns niflany element of dynamic.array is null, null is

returned for that element. If repeat evaluateauth the STRS function fails and the program entbes

debugger.

EXAMPLE

ABC="A":@VM:"B".@VM:"C"
PRINT STRS (ABC,3)

The output of this program is:

AAA]BBB]CCC

362

SUBROUTINE

The SUBROUTINE statement is used at the start ofpamogram that will be called externally by the

CALL statement. It also declares any parameters tcaimgiler.

COMMAND SYNTAX

SUB{ROUTINE} Name {({MAT} variable{,{MAT} variable...})}

SYNTAX ELEMENTS

Name is the identifier by which the subroutine Wil known to the compilation process. It should
always be present as this name (not the sourceditee), will be used to call it by. However, if the
name is left out, the compiler will name subroutasethe source file name (without suffixes). Ddfaul
naming is not encouraged as it can cause problesosiice files are renamed.

Each comma separated variable in the optional pgagsizied list is used to identify parameters to the

compiler. These variables will be assigned the wwahsssed to the subroutine by a CALL statement.

NOTES

The SUBROUTINE statement must be the first code tine $ubroutine.

A subroutine will inherit all the variables decldresing theCOMMON statement providing an
equivalentCOMMON area is declared within tHBUBROUTINE source file. The program will fail to
compile if the number of common variables usedaichecommon area exceeds the number defined in
the equivalent area in the main program.

Subroutines can only be called via the]BASE BASISLL statement

A subroutine can redefirrRRECISIONbut the new precision will not persist when thbrsutine
returns to the calling program.

A subroutine will return to the CALLing program ifriéaches the logical end of the program or a
RETURNIs executed with no outstandi@SUB statement.

A SUBROUTINEwWill not return to the calling program if@TOPor ABORT statement is executed.
See alsoCALL,, CATALOG, COMMON, RETURN

EXAMPLES

SUBROUTINE DialUp(Number, MAT Results)
DIM Results(8)

363

SUBS

The SUBS function returns a dynamic array, the edraéwhich is derived by subtracting each
element of the second dynamic array argument flancorresponding element of the first dynamic

array argument.

COMMAND SYNTAX

SUBS(DynArrl, DynArr2)

SYNTAX ELEMENTS

DynArrl andDynArr2 represent dynamic arrays.

NOTES

Null elements of argument arrays are treated as gZ#herwise, a non-numeric element in an argument

array will cause a run-time error.

EXAMPLE

X=1:@VM: @VM:5: @VM :8: @SVM : 27 : @VM : 4
Y=1:@VM:5: @VM:8: @VM : 70: @VM : 19

S =SUBS(X, Y)

The variable S is assigned the value:

0O:@VM:-5: @VM :-3: @VM:-62: @SVM : 27 : @ VM : -15

364

SUBSTRINGS

The SUBSTRINGS function returns a dynamic array efrants, which are sub-strings of the

corresponding elements in a supplied dynamic array.
COMMAND SYNTAX
SUBSTRINGS (DynArr, Start, Length)

SYNTAX ELEMENTS

DynArr should evaluate to a dynamic array.

Start specifies the position from which characters ateaeted from each array element. It should
evaluate to an integer greater than zero.

Length specifies the number of characters to extract feach dynamic array element. If the length
specified exceeds the number of characters rengainian array element then all characters from the

Start position are extracted.
INTERNATIONAL MODE

When using the SUBSTRINGS function in Internatiodalde, the function will use the ‘start’ and

length’ parameters to the function as charactentealues, rather than bytecount
EXAMPLES

The following program shows how each element ofrzadyic array can be changed with the FIELDS

function.

fom
t<1> = "AAAAA"

t<2> = "BBBBB" : @VM: "CCCCC" : @SVM: "DDDDD"
t<3> = "EEEEE":@VM:@SVM

rl = SUBSTRINGS (t,3,2)

r2 = SUBSTRINGS(t,4,20)

r3 = SUBSTRINGS(t,0,1)

The above program creates 3 dynamic arrays. v repiea value mark. s represents a sub-value mark.
rl <1>AA

<2>BBv CCsDD

<3>EEv s
r2 <1>AA

<2>BBv CCsDD

365

r3

<3>EEv s

<1>A
<2>BvCsD

<3>Evs

366

SUM

The SUM function sums numeric elements in a dynamiay.
COMMAND SYNTAX

SUM (expr)

SYNTAX ELEMENTS

expr is a dynamic array.

NOTES

Non-numeric sub-values, values and attributesgarered.

EXAMPLES

s = CHAR (252)

v = CHAR(253)

a = CHAR(254)

a0 = 1:s:2:v:3:a:4:s:5:v:6:a:7:5:8:v:'NINE'
al = SUM (A)

a2 = SUM(al)

a3 = SUM(a2)

CRT a0

CRT al

CRT a2

CRT a3

The above code displays:
1223452678°NINE
3239261520

61515
36

367

SWAP

The SWAP function operates on a variable and replatt@ccurrences of one string with another.
COMMAND SYNTAX
SWAP (variable, expressionl, expression2)

SYNTAX ELEMENTS

expressionlmay evaluate to any result and is the string afatters that will be replaced.
expression2may also evaluate to any result and is the stifriharacters that will replace

expressionl. The variable may be any previousligasd variable in the program.

NOTES: Either string can be of any length and isrequired to be the same length. This function is
provided for compatibility with older systems.
See alsoCHANGE function.

EXAMPLE

Stringl = "Jim"

String2 = "James"

Variable = "Pick up the tab Jim"

CRT SWAP (Variable, Stringl, String2)

CRT SWAP(Variable, "tab", "check")

368

System Functions

The following system functions are supported by jBEAS

SYSTEM(0)
SYSTEM(1)
SYSTEM(2)
SYSTEM(3)
SYSTEM(4)
SYSTEM(5)
SYSTEM(6)
SYSTEM(?)
SYSTEM(8)
SYSTEM(9)
SYSTEM(10)
SYSTEM(11)
SYSTEM(12)
SYSTEM(13)
SYSTEM(14)

SYSTEM(15)
SYSTEM(16)
SYSTEM(17)
SYSTEM(18)
SYSTEM(19)

SYSTEM(20)
SYSTEM(21)
SYSTEM(22)
SYSTEM(23)

SYSTEM(24)
SYSTEM(25)
SYSTEM(26)
SYSTEM(27)
SYSTEM(28)
SYSTEM(29)

369

Return the last error code

Return 1 if output directed to printer

Return page width

Return page depth

Return no of lines to print in current pa(HEADING statement)
Return current page number (HEADING stataijne

Return current line number (HEADING statethe

Return terminal type

Return record length for tape channel 0

Return CPU milliseconds

Return 1 if stacked input available

Returns the number of items in an act®lect list or O if no list is active
Return 1/1000, (or 1/10 for ROS), secopast midnight

Release time slice

Returns the number of characters avalabinput buffer. Invoking SYSTEM(14)
can cause a slight delay in program execution.

Return bracket options used to invoke roamd

Return current PERFORM/EXECUTE level

Return stop code of child process

Return port number or JIBCPORTNO

Return login name or JBASICLOGNAME. If thgstem_19 timedate emulation
option is set then returns the number of secomate shidnight December 31, 1967.
Returns last spooler file number created

Returns port number or JBCPORTNO

Reserved

Returns status of the break key

Enabled

0 Enabled

1 Disabled by BASIC

2 Disabled by Command

3 Disabled by Command and BASIC

Returns 1 if echo enabled, 0 if echoluesh

Returns 1 if background process

Returns current prompt character

Returns 1 if executed by PROC

Reserved.

Reserved.

SYSTEM(30)
SYSTEM(31)
SYSTEM(32)
SYSTEM(33)
SYSTEM(34)
SYSTEM(35)
SYSTEM(36)
SYSTEM(37)
SYSTEM(38)

SYSTEM(39)

SYSTEM(40)
SYSTEM(41)
SYSTEM(42)
SYSTEM(43)
SYSTEM(44)
SYSTEM(45)
SYSTEM(46)
SYSTEM(47)
SYSTEM(48)
SYSTEM(49)
SYSTEM(50)
SYSTEM(51)
SYSTEM(52)
SYSTEM(53)
SYSTEM(100)
SYSTEM(101)
SYSTEM(102)
SYSTEM(1000)
SYSTEM(1001)
SYSTEM(1002)
SYSTEM(1003)
SYSTEM(1004)
SYSTEM(1005)
SYSTEM(1006)
SYSTEM(1007)
SYSTEM(1008)
SYSTEM(1009)
SYSTEM(1010)
SYSTEM(1011)

Returns 1 if paging is in effect (HEADINSB&atement)
Reserved

Reserved

Reserved

Reserved

Returns language in use as a name or @ufRIOS)
Reserved

Returns thousands separator

Returns decimal separator
Returns money symbol

Returns program name
Returns release number
Reserved
Returns port number of item lock
Returns 99 for jBASE system type
Reserved
Reserved
Returns 1 if currently in a transaction
Reserved
Returns PLID environment variable
Returns login user id
Reserved
Returns system node name
Reserved
Returns program create information
Returns port number or JBCPORTNO
Reserved
Returns command line separated byatgimarks
Returns command line and options
Returns temporary scratch file name
Returns terminfo Binary definitions
Returns terminfo Integer definitions
Returns terminfo String definitions
Reserved
Returns system time
Returns SYSTEM file path
Returns MD file path
Returns Print Report information
Returns jBASE release directory patASEERELEASEDIR

370

SYSTEM(1012) Returns jBASE global directory path. BBGLOBALDIR
SYSTEM(1013) Returns memory usage (UNIX only):

<1> Free memory small blocks

<2> Free memory large blocks

<3> Used memory small blocks

<4> Used memory large blocks
SYSTEM(1014) Returns relative PROC level
SYSTEM(1015) Returns effective user name. LOGNAME
SYSTEM(1016) Returns tape assignment information
SYSTEM(1017) Returns platform. UNIX, WINNT or WIN95
SYSTEM(1018) Returns configured processors
SYSTEM(1019) Returns system information (uname -a)
SYSTEM(1020) Returns login user name
SYSTEM(1021) JBASE release information:

<1> Major release number

<2> Minor release number

<3> Patch level

<4> Copyright information

SYSTEM(1022) Returns the status of BASE profiling:
0 no profiling is active
1 full profiling is active
2 short profiling is active
3 JCOVER profiling is active

SYSTEM (1023) \yseq by STATUS() function

SYSTEM(1024) Retrieves details about last signals

SYSTEM(1025) Returns value of International mode for thread

SYSTEM(1026) Total amount of memory in use formatted with commas

371

SYSTEM(1027) Retyrns directory PROC; Used by WHERE, LISTU

Information about running processes can be obtaireethe PROC jedi....

This JEDI enables retrieval of information from extieg processes and is the

interface now used by the WHERE command...

OPEN SYSTEM(1027) TO PROC ELSE STOP 201, "PR oc"
SELECT PROC TO Sel
LOOP
WHILE READNEXT key FROM Sel DO

READ ProcessRecord FROM PROC, key ELSE CRT "R ead
Error"; STOP

REPEAT

Info for current user can be returned from the @USERTS variable.
Attribute descriptions for Process Records retuifngth the PROC Jedi READ
interface.

<1> Port number

<2> Number of programs running

<3> Connect time

<4> Process ID

<5> Account name

<6> User name

<7> Terminal name in jBASE format

<8> Terminal name in UNIX format

<9> Database name

<10> Name of the tty device

<11> Language name

<12> Time listening thread executed

<13> Mallinfo memory free

<14> Mallinfo memory used

<15>Type of thread as a number

<16> Type of thread as a string WHERE

thread_type_string = "Normal" =1
thread_type_string = "javaOBJEX" = 2
thread_type_string = "vbOBJEX" = 3
thread_type_string = "jrfs" =4 372

thread_type_string = "Compiler" =5

<17> Number of instructions executed and liceradlesated to work around a bug
in Windows. Need to build the buffer in separaterdfis
<18> Number of OPEN's

<19> Number of READ's

<20> Number of WRITE's

<21> Number of DELETE's

<22> Number of CLEARFILE's

<23> Number of EXECUTE's

<24> Number of INPUT's

<25> UNUSED

<26> Number of files the application thinks is open
<27> Number of files that in reality are openedloy OS
<28> Application data set by @USER.ROOT

<29> Text String to identify process

<41> Command line arguments < threadnext >
<42> Current Line Number < threadnext >
<43> Name of source <threadnext >

<44> Status as a text string < threadnext >

status = "Program running normally"
status = "Program is SLEEPING
status = "Program in DEBUERS
status = "Program at keyfiddNPUT"

status = "Program blockedecord LOCK"

status = "Program performireXECUTEHPERFORM
status = "Error!! Statuskaown"

<47> Status as an integer <threadnext >
<48> User CPU time <threadnext >

<49> System CPU time <threadnext >
<50> Child User CPU time <threadnext >
<51> Child System CPU time <threadnext >

<52> User defined thread data <threadnext >

SYSTEM(1028) Logged in database name

373

SYSTEM(1029) Shows the CALL stack history so that in error cowdisi the application, such

database I/O statistics, programs being perfornmed so on. Can besad with

@USERDATA

SYSTEM(1030) This new entry into the SYSTEM() function returns therent perform level in tf
range 1 to 32. This is similar to SYSTEM(16), whiclures the nested exect
level. The difference is that SYSTEM(16) does notudel any procs, paragraphs
shells and returns the relative application progtewel. SYSTEM(1030) returt
the relative program level including all the proterpreters, paragrapnterpreter
and shells.

SYSTEM(1031) Number of free bytes on the current file system

SYSTEM(1032)

Returns default frame size

SYSTEM(1034) Returns handle of the current thread

SYSTEM(1035) Returns the product ID of the licenseently in use by this process;
1. Enterprise
13. Server

Entries above 2000 are for system use only.

374

TAN

The TAN function returns the mathematical tangerdrofingle.
COMMAND SYNTAX

TAN (expression)

SYNTAX ELEMENTS

expressionshould evaluate to a numeric type.

NOTES

The function calculates the result at the highestipion available on the host system; it truncttes

result to the current PRECISION after calculation.

EXAMPLES

Adjacent = 42
Angle = 34

CRT "Opposite length = ":TAN (Angle)*Adjacent

375

TIME

The TIME() function returns the current system time.
COMMAND SYNTAX

TIME ()

NOTES

Returns the time as the number of seconds pasfghidn
EXAMPLES

CRT "Time is ":OCONV(TIME(), "MTS")

376

TIMEDATE

The TIMEDATE() function returns the current time attate as a printable string.
COMMAND SYNTAX
TIMEDATE ()

NOTES

The function returns a string of the form: hh:mnddsmmm yyyy or in the appropriate format for your
international date setting.

EXAMPLES

CRT "The time and date is ":TIMEDATE ()

377

TIMEDIFF

Returns the interval between two timestamp valges dynamic array

COMMAND SYNTAX
Time Diff(Timestampl, Timestamp2,Mask)

SYNTAX ELEMENTS

The TIMEDIFF function returns the interval betwewai ttimestamp values by subtracting the value of
Timestamp2 from Timestampl. The interval is returreedraattribute delimited array of the time
difference.

The Mask is an integer from 0 to 7 and selects dieecfollowing output formats:

Mask Array

- Days”Hours"Minutes*Seconds”Milliseconds (Ddfaul

- Weeks”Days”Hours"Minutes"Seconds”Milliseconds

- Months”"Days”Hours"*Minutes"Seconds”Milliseconds

- Months"Weeks”*Days”Hours"Minutes*Seconds”Mitlseds
Years”Days”Hours"Minutes"Seconds”Milliseconds

- Years"Weeks"Days"Hours"Minutes"Seconds”"Milligets

- Years"Months"Days”Hours"Minutes"Seconds”Mitlweds

- Years"Months"Weeks"Days"Hours"Minutes”Secondkisktonds

N~ o o0 A WN - O
1

378

TIMEOUT

If no data is read in the specified time, use tHdHDUT statement to terminateREADSEQor
READBLK statement.

COMMAND SYNTAX

TIMEOUT file.variable, time

file.variable specifies a file opened for sequential access.

Time: is an expression that evaluates to the numibszconds the program should wait before
terminating the

READSEQstatement.

TIMEOUT causes subsequent READSEQ and READBLK statenterterminate and execute ELSE
statements if the number of seconds specifiedrbg &lapses while waiting for data.

If either file.variable or time evaluates to ntile TIMEOUT statement fails and the program enters
the debugger.

EXAMPLES
TIMEOUT SLIPPERS, 10

READBLK VAR1 FROM SLIPPERS, 15 THEN PRINT VAR1 ELSE
PRINT "TIMEOUT OCCURRED"

END

379

TIMESTAMP

Returns a UTC timestamp value as decimal seconds

COMMAND SYNTAX
TIMESTAMP ()

SYNTAX ELEMENTS

The TIMESTAMP function returns a Universal Coordimthféme (UTC) value as decimal seconds,
i.e. Seconds with tenths and hundredths specified the decimal point.

"The value is returned as a variable with as mamynti places as the current precision allows.
However, successive calls may return the same vahrg/ times before the operating system updates
the underlying timer. For example, Windows upddteslow level timer every 1/50 second even

though it stores the time in billionths of a secdnd

380

TRANS

The TRANS function will return the data value of @ldi, given the name of the file, the record keg, th

field number, and an action code.
COMMAND SYNTAX
TRANS ([DICT] filename, key, field#, action.code)

SYNTAX ELEMENTS

DICT is the literal string to be placed before the filene in the event it is desired to open the
dictionary portion of the file, rather than thealabrtion.

filename is a string containing the name of the file tcaloeessed. Note that it is the actual name of the
file, and not a file unit variable. This functioequires the file name, regardless of whether dthe

file has been opened to a file unit variable.

key is an expression that evaluates to the recorddeatem ID, of the record from which data is to be
accessed.

field# is the field number to be retrieved from the reco

action.codeindicates what should happen if the field is nailithe if record is not found. This is a

literal. The valid codes are:

X Returns a null string. This is the default action
\% Prints an error message.

C Returns the value of key

NOTES

If the field being accessed is a dynamic array, TRANII return the array with the delimiter
characters lowered by 1. For example, multivahaeks (ASCII-253) are returned as subvalue marks
(ASCII-252), and subvalue marks are returned asnexks (ASCII-251).

If you supply -1 for field#, the entire record whilé returned.

The TRANS function is the same as XIEATE function.

EXAMPLES

Retrieval of a simple field: Given a file calledENDORS" containing a record with the record key of
"12345" and which contains the value of "ABC Comyan field 1,

VENDOR.ID ="12345"
VENDOR.NAME = TRANS ("VENDORS",VENDOR.ID,1,"X")

CRT VENDOR.NAME

381

will display: ABC Company

Retrieval of an array: Suppose field 6 of the VENE¥file contains a multivalued list of purchase

order numbers, such as

10011]10062]10079
use the TRANS function to retrieve it:

PO.LIST = TRANS ("VENDORS",VENDOR.ID,6,"X")

CRT PO.LIST

will display: 10011\10062\10079

Notice that the backslashes (\) were substitutetrfackets (]), indicating that the delimiter ismo
CHAR(252).

Retrieval of an entire dictionary item: Given atitinary item called "VENDOR.NAME" with the

following content

001 A
0021
003 Vendor Name

004
005
006
007
008
009 L

010 30
these statements

DICT.ID = "WVENDOR.NAME"

DICT.REC = TRANS ("DICT VENDORS",VENDOR.ID,-1,"C")
PRINT DICT.REC

will display

A]1]Vendor Name]]]J]]L]30

382

TRANSABORT

The TRANSABORT statement is used to abort the cutransaction and reverse any updates to the

database.
COMMAND SYNTAX
TRANSABORT {abort-text} [THEN statement | ELSE statement]

SYNTAX ELEMENTS

abort-text specifies an optional text string to save in t@asaction abort record.
A THEN or ELSE (or both) statement is required. TREEN clause will be executed if the
transaction is successfully aborted. HI&SE clause will be executed if the transaction abaifs ffor

any reason.

NOTES

Any record locks set during the transaction willrbkeased upon successful completion.

383

TRANSQUERY

The TRANSQUERY function is used to detect whetheratrantransaction is active on the current

process.

COMMAND SYNTAX

TRANSQUERY()

NOTES

TRANSQUERY will return 1 (true) if the process is kit a transaction boundary, and 0 (false) if it is
not. In other words, TRANSQUERY will return true ifid TRANSTART statement has been issued
but aTRANSEND or TRANSABORT statement has not yet been processed.

By default, all hashed files are marked for inabmsin a transaction however this can be modified by

the jchmod utility.

384

TRANSTART

In transaction processing, the TRANSTART statememnsid to mark the beginning of a transaction.
COMMAND SYNTAX

TRANSTART {SYNCHKstart-text} [THEN statement | ELSE statent]

SYNTAX ELEMENTS

SYNC is an option to force the updates to be flushddhasaction end or abort. start-text specifies an
optional text string to save with the transactitartsecord.

A THEN or ELSE (or both) statement is required. The THEN claudkbgiexecuted if the

transaction is successfully started. The ELSE clauitéavexecuted if the transaction start fails for

any reason.

NOTES

Record locks set during the transaction will notddeased until ARANSEND or TRANSABORT
statement is processed.

A program (or series of programs) can only haveauri&e transaction at one time. If another
TRANSTART statement is encountered whilst a transadi@ctive, a run-time error will be

generated.

385

TRANSEND

The TRANSEND statement is used to mark the end ateessfully completed transaction.

COMMAND SYNTAX

TRANSEND {end-text} [THEN statement | ELSE statement]

SYNTAX ELEMENTS

end-text specifies an optional text string to save withtila@saction end record.
A THEN or ELSE (or both) statement is required. TRHEN clause will be executed if the
transaction is successfully ended. HieSE clause will be executed if the transaction enls farr any

reason.

NOTES

Any record locks set during the transaction willrbkeased upon successful completion.

386

TRIM

The TRIM statement allows characters to be remowvad & string in a number of ways.
COMMAND SYNTAX
TRIM (expressionl {, expression2{, expression3}})

SYNTAX ELEMENTS

expressionlspecifies the string from which to trim characters
expression2may optionally specify the character to removerfithe string. If not specified then the
space character is assumed.

expression3evaluates to a single character specifies theaypém to perform.
NOTES

The trim types available for expression3 are:

Operation

—
<
e

(¢

removes leading characters only

removes trailing characters only

removes leading and trailing characters

removes all occurrences of the character
removes leading, trailing and redundant character
removes leading spaces and tabs

removes trailing spaces and tabs

ommT X >» W

removes leading, trailing and redundant spacddairs.

EXAMPLE

INPUT Answer

* Remove spaces and tabs (second parameter ignored)
Answer = TRIM (Answer, ", "D")

INPUT Joker

* Remove all dots

Thief = TRIM(Joker, ".", "A")

387

TRIMB
The TRIMB() function is equivalent to TRIM(expressidrt, "T")

388

TRIMBS

Use the TRIMBS function to remove all trailing spaemd tabs from each element of dynamic.array.

COMMAND SYNTAX

TRIMBS (dynamic.array)

TRIMBS removes all trailing spaces and tabs fromhedement and reduces multiple occurrences of
spaces and tabs to a single space or tab.

If dynamic.array evaluates to null, null is retuwind any element of dynamic.array is null, null is
returned for that value.

389

TRIMF
The TRIMF() function is equivalent to TRIM(expressitn, "L")

390

TRIMES

Use the TRIMFS function to remove all leading spanebtabs from each element of dynamic.array.
COMMAND SYNTAX

TRIMFS (dynamic.array)

TRIMFS removes all leading spaces and tabs from elerhent and reduces multiple occurrences of
spaces and tabs to a single space or tab.

If dynamic.array evaluates to null, it returns niflany element of dynamic.array is null, it retamull

for that value.

391

UNASSIGNED

The UNASSIGNED function allows a program to determireether a variable has been assigned a

value.

COMMAND SYNTAX

UNASSIGNED (variable)

SYNTAX ELEMENTS

variable is the name of variable used elsewhere in therarg

NOTES

The function returns Boolean TRUE if variable hasyeitbeen assigned a value. The function returns
Boolean FALSE if variable has already been assignedue.
See alsoASSIGNED

EXAMPLES

IF UNASSIGNED(Varl) THEN

Varl = "Assigned now!"

END

392

UNIQUEKEY

Returns a unigue 16-byte character key

COMMAND SYNTAX
UNIQUEKEY ()

SYNTAX ELEMENTS

The UNIQUEKEY/() function will generate a unique 16tégharacter key on each call to the function.
The key contains characters from the set A-Z a-z{0afid / (base64)

Based on the current UTC time and the process nyriteekey is unique on a single computer system
providing that the system clock is not turned back.

If the system administrator adjusts the systemkcharkwards, then there is a slight possibility of
generating duplicate keys during the period uh#l ¢lock has caught back up to time that the
adjustment was made.

Any process that continues to execute throughasifpriod will continue to produce unique keys.

A process that starts up during this period argivien the process ID of a process that terminated

during the period, may possibly generate a dugikay until the period ends.

393

UNLOCK

The UNLOCK statement releases a previously LOCKedugiatlock.
COMMAND SYNTAX
UNLOCK {expression}

SYNTAX ELEMENTS

If specifyingexpressionit should evaluate to the number of a held exeautick, for release.

If omitting expressionthen it releases all execution locks held by teent program
NOTES

There is no action if the program attempts to releasexecution lock that it had not taken.
See alsoLOCK.

EXAMPLE

LOCK 23 ; LOCK 32

UNLOCK

394

UDTEXECUTE

See als&XECUTE
UPCASE

See als@OWNCASEHUPCASE

395

UTF8

The UTF8 function converts a latinlor binary strintpithe UTF-8 equivalent byte sequence.
COMMAND SYNTAX

UTF8 (expression)
SYNTAX ELEMENTS

Theexpressionis expected to be a binary/latinlcode page stvitggch converts the binary string into

aUTF-8 encoded byte sequence, used to represent thedgniadues for each byte in the expression.
NOTES

This function is useful for converting binary oritét code page data into internal format when in

International Mode.

396

WAKE

Use the WAKE statement to wake a suspended progbss) has executed a PAUSE statement.
COMMAND SYNTAX
WAKE PortNumber

SYNTAX ELEMENTS

PortNumber is a reference to awaken the target pbet WAKE statement has no effect on processes,
which do not execute the PAUSE statement.

397

WEOF

The WEOF statement allows the program to write af B@rk on an attached tape device.
COMMAND SYNTAX
WEOF {ON expression}

SYNTAX ELEMENTS

expressionspecifies the device channel to use. Should eteatoaa numeric integer argument in the

range 0-9, the default value is zero.
NOTES

If the WEOF fails it then executes the statemess®aated with any ELSE clause. SYSTEM(0) will
return the reason for the failure as follows:

1 there is no media attached to the channel

2 end of media found

NOTES

A "tape" does not refer to magnetic tape deviceés louat to any device described previously to jBASE.
If the specified channel has no assigned tape édgitienters the BASE debugger with an appropriate

message.

EXAMPLE

WEOF ON 5 ELSE
CRT "No tape device exists for channel 5"

END

398

WEOFSEQ

Write end of file on file opened for sequential ess.
COMMAND SYNTAX
WEOFSEQ FilevVar { THEN | ELSE Statements}

SYNTAX ELEMENTS

FileVar specifies the file descriptor of the file openeddequential access.
Statementsconditional jBASE BASIC statements

NOTES

WEOFSEQ forces truncation of the file at the curféa pointer nothing is actually ‘written' to the

sequential file.
EXAMPLES

See also: Sequential File Examples

399

WRITE

The WRITE statement allows a program to write amdaato a previously opened file.
COMMAND SYNTAX
WRITE variablel ON|TO { variable2,} expression {SETTIN@tvar} {ON ERROR statements}

SYNTAX ELEMENTS

variablel is the identifier containing the record to write.

variable2, if specified, should be a previous opened jBASESBAvariable to a file using the OPEN
statement. If not specifying variable2 then it &ses the default file.

The expression should evaluate to a valid recorddeethe file.

If specifying the SETTING clause and the write failsets setvar to one of the following values:

INCREMENTAL FILE ERRORS
128 No such file or directory
4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

If holding a lock on the record by this processs iteleased by the WRITE.

If you wish to retain a lock on a record, you sliodd so explicitly with th&/RITEU statement.
EXAMPLE
OPEN "DICT Customers" TO DCusts ELSE

ABORT 201, "DICT Customers"

END
WRITE Rec ON DCusts, "Xref* ON ERROR

CRT "Xref not written to DICT Customers"

END

400

WRITEBLK

Use the WRITEBLK statement to write a block of data file opened for sequential processing.
COMMAND SYNTAX

WRITEBLK expression ON file.variable

{THEN statements [ELSE statements] | ELSE statements}

Each WRITEBLK statement writes the value of expresstarting at the current position in the file.
The current position is incremented to beyond teebgite written. WRITEBLK does not add a new
line at the end of the data.

file.variable specifies a file opened for sequential processing.

The value of expression is written to the file, #mel THEN statements are executed. If no THEN
statements are specified, program execution coggimith the next statement. If the file is neither
accessible or does not exist, it executes the EL&Emsents; and ignores any THEN statements.

If either expression or file.variable evaluatesitdi, the WRITEBLK statement fails and the program

enters the debugger with a run-time error message.
INTERNATIONAL MODE

When using the WRITEBLK statement in International Mocare must be taken to ensure that the
write variable is handled properly before the WRITEKBdtatement. The WRITEBLK statement
expects the output variable to be in “bytes”, hogrewhen manipulating variables in International
Mode character length rather than byte lengthsiswally used and hence possible confusion or
program malfunction can occur. If requiring byteisbdata the output variable can be converted from
the UTF-8 byte sequence to ‘binary/latinl’ via theTlN1 function.

It is not recommended that you use REBEADBLK/WRITEBLK statements when executing in
International Mode. You can obtain similar functidity via theREADSEQWRITESEQstatement,

which can be used to read/write, characters alirsetime from a file.

401

WRITELIST
WRITELIST allows the program to store a list heldifBASE BASIC variable to the global list file.

COMMAND SYNTAX

WRITELIST variable ON|TO expression {SETTING setvar} {RROR statements}

SYNTAX ELEMENTS

variable is the variable in which the list is held.
expressionshould evaluate to the required list name. If eggpion is null, it writes the list to the
default external list.

If the SETTING clause is specified and the write fdilsets setvar to one of the following values:
INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTE

See alsoDELETELIST, READLIST, FORMLIST

EXAMPLE

* Create the list first
WRITELIST MyList ON "MyList"

402

WRITESEQ

Write to a file opened for sequential access.
COMMAND SYNTAX

WRITESEQ Expression {APPEND} ON|TO FileVar THEN | ELS&tements
or

WRITESEQF Expression {APPEND} TO FileVar THEN | ELSE statats

SYNTAX ELEMENTS

Variable specifies the variable to contain nexbrddrom sequential file.
FileVar specifies the file descriptor of the filpemed for sequential access.
Statements conditional JBASE BASIC statements

NOTES

Each WRITESEQ writes the data on a line of the seéalgnbpened file. Each data is suffixed with a
new line character. After each WRITESEQ), the fileper moves forward to the end of line. The
WRITESEQF statement forces each data line to bbdhliso the file when it is written. The APPEND

option forces each WRITESEQ to advance to the etldecfile before writing the next data line.

EXAMPLES

See also: Sequential File Examples

403

WRITESEQF

SYNTAX

WRITESEQF expression {ON | TO} file.variable [ON ERRQtatements]
{THEN statements [ELSE statements] | ELSE statements}

DESCRIPTION

Use the WRITESEQF statement to write new lines iteapened for sequential processing, and to
ensure that data is physically written to disk {ikanot buffered) before the next statement @ th
program is executed. The sequential file must lempand the end-of-file marker must be reached
before you can write to the file. You can useRheEINFO function to determine the number of the
line about to be written.

Normally, when you write a record using WRITESEQstatement, the record is moved to a buffer
that is periodically written to disk. If a systeail@ire occurs, you could lose all the updated dsan

the buffer. The WRITESEQF statement forces the bufetents to be written to disk; the program
does not execute the statement following the WRIT@SEtatement until the buffer is successfully
written to disk.

A WRITESEQF statement following sevelRITESEQstatements ensures that all buffered records
are written to disk. WRITESEQF is intended for laggapplications and should not be used for
general programming. It increases the disk 1/Oafryprogram and therefore degrades performance.
file.variable specifies a file opened for sequérscress.

The value of expression is written to the file aslext line, and the THEN statements are execifted.
THEN statements are not specified, program execetiotinues with the next statement; if the
specified file cannot be accessed or does not, éRessELSE statements are executed; any THEN
statements are ignored.

If expression or file.variable evaluates to thd malue, the WRITESEQF statement fails and the

program terminates with a run-time error message.

The ON ERROR Clause

The ON ERROR clause is optional in the WRITESEQF stat#. Its syntax is the same as that of the
ELSE clause. The ON ERROR clause lets you specify amative for program termination when a
fatal error is encountered while the WRITESEQF stetatris being processed.

404

WRITET

The WRITET statement enables data to be writtenrémge of tape devices between 0-9.
COMMAND SYNTAX
WRITET variable {ON|TO expression} THEN|ELSE statements

SYNTAX ELEMENTS

variable is the variable that holds the data for writinghe tape device.

expressionshould evaluate to an integer value in the rang§efd specifies from which tape channel
to read the data. If the ON clause is not spectfiedVRITET will assume channel 0.

If the WRITET fails then the statements associatitd any ELSE clause will be executed.
SYSTEM(O) will return the reason for the failurefakows:

1 there is no media attached to the channel
2 end of media found
NOTES

A "tape" does not refer to magnetic tape devicésg lout any device that has been described to BASE.
Writing device descriptors for BASE is beyond tlvepe of this documentation.

If no tape device has been assigned to the specifiannel the BASE debugger is entered with an
appropriate message.

Where possible the record size is not limited single tape block and the entire record will betten
blocked to whatever block size has been allocagettid T-ATT command. However, certain devices
do not allow jJBASE to accomplish this (SCSI tapeides for instance).

EXAMPLE

LOOP
WRITET TapeRec ON 5 ELSE

Reason = SYSTEM(0)
IF Reason = 2 THEN BREAK ;* done
CRT "ERROR"; STOP

END
REPEAT

405

WRITEU

The WRITEU statement allows a program to write amaato a previously opened file. An existing

record lock will be preserved.
COMMAND SYNTAX
WRITEU variablel ON|TO { variable2,} expression {SENIG setvar} {ON ERROR statements}

SYNTAX ELEMENTS

variablel is the identifier holding the record to be written

variable2, if specified, should be a] BASE BASIC variabletthas previously been opened to a file
using the OPEN statement. If variable2 is not dgetthen the default file is assumed.

The expression should evaluate to a valid recorddeethe file.

If the SETTING clause is specified and the write fakstvar will be set to one of the following values

INCREMENTAL FILE ERRORS
128 No such file or directory
4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

If the statement fails to write the record then atatements associated with the ON ERROR clause is
executed.

The lock maintained by th&/RITEU statement will be released by any of the followavgnts:
the same program witWRITE, WRITEV orMATWRITE statements writes to the record.

the record lock is released explicitly using REELEASE statement.
the program stops normally or abnormally.

See alsoREADU, MATREADU, RELEASE

EXAMPLES

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

ABORT 201, "DICT Customers"

406

END
WRITEU Rec FROM DCusts, "Xref" Setting Err ON ERROR

CRT "l/O Error[":Err:"]"

ABORT
END

407

WRITEV

The WRITEV statement allows a program to write a djgefeld of a record in a previously opened

file.
COMMAND SYNTAX

WRITEV variablel ON|TO {variable2,} expressionl, esggsion2 {SETTING setvar} {ON ERROR

statements}
SYNTAX ELEMENTS

variablel is the identifier holding the record to be written

variable2, if specified, should be a] BASE BASIC variabletthas previously been opened to a file
using the OPEN statement. If variable2 is not djgetthen it assumes the default file.
expressionlshould evaluate to a valid record key for the file

expression2should evaluate to a positive integer numbehéfriumber is greater than the number of
fields in the record, it will add null fields to mablel. If expression2 evaluates to a non-numeric
argument, it will generate a run time error.

If the SETTING clause is specified and the write failsets setvar to one of the following values:

INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error
NOTES

The WRITEV statement will cause the release of anlg keld on the record by this program. If you
wish to retain a lock on the record, do so expiaitith the WRITEVU statement.

EXAMPLE

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

ABORT 201, "DICT Customers"

END
WRITEV Rec ON DCusts, "Xref",7 Setting Err ON ERROR

CRT "l/O Error[":Err:"]"

408

ABORT
END

409

WRITEXML

WRITEXML rec ON file,id ELSE STOP 210,id

Write a dynamic array in xml format using a stytest from the DICT

Use WRITEXML to write an XML record to a hash file
Transforms the XML into a dynamic array before beimgten to the file
The transform takes place using the style sheet@TB-@WRITEXML

EXAMPLE

WRITEXML rec ON file,id ON ERROR CRT "Broken! " : r ec

410

WRITEVU

The WRITEVU statement allows a program to write ac#juefield on a record in a previously opened

file. An existing record lock will be preserved.
COMMAND SYNTAX

WRITEVU variablel ON|TO { variable2,} expressionkpeession2 {SETTING setvar} {ON ERROR

statements}
SYNTAX ELEMENTS

variablel is the identifier holding the record to be written

variable2, if specified, should be a] BASE BASIC variabletthas previously been opened to a file
using the OPEN statement. If variable2 is not djgetthen the default file is assumed.
expressionlshould evaluate to a valid record key for the file

expression2should evaluate to a positive integer numbehéfriumber is greater than the number of
fields in the record, null fields will be addedvariablel. If expression2 evaluates to a non-numeri
argument, a run time error will be generated.

If the SETTING clause is specified and the write failsets setvar to one of the following values:
INCREMENTAL FILE ERRORS

128 No such file or directory

4096 Network error

24576 Permission denied

32768 Physical I/O error or unknown error

NOTES

If the statement fails to write the record, it exies any statements associated with the ON ERROR
clause.

Any of the following events will release the loekéen by theVRITEVU statement:

The same program witWRITE, WRITEV or MATWRITE statements writes to the record.
By explicitly using theRELEASE statement, it releases the record lock.

The program stops normally or abnormally.
See alsoMATWRITEU, RELEASE WRITE, WRITEU.

EXAMPLE

OPEN "Customers" ELSE ABORT 201, "Customers"

OPEN "DICT Customers" TO DCusts ELSE

411

ABORT 201, "DICT Customers"

END
WRITEVU Rec ON DCusts, "Xref",1 SETTING Err ON ERRO R

CRT "I/O Error[":Err:"]

ABORT
END

412

XLATE

The XLATE function will return the data value of alfi, given the name of the file, the record keg, th

field number, and an action code.
COMMAND SYNTAX
XLATE ([DICT] filename, key, field#, action.code)

SYNTAX ELEMENTS

DICT is the literal string to be placed before the filene in the event it is desired to open the
dictionary portion of the file, rather than the alabrtion.

filename is a string containing the name of the file tcaloeessed. Note that it is the actual name of the
file, and not a file unit variable. This functioequires the file name, regardless of whether dthe

file has been opened to a file unit variable.

key is an expression that evaluates to the recorddeatem ID, of the record from which data is to be
accessed.

field# is the field number to be retrieved from the relcor

action.codeindicates the procedure if the field is null, anoot find the if record. This is a literal.

The valid codes are:

X Returns a null string. This is the default action
\% Prints an error message.

C Returns the value of key

NOTES

If the field being accessed is a dynamic array, XEAwill return the array with the delimiter
characters lowered by 1. For example, multivahaeks (ASCII-253) are returned as subvalue marks
(ASCII-252), and subvalue marks are returned asmexks (ASCII-251).

If you supply -1 for field#, it returns the entirecord.

The XLATE function is the same as thB ANS function.

EXAMPLE

1. Retrieval of a simple field: Given a file call&VENDORS" containing a record with the record key
of "12345" and which contains the value of "ABC Gmany" in field 1,

VENDOR.ID ="12345"
VENDOR.NAME = XLATE("VENDORS",VENDOR.ID,1,"X")

CRT VENDOR.NAME

will display: ABC Company
2. Retrieval of an array: Suppose field 6 of MENDORS file contains a multivalued list of purchase

order numbers, such as

413

10011]10062]10079

use the XLATE function to retrieve it:

PO.LIST = XLATE("VENDORS",VENDOR.ID,6,"X")

CRT PO.LIST

will display: 10011\10062\10079

Notice that the backslashes (\) were substitutetrfackets (]), indicating that the delimiter ismo
CHAR(252).

3. Retrieval of an entire dictionary item: Givauictionary item called "VENDOR.NAME" with the

following content

001 A
0021
003 Vendor Name

004
005
006
007
008
009 L

010 30
these statements

DICT.ID = "VENDOR.NAME"
DICT.REC = XLATE("DICT VENDORS",VENDOR.ID,-1,"C")

PRINT DICT.REC

will display
A]1]Vendor Name]]]]]L]30

414

XMLTODYN

COMMAND SYNTAX

XMLTODYN(XML,XSL,result)

SYNTAX ELEMENTS

Converts the XML to a dynamic array using the oloXSL to transform
Array = XMLTODYN(XML,XSL,result)
If result = O Array will contain a dynamic arrayilbdrom the xml / xsl

If result <> 0, Array will contain an error message

There is no requirement for xsl if you are recornimgrfrom generic xml to dynarray

a="Tom": @AM : "Dick" : @AM : "Harry"
xml = DYNTOXML (a,",result)
b = XMLTODYN(xml,"",result
CRT CHANGE(b @AM, ™)

SCREEN OUTPUT

Tom Dick Harry

If passing a stylesheet in the second parameteerfiorms a transform to give a different formathu#
array.

XML CONTENTS

<?xml version="1.0" encoding="UTF-8"?>

<mycustomer>
<firstname>Tom</firstname>
<lastname>Dick</lasthname>

<address>Harry</address>
</mycustomer>

EXAMPLE

a = XMLTODYN(xml,xsl,rc)
CRT CHANGE(a,@AM," ")

XSL CONTENTS

<xsl:template match="mycustomer">
<array>
<xsl:apply-templates/>

415

</array>
</xsl:template>

<xsl:template match="firstname">
<data>
<xsl:attribute name="attribute">1</xsl:attribute>
<xsl:attribute name="value">

<xsl:number level="single"/>
</xsl:attribute>
<xsl:attribute name="subvalue">1</xsl:attribute>
<xsl:value-of select="."/>
</data>
</xsl:template>

Etc

416

XMLTOXML

COMMAND SYNTAX

XMLTOXML (xml,xsl,result

SYNTAX ELEMENTS

Transform the XML using the XSL

If result=0, newxml will contain a transformed viers of xml using xsl
If result=1, newxml will hold an error message

XSL CONTENTS

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="person">
<p><xsl:value-of select="name" /></p>
</xsl:template>

</xsl:stylesheet>

XML CONTENTS

<list>

<person>
<name>Bob</name>

</person>

<person>
<name>Amy</name>

</person>

<list>

EXAMPLE

newxml = XMLTOXML(xml,xsl,rc)
CRT newxml

SCREEN OUTPUT

<p>Bob</p><p>Amy</p>

417

XTD

The XTD() function converts hexadecimal numbers itdalecimal equivalent.
COMMAND SYNTAX
XTD(expression)

SYNTAX ELEMENTS

expressionshould evaluate to a valid hexadecimal string.

NOTES

The conversion process will halt at the first cheeathat is not a valid base 16 character in théOse
9, A-F or a-f].
See alsoDTX.

EXAMPLES

A="FF"

CRT XTD(A)

418

Embedded SQL for JBASE BASIC

The name "SQL" is an abbreviation for "Structured @u&nguage". The SQL language enables the
defining, manipulating and controlling of data inedational database. A relational database is a
database that appears to the user as a colledttahles. A table is defined to be an unordered
collection of rows. Finally the SQL terminology tento refer to records as rows and fields within a
record as a columns within a row.

Embedded SQL is a version of SQL designed for direxrporation into hosts programs or
specifically in the case of |BASE, into BASE BASICograms.

An Embedded SQL jBASE BASIC program contains norrBAISE BASIC code statements plus an
Embedded SQL declare section, zero or more embeduisoraefinitions, zero or more embedded
exception declarations and one or more Embedded &fnsents.

Embedded SQL declarations, definitions and statenagatprefixed by the reserved wolEXEC

SQL. This part of the Embedded SQL standard also esatejBASE BASIC preprocessor to
recognize and distinguish SQL statements from tmmabjBASE BASIC code statements. The
Embedded SQL statements are terminated by a semicolo

Embedded SQL statements can include references t8FEMSIC variables. The jBASE BASIC
variables must be prefixed with a colon to distisguhem from SQL column names. The jBASE
BASIC variables cannot be qualified or subscriad must refer to scalars, i.e. character strings o
numbers, not arrays or expressions.

All JBASE BASIC variables that will be referencediimbedded SQL statements must be defined
within an Embedded SQL declare section, the jBASE BA&riable definitions are limited to simple
forms. i.e. no expressions or arrays.

An Embedded SQL cursor must not appear in an Embegi@édstatement before it has been defined
by an Embedded SQL cursor definition.

Any jBASE BASIC variables that will be referencedEmbedded SQL statements must have a data
type that is compatible with the SQL data typehef tolumn with which they are to be compared or
assigned. However this requirement does not prgB&8E BASIC variables from using the same
name as Embedded SQL column references.

Embedded SQL statement exceptions can be handled kithutilizing the SYSTEM(0) function or
predetermined by the SQL WHENEVER statement.

The following BASE BASIC code provides an examplausing Embedded SQL for Oracle.
PartEntry.b listing (Oracle)

*

* Declare BASE BASIC vars to use in Embedded SQL s tatements (A)

*

EXEC SQL BEGIN DECLARE SECTION;
INT PartNo;

STRING(20) PartName;

STRING(16) User;

419

STRING(16) Passwd;
EXEC SQL END DECLARE SECTION;

*

* Predetermine action on SQLERROR (B)

*

EXEC SQL WHENEVER SQLERROR DO SQL_ERROR() ;

*

* Connect to database supplying user and password (

*

User = "demo" ; Passwd = "demo99"

EXEC SQL CONNECT :User IDENTIFIED BY :Passwd;

*

* Create Parts table (D)

*

EXEC SQL CREATE TABLE Parts

(

PartNo INTEGER NOT NULL PRIMARY KEY,
PartName CHAR(20)

);

*

* Loop until no more PartNos
*

LOOP

*

* Prompt for PartNo
*
CRT "Part Number :":
INPUT PartNo
WHILE PartNo NE " DO

*

* Prompt for PartName
*
CRT "Part Name :":
INPUT PartName

*

* Add PartNo and PartName into Parts table (E)

*

EXEC SQL INSERT INTO Parts VALUES (:PartNo, :Pa
REPEAT

*

* Commit updates to database (F)
*

C)

rtName);

420

EXEC SQL COMMIT ;

(A) Declare JBASE BASIC variables to use within Eedided SQL statements

This section declares BASE BASIC variables so thay can be used within Embedded SQL
statements. All references to JBASE BASIC within Brmbedded SQL statement must be prefixed by
a colon. This feature of the Embedded SQL standanded by the BASE BASIC preprocessor to
identify JBASE BASIC variables when parsing the Emthedl SQL statement. The BASE BASIC

variables must be the same data type as the soutasget Embedded SQL columns.

(B) Predetermine action on SQLERROR

This section configures the action to take on detgtn error with the previous executed Embedded
SQL statement. Every SQL statement should in griadie followed by a test of the returned
SQLCODE value. This can be achieved by utilizingSie&TEM(0) function, which returns the result
of the last SQL statement, or alternatively usimgyEmbedded SQL WHENEVER statement to
predetermine the action for all subsequent Embe&dgid statements. The SYSTEM(0) function will

return three different possible values.

<0 Embedded SQL statement failed.
0 Embedded SQL statement successful.
100 NOT FOUND. No rows where found.

The format of the Embedded SQL WHENEVER statement fslksvs:
EXEC SQL WHENEVER Condition Action ;

where
N NOT FOUND
Condition
SQLERROR
DO Function - Oracle implementation.
] CALL Function - Ingres and Informix implementations.
Action

GOTO proglab_Label — IBM DB2 and Microsoft SQL Serimplementations.
CONTINUE

User defined function.
Function SQLERROR() - Display Embedded SQL error then retuiprogram.
SQLABORTY() - Display Embedded SQL error then exdagyam.

Label in executing program:
DOSQLERR:
Label DEFC INT SQL_ERROR
CALL SQL_ERROR
STOP

(C) Connect to database supplying user and padswo
This section connects the specified user and omghssmbination to the SQL database. This

421

command can be Embedded SQL implementation deperidentiser must be correctly configured for

the target database.

(D) Create Parts table.

This section creates an SQL table called Parts. atlle has two constituent data types, these are
defined as an integer value PartNo and a charsitteg PartName. The PartNo is defined as a non null
unique value and is defined as the primary key. d@&ffition provides a close match to the usual
format of a record and id. The only data type thatuly common to all hosts and their languages is
fixed length character strings, the integer valseduhere is for demonstration purposes and is not

recommended.

(E) Add PartNo and PartName into table Parts.

This Embedded SQL statement inserts the values drftar@®artNo and PartName into the SQL table
Parts. PartNo is inserted as the first column wdeeRartName is inserted as the second column bf eac
row. Effectively PartNo is the record id and PartNamthe first field in the record PartNo. The

JBASE BASIC pre-processor parses the Embedded S@ens¢ats and provides code to convert any
specified JBASE BASIC variables to the format reqdiby the Embedded SQL implementation. Any

returned parameters are then converted back i®RS8EBBASIC variables.

(F) Commit updates to database.

This Embedded SQL statement makes all updates by Elede@QL statements since the last SQL
commit statement visible to other users or programthe database. If a program executes an
Embedded SQL statement and no transaction is clyriative then one is automatically started. Each
subsequent SQL statement update by the same pregthout an intervening commit or rollback, is
considered part of the same transaction. A traimsatgrminates by either an Embedded SQL
COMMIT, normal termination, or an Embedded SQL ROLLBA&atement, abnormal termination.
An abnormal termination does not change the datalith respect to any of the Embedded SQL
updates executed since the last commit or rollb@ekabase updates made by a given transaction do
not become visible to any other distinct transaictiatil and unless the given transaction completes

with a normal termination. i.e. an Embedded SQL CAONMBtatement.
EMBEDDED SQL COMPILER OPTION

In order to compile jBASE BASIC programs containbgnbedded SQL statements the jBASE
compiler option "Jgq" must be invoked with the BABBSIC compiler command. The "Jg" option

also expects an SQL implementation specifier, asriteed below.

-Jg<type> RDBMS

d IBM DB2

m Microsoft SQL Server (Windows only)
o Oracle

422

i Ingres
S Sybase
X Informix

e.g. To compile the BASE BASIC example program Patrty.b for an Oracle SQL implementation
database.

jcompile -Jqo PartEntry.b

In this example the SQL specifier is "0" for Oradlher specifiers are added as and when Embedded
SQL implementations are required. e.g. The "i"@pinforms the jBASE compiler to invoke
mechanisms for the Ingres Embedded SQL implementadilthough the Embedded SQL standard is
the same, each SQL provider requires different maatijye techniques in order to compile and
connect to the database.

The jcompile compiler pre-processes the BASE BASI@ymm parsing the normal JBASE BASIC
and Embedded SQL statements to produce an interteétliprogram. The SQL implementation
dependent pre-processor is then invoked to cotivefEmbedded SQL statements to the
implementation defined internal functions. The résglprogram is then is then compiled and linked.
The JBASE BASIC compilation should be executed irsariaccount which has been enabled for the
required Embedded SQL implementation. Attemptingdimpile in an account not enabled for the
required SQL implementation may cause compilat@lufe as certain environment variables for the

implementation may not have been modified for ieect directory paths, etc.
TROUBLESHOOTING

When attempting to compile a program with Embedd@t 8nd you get an error along the lines of...
Command failed: nsqlprep PartEntry.sqc
SQL Pre Processor error -1

...this is an indication that either you have maided the Embedded SQL Kit and do not have the
'nsqlprep' command, or the 'nsglprep' command eriss but it is not visible to the PATH

environment variable.

423

Comment Sheet

Please give page number and description for amysfound:

Page Error

Please use the box below to describe any matemiathink is missing; describe any material, whigh i
not easily understood; enter any suggestions fprarement; provide any specific examples of how
you use your system, which you think, would be uls&f readers of this manual. Continue on a

separate sheet if necessary.

Copy and paste this page to a word document atadiegour name address and telephone number

and send todocumentation@temenos.com

424

